Field Effects on Reacting Systems

  • Eugene A. Olevsky
  • Dina V. Dudina


In this chapter, the behavior of multicomponent and reacting powder systems in electromagnetic fields is discussed in view of the possibilities of the formation of dense materials as well as reaction products of different porosities and morphologies. General considerations regarding the process of reactive sintering and its driving forces are presented. Studies demonstrating the intensification of diffusion in the presence of the inter-particle contact heat sources are reviewed. Possibilities of reactive sintering during microwave treatment and sintering in constant magnetic field are presented. Initiation of chemical reactions by electric current, including high-voltage electric discharges, and mechanisms responsible for acceleration and deceleration of chemical reactions under applied electric field are discussed. It is shown that spark plasma sintering (SPS) has become a popular synthesis method in solid-state chemistry and a materials design tool at different length scales. The best scenario for obtaining a dense fine-grained material by reactive SPS is simultaneous reaction and densification: the reaction in the system should start at temperatures high enough to sinter the reaction product to high relative densities. Possible transformations of carbon allotropes under applied electric current are reviewed. Specifics of interaction of materials with carbon of graphite tooling and graphite foil and the mechanisms of carbon incorporation into materials of different chemical nature during SPS are discussed. Examples of materials with attractive mechanical and functional properties obtained by reactive SPS are presented. It is demonstrated that particles with core–shell morphology are interesting objects to be processed by SPS into bulk porous or dense solids. It is concluded that the successes of reactive SPS in synthesizing bulk materials can be further extended to the simultaneous synthesis and joining of different materials as well as manufacturing of coatings.


Reactive sintering Driving force Chemical reactivity In situ synthesis Graphite tooling Carbon contamination Mechanical properties Gradient microstructure Porous materials 


  1. 1.
    Basu B, Balani K (2011) Advanced structural ceramics. Wiley, Hoboken, NJ 475 pCrossRefGoogle Scholar
  2. 2.
    Meyers MA, Olevsky EA, Ma J, Janet M (2001) Combustion synthesis/densification of an Al2O3-TiB2 composite. Mater Sci Eng A 311(1–2):83–99CrossRefGoogle Scholar
  3. 3.
    Zhang X, He X, Han J, Qu W, Kvanin VL (2002) Combustion synthesis and densification of large-scale TiC-xNi cermets. Mater Lett 56(3):183–187CrossRefGoogle Scholar
  4. 4.
    Xu Q, Zhang X, Han J, He X, Kvanin VL (2003) Combustion synthesis and densification of titanium diboride-copper matrix composite. Mater Lett 57(28):4439–4444CrossRefGoogle Scholar
  5. 5.
    Dargar SR, Groven LJ, Swiatkiewicz JJ, Puszynski JA (2007) In situ densification of SHS composites from nanoreactants. Int J Self-Propag High Temp Synth 16(3):125–132CrossRefGoogle Scholar
  6. 6.
    Mishra SK, Das SK, Sherbacov V (2007) Fabrication of Al2O3-ZrB2 in situ composite by SHS dynamic compaction: a novel approach. Compos Sci Technol 67(11):2447–2453CrossRefGoogle Scholar
  7. 7.
    Gutmanas EY, Gotman I (1999) Dense high temperature ceramics by thermal explosion under pressure. J Eur Ceram Soc 19(13–14):2381–2393CrossRefGoogle Scholar
  8. 8.
    Horvitz D, Gotman I, Gutmanas EY, Claussen N (2002) In situ processing of dense Al2O3–Ti aluminide interpenetrating phase composites. J Eur Ceram Soc 22(6):947–954CrossRefGoogle Scholar
  9. 9.
    Zehetbauer MJ, Zhu YT (eds) (2009) Bulk nanostructured materials. Wiley, Hoboken, NJ 736 pGoogle Scholar
  10. 10.
    Greil P (2002) Advanced engineering ceramics. Adv Mater 14(10):709–716CrossRefGoogle Scholar
  11. 11.
    Tjong SC, Ma ZY (2000) Microstructural and mechanical characteristics of in situ metal matrix composites. Mater Sci Eng R 29:49–113CrossRefGoogle Scholar
  12. 12.
    Olevsky E, Bogachev I, Maximenko A (2013) Spark-plasma sintering efficiency control by inter-particle contact area growth: a viewpoint. Scr Mater 69(2):112–116CrossRefGoogle Scholar
  13. 13.
    Savitskii AP (1991) Liquid-phase sintering of systems with interacting components. Nauka, Novosibirsk (in Russian)Google Scholar
  14. 14.
    Savitskii AP (2005) Scientific approaches to problems of mixtures sintering. Sci Sinter 37:3–17CrossRefGoogle Scholar
  15. 15.
    Olevsky E, Skorohod V, Petzow G (1997) Densification by sintering incorporating phase transformations. Scr Mater 37(5):635–643CrossRefGoogle Scholar
  16. 16.
    Krishtal MA, Zakharov PN, Kokora AN (1976) On the contribution of diffusion processes to re-distribution effects in solids under laser treatment. Fiz Khim Obrab Mater (Phys Chem Mater Process) 4:24–28 (in Russian)Google Scholar
  17. 17.
    Raichenko AI (1987) Basics of electric current-assisted sintering. Metallurgiya, Moscow 128 p. (in Russian)Google Scholar
  18. 18.
