Sintering by High-Voltage Electric Pulses

  • Eugene A. Olevsky
  • Dina V. Dudina


In this chapter, the principles and physical mechanisms of high-voltage consolidation of powder materials are described. Several variations of this type of field-assisted sintering are introduced: high-voltage electric discharge consolidation, high-energy high-rate consolidation, pulse plasma sintering, and capacitor discharge sintering. Different stages of high-voltage powder consolidation are described. Various physical phenomena present during high-voltage consolidation, including local processes at inter-particle contacts, are analyzed. The equipment setups for different types of high-voltage consolidation are described. The results of processing by high-voltage electric pulse consolidation of selected examples of materials are discussed.


High-voltage consolidation Pulse plasma sintering Capacitor discharge sintering Current waveform Inter-particle contact Consolidation stage 


  1. 1.
    Belyavin KE, Mazyuk VV, Min’ko DV, Sheleg VK (1997) Theory and practice of electric pulse sintering of porous materials. Minsk, Remiko, p 180 (in Russian)Google Scholar
  2. 2.
    Yurlova MS, Demenyuk VD, Dudina D, Lebedeva LY, Grigoryev EG, Olevsky EA (2014) Review: electric pulse consolidation: an alternative to spark plasma sintering. J Mater Sci 49:952–985CrossRefGoogle Scholar
  3. 3.
    Olevsky EA, Aleksandrova EV, Ilyina AM, Dudina DV, Novoselov AN, Pelve KY, Grigoryev EG (2013) Outside mainstream electronic databases: review of studies conducted in the USSR and post-soviet countries on electric current-assisted consolidation of powder materials. Materials 6:4375–4440CrossRefGoogle Scholar
  4. 4.
    Grigor’ev EG (2008) Kinetics of the consolidation processes in dispersed materials under electric-pulse effect. Bull Rus Acad Sci: Phys 72(9):1210–1212Google Scholar
  5. 5.
    Grigoryev EG, Olevsky EA (2012) Thermal processes during high voltage electric discharge consolidation of powder materials. Scr Mater 66:662–665CrossRefGoogle Scholar
  6. 6.
    Grigoryev EG (2011) High voltage electric discharge consolidation of tungsten carbide-cobalt powder. In: Cuppoletti J (ed) Nanocomposites with unique properties and applications in medicine and industry. InTech, Rijeka, pp 345–360 ISBN: 978-953-307-351-4. Available from: Google Scholar
  7. 7.
    Grigoriev EG, Rosliakov AV (2007) Electro–discharge compaction of WC–Co and W–Ni–Fe–Co composite materials. J Mater Process Technol 191:182–184CrossRefGoogle Scholar
  8. 8.
    Popov VP, Grigor'ev EG, Novikov SV, Baidenko AA, Goucharov SV (1996) Mathematical modeling of the densification process in the electrical discharge sintering of copper-tin powder. Powder Metall Metal Ceram 35:32–35CrossRefGoogle Scholar
  9. 9.
    Grigoryev EG (2009) Kinetics of densification processes of powder materials under electro pulse sintering. Arab J Sci Eng 34(1):29–33Google Scholar
  10. 10.
    Belyavin KE, Min’ko DV, Kuznechik OO (2004) Modeling of the process of the electric-discharge sintering of metal powder. J Eng Phys Thermophys 77(3):628–637CrossRefGoogle Scholar
  11. 11.
    Marcus HL, Weldon WF, Persad C, Eliezer Z, Bourell D (1990) Controlling fundamentals in high–energy high–rate pulsed power materials processing of powdered tungsten, titanium aluminides and copper–graphite composites. In: Final technical report, Center for Materials Science and Engineering, Texas University, AustinGoogle Scholar
  12. 12.
    Persad C, Peterson DR, Zowarka RC (1989) Composite solid armature consolidation by pulse power processing: a novel homopolar generator application in EML technology. IEEE Trans Magn 25(1):429–432CrossRefGoogle Scholar
  13. 13.
    Orth JE, Wheat HG (1997) Corrosion behavior of high energy high rate consolidated graphite/copper metal matrix composites in chloride media. Appl Compos Mater 4:305–320CrossRefGoogle Scholar
  14. 14.
    Wang MJ, Persad C, Eliezer Z, Weldon WF (1987) High-energy/high-rate consolidation of copper-graphite composite brushes for high-speed, high-current applications. In: Gully JH (ed) Proc 3rd international conference on current collectors, paper 20, Austin, TX, USAGoogle Scholar
  15. 15.
