Flash Sintering

  • Eugene A. Olevsky
  • Dina V. Dudina


In this chapter, the principle of flash sintering is presented, and the underlying mechanisms of the phenomenon are discussed. Flash sintering has attracted significant attention as a sintering method offering energy saving and shortening of processing times of ceramics to full density. In its “traditional” format, flash sintering occurs when an electrical potential is applied to the pre-compacted specimen heated in a furnace. The characteristic field strength and power dissipation values in flash sintering are 100–100 V·cm−1 and 10–1000 W·cm−3, respectively. From the viewpoint of sintering science, flash sintering is a remarkable phenomenon. It is currently agreed that “traditional” flash sintering is accompanied by a sudden increase in the conductivity of the sintered material, while the temperature instability plays a crucial role in the development of flash sintering. In the present chapter, initiation of flash sintering events by arc plasma and microwave radiation is also described. Possibilities of conducting flash sintering using sintering molds (including “flash spark plasma sintering”) are discussed. Microstructural evidence of grain-boundary melting in flash-sintered ceramics is provided. Possibilities to flash sinter all types of materials regardless of the way their electrical conductivity changes with temperature by forcing thermal runaway by applying a certain electric current pattern are presented. Application of flash sintering as a microstructure design method is exemplified by describing the origin and features of compositional and structural inhomogeneities arising in the flash-sintered materials due to melting of the material located at the grain boundaries. Examples of flash sintering of composite materials and accelerated phase homogenization during flash sintering of powder mixtures are provided. Successful applications of flash sintering for the production of functional materials and multilayered structures are discussed.


Flash sintering Power dissipation Thermal runaway Mold-assisted flash sintering Contactless flash sintering Grain-boundary melting Temperature distribution Flash hot pressing Flash spark plasma sintering 