    Burenkov GL, Raichenko AI (1980) On diffusion during heat evolution at the contact of the diffusion pair components. Ukr Fiz Zh (Ukr J Phys) 25(12):2037–2045 (in Russian)Google Scholar
  19. 19.
    German RM (1996) Sintering theory and practice. Wiley, New York, NY 568 pGoogle Scholar
  20. 20.
    Misiolek W, German RM (1991) Reactive sintering and reactive hot isostatic compaction of aluminide matrix composites. Mater Sci Eng A 144(1–2):1–10CrossRefGoogle Scholar
  21. 21.
    Belousov VY, Pilipchenko AV, Lutsak LD (1988) Some relationships governing initiation of self-propagating synthesis in direct electric heating. Sov Powder Metall Met Ceram 27(10):813–816CrossRefGoogle Scholar
  22. 22.
    Morsi K, Mehra P (2014) Effect of mechanical and electrical activation on the combustion synthesis of Al3Ti. J Mater Sci 49(15):5271–5278CrossRefGoogle Scholar
  23. 23.
    Bertolino N, Garay J, Anselmi-Tamburini U, Munir ZA (2001) Electromigration effects in Al-Au multilayers. Scr Mater 44:737–742CrossRefGoogle Scholar
  24. 24.
    Bertolino N, Garay J, Anselmi-Tamburini U, Munir ZA (2002) High-flux current effects in interfacial reactions in Au–Al multilayers. Philos Mag B 82:969–985Google Scholar
  25. 25.
    Anselmi-Tamburini U, Garay JE, Munir ZA (2005) Fundamental investigations on the spark-plasma sintering/synthesis process. III. Current effect on reactivity. Mater Sci Eng A 407(1–2):24–30CrossRefGoogle Scholar
  26. 26.
    Garay JE, Glade SC, Anselmi-Tamburini U, Asoka-Kumar P, Munir ZA (2004) Electric current enhanced defect mobility in Ni3Ti intermetallics. Appl Phys Lett 85:573CrossRefGoogle Scholar
  27. 27.
    Zhao J, Garay JE, Anselmi-Tamburini U, Munir ZA (2007) Directional electromigration-enhanced interdiffusion in the Cu–Ni system. J Appl Phys 102(11):114902 7 pCrossRefGoogle Scholar
  28. 28.
    Kondo T, Kuramoto T, Kodera Y, Ohyanagi M, Munir ZA (2008) Enhanced growth of Mo2C formed in Mo–C diffusion couple by pulsed dc current. J Jpn Soc Powder Powder Metall 55:643–650CrossRefGoogle Scholar
  29. 29.
    Garay JE, Anselmi-Tamburini U, Munir ZA (2003) Enhanced growth of intermetallic phases in the Ni–Ti system by current effects. Acta Mater 51:4487–4495CrossRefGoogle Scholar
  30. 30.
    Anselmi-Tamburini U, Kodera Y, Gasch M, Unuvar C, Munir ZA, Ohyanagi M, Johnson SM (2006) Synthesis and characterization of dense ultra-high temperature thermal protection materials produced by field activation through spark plasma sintering (SPS): I. Hafnium diboride. J Mater Sci 41(10):3097–3104CrossRefGoogle Scholar
  31. 31.
    Munir ZA, Anselmi-Tamburini U, Ohyanagi M (2006) The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method. J Mater Sci 41(3):763–777CrossRefGoogle Scholar
  32. 32.
    Mackenzie KJD, Banerjee RK, Kasaai MR (1979) Effect of electric fields on solid-state reactions between oxides. Part 1. Reaction between calcium and aluminum oxides. J Mater Sci 14:333–338CrossRefGoogle Scholar
  33. 33.
    Neiman AY, Krylov AO, Kuznetsov VA (1985) The influence of electric field on solid-state reactions between oxides. Russ J Phys Chem A 59(9):2360–2361 (in Russian)Google Scholar
  34. 34.
    Mackenzie KJD, Banerjee RK (1979) Effect of electric fields on solid-state reactions between oxides. Part 2. Interdiffusion studies in polycrystalline calcium and aluminium oxide pellets. J Mater Sci 14:339–344CrossRefGoogle Scholar
  35. 35.
    Zingel EM (1982) The influence of electric field on the thermolysis rate of KMnO4. Russ J Phys Chem A 57(3):766–768 (in Russian)Google Scholar
  36. 36.
    Anisimov AG, Mali VI (2010) Possibility of electric-pulse sintering of powder nanostructural composites. Combust Explos Shock Waves 46(2):237–241CrossRefGoogle Scholar
  37. 37.
    An YB, Oh NH, Chun YW, Kim DK, Park JS, Choi KO, Eom TG, Byun TH, Kim JY, Byun CS, Hyun CY, Reucroft PJ, Lee WH (2006) One–step process for the fabrication of Ti porous compact and its surface modification by environmental electro–discharge sintering of spherical Ti powders. Surf Coat Technol 200(14–15):4300–4304CrossRefGoogle Scholar
  38. 38.
    Sizonenko ON, Baglyuk GA, Taftai EI, Zaichenko AD, Lipyan EV, Torpakov AS, Zhdanov AA, Pristash NS (2013) Dispersion and carburization of titanium powders by electric discharge. Powder Metall Met Ceram 52(5–6):247–253CrossRefGoogle Scholar
  39. 39.
    Calka A, Wexler D (2002) Mechanical milling assisted by electrical discharge. Nature 419:147–151CrossRefGoogle Scholar
  40. 40.