    Eliezer Z, Wang MJ, Persad C, Gully J (1988) A novel processing technique for metal–ceramic composites. Mater Sci Forum 34-36:505–509CrossRefGoogle Scholar
  16. 16.
    Elkabir G, Rabenberg L, Persad C, Marcus HL (1986) Microstructural evaluation of a high-energy high-rate P/M processed aluminum alloy. Scr Metall 20:1411–1416CrossRefGoogle Scholar
  17. 17.
    Oleszak D, Jaroszewicz J, Rosinski M, Michalski A (2002) Structure of NiAl–TiC composite fabricated by mechanical milling and pulse electric discharge sintering. Rudy Metal 47:432–434Google Scholar
  18. 18.
    Rosinski M, Kruszewski M, Michalski A, Fortuna-Zalesna E (2011) W/steel joint fabrication using the pulse plasma sintering (PPS) method. Fusion Eng Des 86:2573–2576CrossRefGoogle Scholar
  19. 19.
    Knoess W, Schlemmer M (1996) US Patent No 5529746Google Scholar
  20. 20.
    Fais A, Maizza G (2008) Densification of AISI M2 high speed steel by means of capacitor discharge sintering (CDS). J Mater Process Technol 202:70–75CrossRefGoogle Scholar
  21. 21.
    Fais A (2010) Processing characteristics and parameters in capacitor discharge sintering. J Mater Process Technol 210:2223–2230CrossRefGoogle Scholar
  22. 22.
    Scardi P, D’Incau M, Leoni M, Fais A (2010) Dislocation configurations in nanocrystalline FeMo sintered components. Metall Mater Trans A 41:1196–1201CrossRefGoogle Scholar
  23. 23.
    Fais A, Leoni M, Scardi P (2011) Fast sintering of nanocrystalline copper. Metall Mater Trans A 27:1517–1521Google Scholar
  24. 24.
    Raichenko AI (1987) Basics of electric current-assisted sintering. Metallurgiya, Moscow, 128 p (in Russian)Google Scholar
  25. 25.
    Wu X, Guo J (2007) Effect of liquid phase on densification in electric–discharge compaction. J Mater Sci 42:7787–7793CrossRefGoogle Scholar
  26. 26.
    Al-Hassani STS, Can M, Watson EJ (1986) A second order approximation to nonlinear circuit equations as applied to high energy electrical discharge processes. J Comput Appl Math 15:175–189CrossRefGoogle Scholar
  27. 27.
    Alitavoli M, Darvizeh A (2009) High rate electrical discharge compaction of powders under controlled oxidation. J Mater Process Technol 209:3542–3549CrossRefGoogle Scholar
  28. 28.
    Kim DK, Pak HR, Okazaki K (1988) Electro discharge compaction of nickel powders. Mater Sci Eng A 104:191–200CrossRefGoogle Scholar
  29. 29.
    Zavodov NN, Kozlov AV, Luzganov SN, Polishchuk VP, Shurupov AV (1999) Sintering of metal powders by a series of strong current pulses. High Temp 37(1):130–135Google Scholar
  30. 30.
    Grigoryev EG (2009) Modelling of the macroscopic processes in powder medium under the powerful electric-pulse effect. Bulletin of the MSPU 1:52–56 (in Russian)Google Scholar
  31. 31.
    Clyens S, Al-Hassani STS (1976) Compaction of powder metallurgy bars using high voltage electrical discharges. Int J Mech Sci 18(1):37–40CrossRefGoogle Scholar
  32. 32.
    Al-Hassani STS (1979) Consolidation of powder metallurgy bars by direct electrical discharge and rotary swaging. Wire Ind 46:809–816Google Scholar
  33. 33.
    Alp T, Darvizeh AF, Al-Hassani STS (1988) Preforming of metal-polymer composites by electric discharge compaction of powders. Powder Metall 3:173–177CrossRefGoogle Scholar
  34. 34.
    Ervin DR, Bourell DL, Persad C, Rabenberg L (1988) Structure and properties of high energy, high rate consolidated molybdenum alloy TZM. Mater Sci Eng A 102(1):25–30CrossRefGoogle Scholar
  35. 35.
    Anisimov AG, Mali VI (2010) Possibility of electric–pulse sintering of powder nanostructural composites. Comb Expl Shock Waves 46(2):237–241CrossRefGoogle Scholar
  36. 36.