  1. 1.
    Yu M, Grasso S, Mckinnon R, Saunders T, Reece MJ (2017) Review of flash sintering: materials, mechanisms and modeling. Adv Appl Ceram 116:24–60CrossRefGoogle Scholar
  2. 2.
    Cologna M, Rashkova B, Raj R (2010) Flash sintering of nanograin zirconia in < 5 s at 850 degrees C. J Am Ceram Soc 93:3556–3559CrossRefGoogle Scholar
  3. 3.
    Francis JSC, Cologna M, Raj R (2012) Particle size effects in flash sintering. J Eur Ceram Soc 32:3129–3136CrossRefGoogle Scholar
  4. 4.
    Raj R (2012) Joule heating during flash-sintering. J Eur Ceram Soc 32:2293–2301CrossRefGoogle Scholar
  5. 5.
    Saini KK, Sharma CP, Chanderkant SDK, Ravat KB, Chandra S, Tewari SP (1993) Effect of thallium concentration on Tl-2201 superconducting phase by flash sintering process. Physica C 216:59–65CrossRefGoogle Scholar
  6. 6.
    Muccillo R, Muccillo ENS (2013) An experimental setup for shrinkage evaluation during electric field-assisted flash sintering: application to yttria-stabilized zirconia. J Eur Ceram Soc 33:515–520CrossRefGoogle Scholar
  7. 7.
    Hao X, Liu Y, Wang Z, Qiao J, Sun K (2012) A novel sintering method to obtain fully dense gadolinia doped ceria by applying a direct current. J Power Sources 210:86–91CrossRefGoogle Scholar
  8. 8.
    Muccillo R, Kleitz M, Muccillo ENS (2012) Flash grain welding in yttria stabilized zirconia. J Eur Ceram Soc 31:1517–1521CrossRefGoogle Scholar
  9. 9.
    Cologna M, Prette ALG, Raj R (2011) Flash-sintering of cubic yttria-stabilized zirconia at 750 degrees C for possible use in SOFC manufacturing. J Am Ceram Soc 94:316–319CrossRefGoogle Scholar
  10. 10.
    Prette ALG, Cologna M, Sglavo V, Raj R (2011) Flash-sintering of Co2MnO4 spinel for solid oxide fuel cell applications. J Power Sources 196:2061–2065CrossRefGoogle Scholar
  11. 11.
    Cologna M, Francis JSC, Raj R (2011) Field assisted and flash sintering of alumina and its relationship to conductivity and MgO-doping. J Eur Ceram Soc 31:2827–2837CrossRefGoogle Scholar
  12. 12.
    Zapata-Solvas E, Bonilla S, Wilshaw PR, Todd RI (2013) Preliminary investigation of flash sintering of SiC. J Eur Ceram Soc 33:2811–2816CrossRefGoogle Scholar
  13. 13.
    Saunders T, Grasso S, Reece MJ (2016) Ultrafast-contactless flash sintering using plasma electrodes. Sci Rep 6:27222CrossRefGoogle Scholar
  14. 14.
    Grasso S, Saunders T, Porwal H, Cedillos-Barraza O, Jayaseelan DD, Lee WE, Reece MJ (2014) Flash spark plasma sintering (FSPS) of pure ZrB2. J Am Ceram Soc 97(8):2405–2408CrossRefGoogle Scholar
  15. 15.
    Olevsky EA, Rolfing SM, Maximenko AL (2016) Flash (ultra-rapid) spark-plasma sintering of silicon carbide. Sci Rep 6:33408CrossRefGoogle Scholar
  16. 16.
    Grasso S, Saunders T, Porwal H, Milsom B, Tudball A, Reece M (2016) Flash spark plasma sintering (FSPS) of α and β SiC. J Am Ceram Soc 99(5):1534–1543CrossRefGoogle Scholar
  17. 17.
    Grasso S, Kim EY, Saunders T, Yu M, Tudball A, Choi SH, Reece M (2016) Ultra-rapid crystal growth of textured SiC using flash spark plasma sintering route. Cryst Growth Des 16:2317–2321CrossRefGoogle Scholar
  18. 18.
    McWilliams B, Yu J, Kellogg F, Kilczewski S (2017) Enhanced sintering kinetics in aluminum alloy powder consolidated using DC electric fields. Metall Mater Trans A 48:919–929CrossRefGoogle Scholar
  19. 19.
    Zhang Y, Luo J (2015) Promoting the flash sintering of ZnO in reduced atmospheres to achieve nearly full densities at furnace temperatures of <120 deg C. Scr Mater 106:26–29CrossRefGoogle Scholar
  20. 20.
    Hewitt IJ, Lacey AA, Todd RI (2015) A mathematical model for flash sintering. Math Model Nat Phenom 10(6):77–89CrossRefGoogle Scholar
  21. 21.
    Dong Y, Chen IW (2016) Thermal runaway in mold-assisted flash sintering. J Am Ceram Soc 99(9):2889–2894CrossRefGoogle Scholar
  22. 22.
    Dong Y, Chen IW (2015) Predicting the onset of flash sintering. J Am Ceram Soc 98(8):2333–2335CrossRefGoogle Scholar
  23. 23.
    Dong Y, Chen IW (2015) Onset criterion for flash sintering. J Am Ceram Soc 98(12):3624–3627CrossRefGoogle Scholar
  24. 24.
    Downs JA, Sglavo VM (2013) Electric field assisted sintering of cubic zirconia at 390°C. J Am Ceram Soc 96(5):1342–1344CrossRefGoogle Scholar
  25. 25.
    Francis JSC, Raj R (2012) Flash-sinterforging of nanograin zirconia: field assisted sintering and superplasticity. J Am Ceram Soc 95:138–146CrossRefGoogle Scholar
  26. 26.
    Raj R, Cologna M, Francis JSC (2011) Influence of externally imposed and internally generated electrical fields on grain growth, diffusional creep, sintering and related phenomena in ceramics. J Am Ceram Soc 94:1941–1965CrossRefGoogle Scholar
  27. 27.
    Karakuscu A, Cologna M, Yarotski D, Won J, Francis JSC, Raj R, Uberuaga BP (2012) Defect structure of flash-sintered strontium titanate. J Am Ceram Soc 95:2531–2536CrossRefGoogle Scholar
  28. 28.