    Calka A, Chowdhury AA, Konstantinov K (2012) Rapid synthesis of functional oxides by electric discharge assisted mechanical method. J Alloys Compd 536:3–8CrossRefGoogle Scholar
  41. 41.
    Agrawal DK (1998) Microwave processing of ceramics. Curr Opin Solid State Mater Sci 3(5):480–485CrossRefGoogle Scholar
  42. 42.
    Rao KJ, Vaidhyanathan B, Ganguli M, Ramakrishnan PA (1999) Synthesis of inorganic solids using microwaves. Chem Mater 11:882–895CrossRefGoogle Scholar
  43. 43.
    Rao KJ, Vaidhyanathan B (1995) A process of preparing molybdenum disilicide using microwaves. Indian Patent No. 788/MAS/95Google Scholar
  44. 44.
    Barzegar Bafrooei H, Ebadzadeh T, Majidian H (2014) Microwave synthesis and sintering of forsterite nanopowder produced by high-energy ball milling. Ceram Int 40:2869–2876CrossRefGoogle Scholar
  45. 45.
    Lei Y, Lia Y, Xu L, Yang J, Wan R, Long H (2016) Microwave synthesis and sintering of TiNiSn thermoelectric bulk. J Alloys Compd 660:166–170CrossRefGoogle Scholar
  46. 46.
    Cesário MR, Savary E, Marinel S, Raveau B, Caignaert V (2016) Synthesis and electrochemical performance of Ce1−xYbxO2−x/2 solid electrolytes: the potential of microwave sintering. Solid State Ionics 294:67–72CrossRefGoogle Scholar
  47. 47.
    Sivanagi Reddy E, Sukumaran S, James Raju KC (2016) Microwave assisted synthesis and sintering of lead-free ferroelectric CaBi4Ti4O15 ceramics. Mater Today Proc 3:2213–2219CrossRefGoogle Scholar
  48. 48.
    Feizpour M, Barzegar Bafrooei H, Hayati R, Ebadzadeh T (2014) Microwave-assisted synthesis and sintering of potassium sodium niobate lead-free piezoelectric ceramics. Ceram Int 40:871–877CrossRefGoogle Scholar
  49. 49.
    Lu X, Ding Y, Dan H, Yuan S, Mao X, Fan L, Wu Y (2014) Rapid synthesis of single phase Gd2Zr2O7 pyrochlore waste forms by microwave sintering. Ceram Int 40:13191–13194CrossRefGoogle Scholar
  50. 50.
    Lekse JW, Stagger TJ, Aitken JA (2007) Microwave metallurgy: synthesis of intermetallic compounds via microwave irradiation. Chem Mater 19(15):3601–3603CrossRefGoogle Scholar
  51. 51.
    Rosa R, Veronesi P, Casagrande A, Leonelli C (2016) Microwave ignition of the combustion synthesis of aluminides and field-related effects. J Alloys Compd 657:59–67CrossRefGoogle Scholar
  52. 52.
    Mitsui Y, Umetsu RY, Koyama K, Watanabe K (2014) Magnetic-field-induced enhancement for synthesizing ferromagnetic MnBi phase by solid-state reaction sintering. J Alloys Compd 615:131–134CrossRefGoogle Scholar
  53. 53.
    Mitsui Y, Abematsu K, Umetsu RY, Takahashi K, Koyama K (2016) Magnetic field effects on liquid-phase reactive sintering of MnBi. J Magn Magn Mater 400:304–306CrossRefGoogle Scholar
  54. 54.
    Orrù R, Licheri R, Locci AM, Cincotti A, Cao G (2009) Consolidation/synthesis of materials by electric current activated/assisted sintering. Mater Sci Eng R 63(4–6):127–287CrossRefGoogle Scholar
  55. 55.
    Dudina DV, Mukherjee AK (2013) Reactive spark plasma sintering: successes and challenges of nanomaterial synthesis. J Nanomater 2013 article ID 625218, 12 pGoogle Scholar
  56. 56.
    Hulbert DM, Jiang D, Dudina DV, Mukherjee AK (2009) The synthesis and consolidation of hard materials by spark plasma sintering. Int J Refract Metals Hard Mater 27(2):367–375CrossRefGoogle Scholar
  57. 57.
    Salamon D, Eriksson M, Nygren M, Shen Z (2007) Homogeneous TiB2 ceramic achieved by electric current-assisted self-propagating reaction sintering. J Am Ceram Soc 90(10):3303–3306CrossRefGoogle Scholar
  58. 58.
    Locci AM, Licheri R, Orrù R, Cao G (2009) Reactive spark plasma sintering of rhenium diboride. Ceram Int 35(1):397–400CrossRefGoogle Scholar
  59. 59.
    Schmidt J, Boehling M, Burkhardt U, Grin Y (2007) Preparation of titanium diboride TiB2 by spark plasma sintering at slow heating rate. Sci Technol Adv Mater 8(5):376–382CrossRefGoogle Scholar
  60. 60.
    Schmidt J, Niewa R, Schmidt M, Grin Y (2005) Spark plasma sintering effect on the decomposition of MgH2. J Am Ceram Soc 88(7):1870–1874CrossRefGoogle Scholar
  61. 61.