    Kim YH, Cho YJ, Lee CM, Kim SJ, Lee NS, Kim KB, Jeon EC, Sok JH, Park JS, Kwon H, Lee KB, Lee WH (2007) Self–assembled microporous Ti–6Al–4V implant compacts induced by electro–discharge sintering. Scr Mater 56:449–451CrossRefGoogle Scholar
  37. 37.
    Arzt E (1982) The influence of an increasing particle coordination on the densification of spherical powders. Acta Metall 30(10):1883–1890CrossRefGoogle Scholar
  38. 38.
    Sprecher AF, Mannan SL, Conrad H (1983) On the temperature rise associated with the electroplastic effect in titanium. Scr Metall 17(6):769–772CrossRefGoogle Scholar
  39. 39.
    Vityaz’ PA, Kaptsevich VM, Belyavin KE, Prezhina TE, Kerzhentseva LF, Govorov VG (1990) Contact formation during the electric-pulse sintering of a titanium alloy powder. Soviet Powder Metall Metal Ceram 29(7):527–529CrossRefGoogle Scholar
  40. 40.
    Cho JY, Song GA, Choi HS, Kim YH, Kim TS, Lee MH, Lee HS, Kim HJ, Lee JK, Fleury E, Seo Y, Kim KB (2012) Necking mechanisms on porous metallic glass and W compacts using electro-discharge sintering. J Alloys Compd 536:S78–S82CrossRefGoogle Scholar
  41. 41.
    Rock C, Qiu J, Okazaki K (1998) Electro-discharge consolidation of nanocrystalline Nb–Al powders produced by mechanical alloying. J Mater Sci 33:241–246CrossRefGoogle Scholar
  42. 42.
    Schütte P, Moll H, Theisen W (2010) In: Proceedings of the PM2010 powder metallurgy world congress. European Powder Metallurgy Association, FlorenceGoogle Scholar
  43. 43.
    An YB, Oh NH, Chun YW, Kim YH, Kim DK, Park JS, Kwon JJ, Choi KO, Eom TG, Byun TH, Kim JY, Reucroft PJ, Kim KJ, Lee WH (2004) Mechanical properties of environmental electro discharge sintered porous Ti implants. Mater Lett 59:2178–2182CrossRefGoogle Scholar
  44. 44.
    Grigoryev EG, Mitrofanov AV, Rosliakov AV (2000) In: Proceedings of the scientific session of MEPhI, part 9. Moscow, Russia (in Russian)Google Scholar
  45. 45.
    Belyavin KE (2000) Theoretical and technological bases of electric pulse sintering of refractory metal powders and application of the technology in industrial manufacturing of porous metallic parts. Synopsis of thesis, Research Institute of Powder Metallurgy with pilot production, Minsk (in Russian)Google Scholar
  46. 46.
    Bilalov BA, Kardashova GD, Magomedova EK, Ahmedov RR (2010) In: Proceedings of the international scientific and technical conference INTERMATIC–2010, part 2, Moscow, Russia (in Russian)Google Scholar
  47. 47.
    Bilalov BA, Gikitikchev MA, Magomedova EK, Dallaeva DS, Bilalov AB (2010) Process investigation of silicon carbide ceramic obtaining by electro pulse sintering. In the World of Scientific Discoveries (V mire nauchnyh otkrytiy) 6:191–193 (in Russian)Google Scholar
  48. 48.
    Jung J, Kim K, Lee W (2001) US Patent No 7347967Google Scholar
  49. 49.
    An YB, Oh NH, Chun YW, Kim DK, Park JS, Choi KO, Eom TG, Byun TH, Kim JY, Byun CS, Hyun CY, Reucroft PJ, Lee WH (2006) One–step process for the fabrication of Ti porous compact and its surface modification by environmental electro–discharge sintering of spherical Ti powders. Surf Coat Technol 200(14–15):4300–4304CrossRefGoogle Scholar
  50. 50.
    An YB, Oh NH, Chun YW, Kim YH, Park JS, Choi KO, Eom TG, Byun TH, Kim JY, Hyun CY, Kim DK, Byun CS, Sok JH, Kwon JJ, Lee WH (2005) Surface characteristics of porous titanium implants fabricated by environmental electro–discharge sintering of spherical Ti powders in a vacuum atmosphere. Scr Mater 53:905–908CrossRefGoogle Scholar
  51. 51.