    Grasso S, Sakka Y, Rendtorff N, Hu CF, Maizza G, Borodianska H, Vasylkiv O (2011) Modeling of the temperature distribution of flash sintered zirconia. J Ceram Soc Jap 119:144–146CrossRefGoogle Scholar
  29. 29.
    Park J, Chen IW (2013) In situ thermometry measuring temperature flashes exceeding 1,700°C in 8 Mol% Y2O3-stablized zirconia under constant-voltage heating. J Am Ceram Soc 96:697–700CrossRefGoogle Scholar
  30. 30.
    Todd RI, Zapata-Solvas E, Bonilla RS, Sneddon T, Wilshaw PR (2015) Electrical characteristics of flash sintering: thermal runaway of joule heating. J Eur Ceram Soc 35:1865–1877CrossRefGoogle Scholar
  31. 31.
    Narayan J (2013) A new mechanism for field-assisted processing and flash sintering of materials. Scr Mater 69:107–111CrossRefGoogle Scholar
  32. 32.
    Bykov YV, Egorov SV, Eremeev AG, Kholoptsev VV, Plotnikov IV, Rybakov KI, Sorokin AA (2016) On the mechanism of microwave flash sintering of ceramics. Materials 9:684CrossRefGoogle Scholar
  33. 33.
    Bykov YV, Egorov SV, Eremeev AG, Kholoptsev VV, Rybakov KI, Sorokin AA (2015) Flash microwave sintering of transparent Yb:(LaY)2O3 ceramics. J Am Ceram Soc 98(11):3518–3524CrossRefGoogle Scholar
  34. 34.
    Chaim R (2016) Liquid film capillary mechanism for densification of ceramic powders during flash sintering. Materials 9:280CrossRefGoogle Scholar
  35. 35.
    Chaim R (2017) Particle surface softening as universal behavior during flash sintering of oxide nano-powders. Materials 10:179CrossRefGoogle Scholar
  36. 36.
    Candelario VM, Moreno R, Todd RI, Ortiz AL (2017) Liquid-phase assisted flash sintering of SiC from powder mixtures prepared by aqueous colloidal processing. J Eur Ceram Soc 37:485–498CrossRefGoogle Scholar
  37. 37.
    Lebrun JM, Morrissey TG, Francis JSC, Seymour KC, Kriven WM, Raj R (2015) Emergence and extinction of a new phase during on–off experiments related to flash sintering of 3YSZ. J Am Ceram Soc 98:1493–1497CrossRefGoogle Scholar
  38. 38.
    Jha SK, Lebrun JM, Seymour KC, Kriven WM, Raj R (2016) Electric field induced texture in titania during experiments related to flash sintering. J Eur Ceram Soc 36(1):257–261CrossRefGoogle Scholar
  39. 39.
    Perelaer J, Klokkenburg M, Hendriks CE, Schubert US (2009) Microwave flash sintering of inkjet-printed silver tracks on polymer substrates. Adv Mater 21:4830–4834CrossRefGoogle Scholar
  40. 40.
    Perelaer J, Jani R, Grouchko M, Kamyshny A, Magdassi S, Schubert US (2012) Plasma and microwave flash sintering of a tailored silver nanoparticle ink, yielding 60% bulk conductivity on cost-effective polymer foils. Adv Mater 24:3993–3998CrossRefGoogle Scholar
  41. 41.
    Manière C, Lee G, Zahrah T, Olevsky EA (2018) Microwave flash sintering of metal powders: from experimental evidence to multiphysics simulation. Acta Mater 147:24–34CrossRefGoogle Scholar
  42. 42.
    Du B, Gucci F, Porwal H, Grasso S, Mahajan A, Reece MJ (2017) Flash spark plasma sintering of magnesium silicide stannide with improved thermoelectric properties. J Mater Chem C 5:1514–1521CrossRefGoogle Scholar
  43. 43.
    Corapcioglu G, Ali Gulgun M, Kisslinger K, Sturm S, Jha SK, Raj R (2016) Microstructure and microchemistry of flash sintered K0.5Na0.5NbO3. J Ceram Soc Japan 124(4):321–328CrossRefGoogle Scholar
  44. 44.
    Biesuz M, Luchi P, Quaranta A, Sglavo VM (2016) Theoretical and phenomenological analogies between flash sintering and dielectric breakdown in a-alumina. J Appl Phys 120:145107CrossRefGoogle Scholar
  45. 45.
    Manière C, Lee G, Olevsky EA (2017) All-materials-inclusive flash spark plasma sintering. Sci Rep 7:15071CrossRefGoogle Scholar
  46. 46.
    Zapata-Solvas E, Gómez-García D, Domínguez-Rodríguez A, Todd RI (2015) Ultra-fast and energy-efficient sintering of ceramics by electric current concentration. Sci Rep 5:8513CrossRefGoogle Scholar
  47. 47.
    Gaur A, Sglavo VM (2014) Densification of La0.6Sr0.4Co0.2Fe0.8O3 ceramic by flash sintering at temperature less than 100 °C. J Mater Sci 49:6321–6332CrossRefGoogle Scholar
  48. 48.
    Francis JSC, Cologna M, Montinaro D, Raj R (2013) Flash sintering of anode–electrolyte multilayers for SOFC applications. J Am Ceram Soc 96(5):1352–1354CrossRefGoogle Scholar
  49. 49.
    Jesus LM, Santos Silva R, Raj R, M’Peko JC (2016) Electric field-assisted flash sintering of CaCu3Ti4O12: microstructure characteristics and dielectric properties. J Alloys Comp 682:753–758CrossRefGoogle Scholar
  50. 50.
    Liu D, Gao Y, Liu J, Wang Y, An L (2016) Effect of holding time on the microstructure and properties of flash sintered Y2O3-doped ZrO2. Ceram Int 42:17442–17446CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Eugene A. Olevsky
    • 1
  • Dina V. Dudina
    • 2
  1. 1.College of EngineeringSan Diego State UniversitySan DiegoUSA
  2. 2.Lavrentyev Institute of Hydrodynamics, Siberian Branch of the Russian Academy of SciencesNovosibirskRussia

Personalised recommendations