    Noh JH, Jung HS, Cho IS, An JS, Cho CM, Han HS, Hong KS (2010) Enhancing the densification of nanocrystalline TiO2 by reduction in spark plasma sintering. J Am Ceram Soc 93(4):993–997CrossRefGoogle Scholar
  62. 62.
    Munir ZA (2000) Synthesis and densification of nanomaterials by mechanical and field activation. J Mater Synth Process 8(3–4):189–196CrossRefGoogle Scholar
  63. 63.
    Anselmi-Tamburini U, Munir Z, Kodera Y, Imai T, Ohyanagi M (2005) Influence of synthesis temperature on the defect structure of boron carbide: experimental and modeling studies. J Am Ceram Soc 88(6):1382–1387CrossRefGoogle Scholar
  64. 64.
    Propescu B, Enache S, Ghica C, Valeanu M (2011) Solid-state synthesis and spark plasma sintering of SrZrO3 ceramics. J Alloys Compd 509(22):6395–6399CrossRefGoogle Scholar
  65. 65.
    Hulbert DM, Jiang D, Anselmi-Tamburini U, Unuvar C, Mukherjee AK (2008) Experiments and modeling of spark plasma sintered functionally graded boron-carbide-aluminum composites. Mater Sci Eng A 488(1–2):333–338CrossRefGoogle Scholar
  66. 66.
    Hulbert DM, Jiang D, Anselmi-Tamburini U, Unuvar C, Mukherjee AK (2008) Continuous functionally graded boron carbide-aluminum nanocomposites by spark plasma sintering. Mater Sci Eng A 493(1–2):251–255CrossRefGoogle Scholar
  67. 67.
    Roberts DJ, Zhao J, Munir ZA (2009) Mechanism of reactive sintering of MgAlB14 by pulse electric current. Int J Refract Metals Hard Mater 27(3):556–563CrossRefGoogle Scholar
  68. 68.
    Paris S, Gaffet E, Bernard F, Munir ZA (2004) Spark plasma synthesis from mechanically activated powders: a versatile route for producing dense nanostructured iron aluminides. Scr Mater 50(5):691–696CrossRefGoogle Scholar
  69. 69.
    Bernard F, Le Gallet S, Spinassou N, Paris S, Gaffet E, Woolman JN, Munir ZA (2004) Dense nanostructured materials obtained by spark plasma sintering and field activated pressure assisted synthesis starting from mechanically activated powder mixtures. Sci Sinter 36(3):155–164CrossRefGoogle Scholar
  70. 70.
    Dudina DV, Hulbert DM, Jiang D, Unuvar C, Cytron SJ, Mukherjee AK (2008) In situ boron carbide-titanium diboride composites prepared by mechanical milling and subsequent spark plasma sintering. J Mate Sci 43(10):3569–3576CrossRefGoogle Scholar
  71. 71.
    Licheri R, Orrù R, Locci AM, Cao G (2007) Efficient synthesis/sintering routes to obtain fully dense ZrB2–SiC Ultra-High-Temperature Ceramics (UHTCs). Ind Eng Chem Res 46:9087–9096CrossRefGoogle Scholar
  72. 72.
    Musa C, Orrù R, Sciti D, Silvestroni L, Cao G (2013) Synthesis, consolidation and characterization of monolithic and SiC whiskers reinforced HfB2 ceramics. J Eur Ceram Soc 33:603–614CrossRefGoogle Scholar
  73. 73.
    Orrù R, Cao G (2013) Comparison of reactive and non-reactive spark plasma sintering routes for the fabrication of monolithic and composite ultra high temperature ceramics (UHTC) materials. Materials 6:1566–1583CrossRefGoogle Scholar
  74. 74.
    Licheri R, Orrù R, Musa C, Cao G (2008) Combination of SHS and SPS techniques for fabrication of fully dense ZrB2-ZrC-SiC composites. Mater Lett 62(3):432–435CrossRefGoogle Scholar
  75. 75.
    Licheri R, Orrù R, Musa C, Cao G (2010) Efficient technologies for the fabrication of dense TaB2-based ultra-high-temperature ceramics. Appl Mater Interfaces 2(8):2206–2212CrossRefGoogle Scholar
  76. 76.
    Suryanarayana C (2001) Mechanical alloying and milling. Prog Mater Sci 46(1–2):1–184CrossRefGoogle Scholar
  77. 77.
    Kim JS, Choi HS, Dudina D, Lee JK, Kwon YS (2007) Spark plasma sintering of nanoscale (Ni+Al) powder mixture. Solid State Phenom 119:35–38CrossRefGoogle Scholar
  78. 78.
    Wang H, Lee SH, Kim HD (2012) Nano-hafnium diboride powders synthesized using a spark plasma sintering apparatus. J Am Ceram Soc 95(5):1493–1496CrossRefGoogle Scholar
  79. 79.
    Stanciu L, Groza JR, Stoica L, Plapcianu C (2004) Influence of powder precursors on reaction sintering of Al2TiO5. Scr Mater 50(9):1259–1262CrossRefGoogle Scholar
  80. 80.
    Handtrack D, Despang F, Sauer C, Kieback B, Reinfried N, Grin Y (2006) Fabrication of ultra-fine grained and dispersion-strengthened titanium materials by spark plasma sintering. Mater Sci Eng A 437(2):423–429CrossRefGoogle Scholar
  81. 81.
    Locci AM, Orrù R, Cao G, Munir ZA (2006) Effect of ball milling on simultaneous sprak plasma synthesis and densification of TiC-TiB2 composites. Mater Sci Eng A 434(1–2):23–29CrossRefGoogle Scholar
  82. 82.