    Lee WH, Hyun CY (2006) XPS study of porous dental implants fabricated by electro–discharge sintering of spherical Ti–6Al–4V powders in a vacuum atmosphere. Appl Surf Sci 252:4250–4256CrossRefGoogle Scholar
  52. 52.
    Alp T, Can M, Al-Hassani STS (1993) The electroimpact compaction of powders: mechanism, structure and properties. Mater Manuf Process 8:285–289CrossRefGoogle Scholar
  53. 53.
    Egan D, Melody S (2009) EDS as a method of manufacturing diamond tools. Met Powder Rep 64(6):10–13CrossRefGoogle Scholar
  54. 54.
    Jaroszewicz J, Michalski A (2006) Preparation of a TiB2 composite with a nickel matrix by pulse plasma sintering with combustion synthesis. Je Eur Ceram Soc 26:2427–2430CrossRefGoogle Scholar
  55. 55.
    Rosinski M, Fortuna E, Michalski A, Pakiela Z, Kurzydlowski KJ (2007) W/Cu composites produced by pulse plasma sintering technique (PPS). Fusion Eng Des 82:2621–2626CrossRefGoogle Scholar
  56. 56.
    Michalski A, Rosinski M (2008) Sintering diamond/cemented carbides by the pulse plasma sintering method. J Am Ceram Soc 91:3560–3565CrossRefGoogle Scholar
  57. 57.
    Abramova KB, Bocharov YN, Samuilov SD, Shcherbakov IP (2001) Molding loose metal particles into briquettes with the use of short pulses of high density current. Tech Phys 46(4):484–489CrossRefGoogle Scholar
  58. 58.
    Samuilov SD (2002) Electrophysical method of briquetting of metallic scrap, Synopsis of thesis, Saint-Petersburg, Russia, 17 p. (in Russian)Google Scholar
  59. 59.
    Shvetsov GA, Mali VI, Bashkatov YL, Anisimov AG, Matrosov AD, Teslenko TS (2005) Effect of magnetic fields on explosive welding of metals and explosive compaction of powders. In: Schneider-Muntau HJ, Wada H (eds) Materials processing in magnetic fields, Proceedings of the international workshop on materials analysis and processing in magnetic fields, March 2004 in Tallahassee, Florida, World Scientific Publishing Co. Pte. Ltd., pp 360–370Google Scholar
  60. 60.
    Lee G, Yurlova MS, Giuntini D, Grigoryev EG, Khasanov OL, Izhvanov O, Back C, McKittrick J, Olevsky EA (2015) Densification of zirconium nitride by spark plasma sintering and high voltage electric discharge consolidation: a comparative analysis. Ceram Int 41:14973–14987CrossRefGoogle Scholar
  61. 61.
    Olevsky E (1998) Theory of sintering: from discrete to continuum. Mater Sci Eng R 23:41–100CrossRefGoogle Scholar
  62. 62.
    Siemiazko D, Michalki A, Rosinski M (2008) In: Skorokhod V (ed) Proceedings of symposium I “Functional and Structural Ceramic and Ceramic Matrix Composites (CCMC)”, Warsaw, PolandGoogle Scholar
  63. 63.
    Michalski A, Rosiński M, Płocińska M, Szawłowski J (2011) Synthesis and characterization of cBN/WCCo composites obtained by the pulse plasma sintering (PPS) method. IOP Conf Ser Mater Sci Eng 18:202016 4 pagesGoogle Scholar
  64. 64.
    Fortuna E, Rosiński M, Michalski A, Lisowski W (2007) FGM W-Cu composites and W-Cu/W joints fabrication route based on pulse plasma sintering (PPS) method. In: Annual report IPPLM, Warsaw University of TechnologyGoogle Scholar
  65. 65.
    Ciupiński L, Siemiaszko D, Rosiński M (2009) Heat sink materials processing by pulse plasma sintering. Adv Mater Res 59:120–124CrossRefGoogle Scholar
  66. 66.
    Minko D, Belyavin K (2016) A porous materials production with an electric discharge sintering. Int J Refr Metals Hard Mater 59:67–77CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Eugene A. Olevsky
    • 1
  • Dina V. Dudina
    • 2
  1. 1.College of EngineeringSan Diego State UniversitySan DiegoUSA
  2. 2.Lavrentyev Institute of Hydrodynamics, Siberian Branch of the Russian Academy of SciencesNovosibirskRussia

Personalised recommendations