    Locci AM, Licheri R, Orrù R, Cincotti A, Cao G (2007) Mechanical and electric current activation of solid-state reactions for the synthesis of fully dense advanced materials. Chem Eng Sci 62(18–20):4885–4890CrossRefGoogle Scholar
  83. 83.
    Heian EM, Khalsa SK, Lee JW, Munir ZA, Yamamoto T, Ohyanagi M (2004) Synthesis of dense, high-defect-concentration B4C through mechanical activation and field-assisted combustion. J Am Ceram Soc 87(5):779–783CrossRefGoogle Scholar
  84. 84.
    Koizumi Y, Tanaka T, Minamino Y, Tsuji N, Mizuuchi K, Ohkanda Y (2003) Densification and structural evolution in spark plasma sintering process of mechanically alloyed nanocrystalline Fe-23Al-6C powder. Mater Trans 44(8):1604–1612CrossRefGoogle Scholar
  85. 85.
    Ishihara S, Zhang W, Kimura H, Omori M, Inoue A (2003) Consolidation of Fe–Co–Nd–Dy–B glassy powders by spark-plasma sintering and magnetic properties of the consolidated alloys. Mater Trans 44(1):138–143CrossRefGoogle Scholar
  86. 86.
    Perrière L, Thai MT, Tusseau-Nenez S, Blétry M, Champion Y (2011) Spark plasma sintering of a Zr-based metallic glass. Adv Mater Eng 13(7):581–586CrossRefGoogle Scholar
  87. 87.
    Duan RG, Kuntz JD, Garay JE, Mukherjee AK (2004) Metal-like electrical conductivity in ceramic nano-composite. Scr Mater 50(10):1309–1313CrossRefGoogle Scholar
  88. 88.
    Duan RG, Garay JE, Kuntz JD, Mukherjee AK (2005) Electrically conductive in situ formed nano-Si3N4/SiC/TiCxN1−x ceramic composite consolidated by pulse electric current sintering (PECS). J Am Ceram Soc 88(1):66–70CrossRefGoogle Scholar
  89. 89.
    Zhang J, Wang L, Shi L, Jiang W, Chen L (2007) Rapid fabrication of Ti3SiC2–SiC nanocomposite using the spark plasma sintering-reactive synthesis (SPS-RS) method. Scr Mater 56(3):241–244CrossRefGoogle Scholar
  90. 90.
    Wang L, Zhang J, Jiang W (2013) Recent development in reactive synthesis of nanostructured bulk materials by spark plasma sintering. Int J Refract Metals Hard Mater 39:103–112CrossRefGoogle Scholar
  91. 91.
    Wang L, Wu T, Jiang W, Li J, Chen L (2006) Novel fabrication route to Al2O3–TiN nanocomposites via spark plasma sintering. J Am Ceram Soc 89(5):1540–1543CrossRefGoogle Scholar
  92. 92.
    Isupov VP, Сhupakhina LE, Mitrofanova RP, Tarasov KA, Rogachev AY, Boldyrev VV (1997) The use of intercalation compounds of aluminium hydroxide for the preparation of nanoscale systems. Solid State Ionics 101–103(1):265–270CrossRefGoogle Scholar
  93. 93.
    Bokhonov BB, Burleva LP, Whitcomb DR, Usanov YE (2001) Formation of nano-sized silver particles during thermal and photochemical decomposition of silver carboxylates. J Imaging Sci Technol 45(3):259–266Google Scholar
  94. 94.
    Sun SK, Kan YM, Zhang GJ (2011) Fabrication of nanosized tungsten carbide ceramics by reactive spark plasma sintering. J Am Ceram Soc 94(10):3230–3233CrossRefGoogle Scholar
  95. 95.
    Ran S, Van der Biest O, Vleugels J (2010) ZrB2–SiC composites prepared by reactive pulsed electric current sintering. J Eur Ceram Soc 30(12):2633–2642CrossRefGoogle Scholar
  96. 96.
    Chen W, Tojo T, Miyamoto Y (2012) SiC ceramic-bonded carbon fabricated with Si3N4 and carbon powders. Int J Appl Ceram Technol 9(2):313–321CrossRefGoogle Scholar
  97. 97.
    Zhao Y, Taya M (2006) Processing of porous NiTi by spark plasma sintering method. Proc SPIE 6170:313–318Google Scholar
  98. 98.
    Miao X, Chen Y, Guo H, Khor KA (2004) Spark plasma sintered hydroxyapatite-yttria stabilized zirconia composites. Ceram Int 30(7):1793–1796CrossRefGoogle Scholar
  99. 99.
    Honda H, Kobayashi K, Inoue K, Ishiyama M (1967) Electrical discharge sintering and graphitization of carbon powders. Carbon 5(5):545–546CrossRefGoogle Scholar
  100. 100.
    Asaka K, Karita M, Saito Y (2011) Graphitization of amorphous carbon on a multiwall carbon nanotube surface by catalyst-free heating. Appl Phys Lett 99:091907CrossRefGoogle Scholar
  101. 101.
    Toyofuku N, Nishimoto M, Arayama K, Kodera Y, Ohyanagi M, Munir Z (2010) Consolidation of carbon with amorphous graphite transformation by SPS. In: Munir ZA, Ohji T, Hotta Y, Singh M (eds) Innovative processing and manufacturing of advanced ceramics and composites: ceramic transactions 2010. Wiley, Hoboken, NJ, pp 32–40Google Scholar
  102. 102.
    Kim WS, Moon SY, Park NH, Huh H, Shim KB, Ham H (2011) Electrical and structural feature of monolayer graphene produced by pulse current unzipping and microwave exfoliation of carbon nanotubes. Chem Mater 23:940–944CrossRefGoogle Scholar
  103. 103.
    Sribalajia M, Mukherjee B, Rao Bakshi S, Arunkumar P, Suresh Babu K, Kumar Keshri A (2017) In-situ formed graphene nanoribbon induced toughening and thermal shock resistance of spark plasma sintered carbon nanotube reinforced titanium carbide composite. Compos Part B 123:227–240CrossRefGoogle Scholar
  104. 104.
    Huang Q, Jiang D, Ovid’ko IA, Mukherjee A (2010) High-current-induced damage on carbon nanotubes: the case during spark plasma sintering. Scr Mater 63:1181–1184CrossRefGoogle Scholar
  105. 105.
    Zhang F, Shen J, Sun J, Zhu YQ, Wang G, McCartney G (2005) Conversion of carbon nanotubes to diamond by spark plasma sintering. Carbon 43(6):1254–1258CrossRefGoogle Scholar
  106. 106.
    Zhang F, Mihoc C, Ahmed F, Lathe C, Burkel E (2011) Thermal stability of carbon nanotubes, fullerene and graphite under spark plasma sintering. Chem Phys Lett 510:109–114CrossRefGoogle Scholar
  107. 107.
    Zapata-Solvas E, Gómez-García D, Domínguez-Rodríguez A, Todd RI (2015) Ultra-fast and energy-efficient sintering of ceramics by electric current concentration. Sci Rep 5:8513CrossRefGoogle Scholar
  108. 108.
    Solodkyi I, Xie SS, Zhao T, Borodianska H, Sakka Y, Vasylkiv O (2013) Synthesis of B6O powder and spark plasma sintering of B6O and B6O–B4C ceramics. J Ceram Soc Jpn 121(11):950–955CrossRefGoogle Scholar
  109. 109.
    Mouawad B, Soueidan M, Fabrègue D, Buttay C, Bley V, Allard B, Morel H (2012) Full densification of molybdenum powders using spark plasma sintering. Metall Mater Trans A 43(9):3402–3409CrossRefGoogle Scholar
  110. 110.
    Hayashi T, Matsuura K, Ohno M (2013) TiC coating on titanium by carbonization reaction using spark plasma sintering. Mater Trans 54(11):2098–2101CrossRefGoogle Scholar
  111. 111.
    Grasso S, Poetschke J, Richter V, Maizza G, Sakka Y, Reece MJ (2013) Low-temperature spark plasma sintering of pure nano WC powder. J Am Ceram Soc 96(6):1702–1705CrossRefGoogle Scholar
  112. 112.
    Lee G, McKittrick J, Ivanov E, Olevsky EA (2016) Densification mechanism and mechanical properties of tungsten powder consolidated by spark plasma sintering. Int J Refract Metals Hard Mater 61:22–29CrossRefGoogle Scholar
  113. 113.
    Mackie AJ, Hatton GD, Hamilton HGC, Dean JS, Goodall R (2016) Carbon uptake and distribution in spark plasma sintering (SPS) processed Sm(Co, Fe, Cu, Zr)z. Mater Lett 171:14–17CrossRefGoogle Scholar
  114. 114.
    Boulnat X, Fabrègue D, Perez M, Urvoy S, Hamon D, de Carlan Y (2014) Assessment of consolidation of oxide dispersion strengthened ferritic steels by spark plasma sintering: from laboratory scale to industrial products. Powder Metall 57(3):204–211CrossRefGoogle Scholar
  115. 115.
    Neamţu BV, Marinca TF, Chicinaş I, Isnard O, Popa F, Pǎşcuţǎ P (2014) Preparation and soft magnetic properties of spark plasma sintered compacts based on Fe–Si–B glassy powder. J Alloys Compd 600:1–7CrossRefGoogle Scholar
  116. 116.
    Rodriguez-Suarez T, Díaz LA, Torrecillas R, Lopez-Esteban S, Tuan WH, Nygren M, Moya JS (2009) Alumina/tungsten nanocomposites obtained by spark plasma sintering. Compos Sci Technol 69:2467–2473CrossRefGoogle Scholar
  117. 117.
    Bokhonov BB, Ukhina AV, Dudina DV, Anisimov AG, Mali VI, Batraev IS (2015) Carbon uptake during spark plasma sintering: investigation through the analysis of the carbide “footprint” in a Ni–W alloy. RSC Adv 5:80228–80237CrossRefGoogle Scholar
  118. 118.
    Dudina DV, Bokhonov BB, Ukhina AV, Anisimov AG, Mali VI, Esikov MA, Batraev IS, Kuznechik OO, Pilinevich LP (2016) Reactivity of materials towards carbon of graphite foil during spark plasma sintering: a case study using Ni–W powders. Mater Lett 168:62–67CrossRefGoogle Scholar
  119. 119.
    Singleton M, Nash P (1989) The C–Ni (carbon–nickel) system. Bull Alloy Phase Diagrams 10:121–126CrossRefGoogle Scholar
  120. 120.
    Collet R, le Gallet S, Charlot F, Lay S, Chaix JM, Bernard F (2016) Oxide reduction effects in SPS processing of Cu atomized powder containing oxide inclusions. Mater Chem Phys 173:498–507CrossRefGoogle Scholar
  121. 121.
    Shearwood C, Ng HB (2007) Spark plasma sintering of wire exploded tungsten nano-powder. Proc SPIE 6798:67981BCrossRefGoogle Scholar
  122. 122.
    Toyofuku N, Kuramoto T, Imai T, Ohyanagi M, Munir ZA (2012) Effect of pulsed DC current on neck growth between tungsten wires and tungsten plates during the initial stage of sintering by the spark plasma sintering method. J Mater Sci 47:2201–2205CrossRefGoogle Scholar
  123. 123.
    Dudina DV, Anisimov AG, Mali VI, Bulina NV, Bokhonov BB (2015) Smaller crystallites in sintered materials? A discussion of the possible mechanisms of crystallite size refinement during pulsed electric current-assisted sintering. Mater Lett 144:168–172CrossRefGoogle Scholar
  124. 124.
    Dudina DV, Bokhonov BB (2017) Elimination of oxide films during spark plasma sintering of metallic powders: a case study using partially oxidized nickel. Adv Powder Technol 28:641–647CrossRefGoogle Scholar
  125. 125.
    Bertrand A, Carreaud J, Delaizir G, Duclère JR, Colas M, Cornette J, Vandenhende M, Couderc V, Thomas P (2013) A comprehensive study of the carbon contamination in tellurite glasses and glass–ceramics sintered by spark plasma sintering (SPS). J Am Ceram Soc 97:163–172CrossRefGoogle Scholar
  126. 126.
    Bernard-Granger G, Benameur N, Guizard C, Nygren M (2009) Influence of graphite contamination on the optical properties of transparent spinel obtained by spark plasma sintering. Scr Mater 60:164–167CrossRefGoogle Scholar
  127. 127.
    Morita K, Kim BN, Yoshida H, Hiraga K, Sakka Y (2015) Spectroscopic study of the discoloration of transparent MgAl2O4 spinel fabricated by spark-plasma-sintering (SPS) processing. Acta Mater 84:9–19CrossRefGoogle Scholar
  128. 128.
    Morita K, Kim BN, Yoshida H, Hiraga K, Sakka Y (2016) Influence of pre- and post-annealing on discoloration of MgAl2O4 spinel fabricated by spark-plasma-sintering (SPS). J Eur Ceram Soc 36(12):2961–2968CrossRefGoogle Scholar
  129. 129.
    Jiang D, Mukherjee AK (2011) The influence of oxygen vacancy on the optical transmission of an yttria–magnesia nanocomposite. Scr Mater 64(12):1095–1097CrossRefGoogle Scholar
  130. 130.
    Isobe T, Daimon K, Sato T, Matsubara T, Hikichi Y, Ota T (2008) Spark plasma sintering technique for reaction sintering of Al2O3/Ni nanocomposite and its mechanical properties. Ceram Int 34(1):213–217CrossRefGoogle Scholar
  131. 131.
    Rong CB, Nandwana V, Poudyal N, Liu JP, Saito T, Wu Y, Kramer MJ (2007) Bulk FePt/Fe3Pt nanocomposite magnets prepared by spark plasma sintering. J Appl Phys 101:09K515 3 pCrossRefGoogle Scholar
  132. 132.
    Ramírez C, Vega-Diaz SM, Morelos-Gómez A, Figueiredo FM, Terrones M, Isabel Osendi M, Belmonte M, Miranzo P (2013) Synthesis of conducting graphene/Si3N4 composites by spark plasma sintering. Carbon 57:425–432CrossRefGoogle Scholar
  133. 133.
    Li H, Khor KA, Yu LG, Cheang P (2005) Microstructure modifications and phase transformation in plasma-sprayed WC-Co coatings following post-spray spark plasma sintering. Surf Coat Technol 194(1):96–102CrossRefGoogle Scholar
  134. 134.
    Gurt Santanach J, Estournès C, Weibel A, Peigney A, Chevallier G, Laurent C (2009) Spark plasma sintering as a reactive sintering tool for the preparation of surface-tailored Fe-FeAl2O4-Al2O3 nanocomposites. Scr Mater 60(4):195–198CrossRefGoogle Scholar
  135. 135.
    Gurt Santanach J, Estournès C, Weibel A, Chevallier G, Bley V, Laurent C, Peigney A (2011) Influence of pulse current during spark plasma sintering evidenced on reactive alumina-hematite powder. J Eur Ceram Soc 31(13):2247–2254CrossRefGoogle Scholar
  136. 136.
    Kakegawa K, Wen CM, Uekawa N, Kojima T (2014) SPS using SiC die. Key Eng Mater 617:72–77CrossRefGoogle Scholar
  137. 137.
    Byon C, Li MH, Kakegawa K, Han YH, Lee DY (2015) Numerical study of a SiC mould subjected to a spark plasma sintering process. Scr Mater 96:49–52CrossRefGoogle Scholar
  138. 138.
    Bokhonov BB, Ukhina AV, Dudina DV, Gerasimov KB, Anisimov AG, Mali VI (2015) Towards a better understanding of nickel/diamond interactions: the interface formation at low temperature. RSC Adv 5:51799–51806CrossRefGoogle Scholar
  139. 139.
    Dudina DV, Mali VI, Ukhina AV, Anisimov AG, Brester AE, Bokhonov B (2016) Inter-particle interactions in partially densified compacts of electrically conductive materials during spark plasma sintering. In: Proceedings of the 11th International Forum on Strategic Technology, IFOST 2016, Article number 7884067, pp 139–143Google Scholar
  140. 140.
    Feng H, Zhou Y, Jia D, Meng Q (2005) Rapid synthesis of Ti alloy with B addition by spark plasma sintering. Mater Sci Eng A 390(1–2):344–349CrossRefGoogle Scholar
  141. 141.
    Feng H, Jia D, Zhou Y (2005) Spark plasma sintering reaction synthesized TiB reinforced titanium matrix composites. Compos Part A 36(5):558–563CrossRefGoogle Scholar
  142. 142.
    Zhang HW, Gopalan R, Mukai T, Hono K (2005) Fabrication of bulk nanocrystalline Fe-C alloy by spark plasma sintering of mechanically milled powder. Scr Mater 53(7):863–868CrossRefGoogle Scholar
  143. 143.
    Zhang Z, Shen X, Wang F, Lee S (2011) A new rapid route for in situ synthesizing monolithic TiB ceramic. J Am Ceram Soc 94(9):2754–2756CrossRefGoogle Scholar
  144. 144.
    Lee JW, Munir ZA, Shbuya M, Ohyanagi M (2001) Synthesis of dense TiB2-TiN nanocrystalline composites through mechanical and field activation. J Am Ceram Soc 84(6):1209–1216CrossRefGoogle Scholar
  145. 145.
    Huang SG, Vanmeensel K, Van der Biest O, Vleugels J (2011) In situ synthesis and densification of submicrometer-grained B4C–TiB2 composites by pulsed electric current sintering. J Eur Ceram Soc 31(4):637–644CrossRefGoogle Scholar
  146. 146.
    Cabouro G, Chevalier S, Gaffet E, Grin Y, Bernard F (2008) Reactive sintering of molybdenum disilicide by spark plasma sintering from mechanically activated powder mixtures: processing parameters and properties. J Alloys Compd 465(1–2):344–355CrossRefGoogle Scholar
  147. 147.
    Campayo L, Le Gallet S, Grin Y, Courtois E, Bernard F, Bart F (2009) Spark plasma sintering of lead phosphovanadate Pb3(VO4)1.6(PO4)0.4. J Eur Ceram Soc 29(8):1477–1484CrossRefGoogle Scholar
  148. 148.
    Le Gallet S, Campayo L, Courtois E, Hoffmann S, Grin Y, Bernard F, Bart F (2010) Spark plasma sintering of iodine-bearing apatite. J Nucl Mater 400(3):251–256CrossRefGoogle Scholar
  149. 149.
    Beekman M, Baitinger M, Borrmann H, Schnelle W, Meier K, Nolas GS, Grin Y (2009) Preparation and crystal growth of Na24Si136. J Am Chem Soc 131:9642–9643CrossRefGoogle Scholar
  150. 150.
    Chakravarty D, Ramesh H, Rao TN (2009) High strength porous alumina by spark plasma sintering. J Eur Ceram Soc 29:1361–1369CrossRefGoogle Scholar
  151. 151.
    Oh ST, Tajima K, Ando M, Ohji T (2000) Strengthening of porous alumina by pulse electric current sintering and nanocomposite processing. J Am Ceram Soc 83(5):1314–1316CrossRefGoogle Scholar
  152. 152.
    Dudina DV, Mukherjee AK (2013) Reactive spark plasma sintering for the production of nanostructured materials. In: Sinha S, Navani NK (eds) Nanotechnology series, vol. 4: Nanomaterials and nanostructures. Studium Press LLC, Houston, TX, pp 237–264Google Scholar
  153. 153.
    Galy J, Dolle M, Hungria T, Rozier P, Monchoux JP (2008) A new way to make solid state chemistry: spark plasma synthesis of copper or silver vanadium oxide bronzes. Solid State Sci 10(8):976–981CrossRefGoogle Scholar
  154. 154.
    Dumont-Botto E, Bourbon C, Patoux S, Rozier P, Dolle M (2011) Synthesis by spark plasma sintering: a new way to obtain electrode materials for lithium ion batteries. J Power Sources 196(4):2274–2278CrossRefGoogle Scholar
  155. 155.
    Liu W, Naka M (2003) In situ joining of dissimilar nanocrystalline materials by spark plasma sintering. Scr Mater 48(9):1225–1230CrossRefGoogle Scholar
  156. 156.
    Matsubara T, Shibutani T, Uenishi K, Kobayashi KF (2002) Fabrication of TiB2 reinforced Al3Ti composite layer on Ti substrate by reactive-pulsed electric current sintering. Mater Sci Eng A 329–331:84–91CrossRefGoogle Scholar
  157. 157.
    Mulukutla M, Singh A, Harimkar S (2010) Spark plasma sintering for multi-scale surface engineering of materials. JOM 62(6):65–71CrossRefGoogle Scholar
  158. 158.
    Holland T, Hulbert D, Anselmi-Tamburini U, Mukherjee AK (2010) Functionally graded boron-carbide and aluminum composites with tubular geometries using pulsed electric current sintering. Mater Sci Eng A 527(18–19):4543–4545CrossRefGoogle Scholar
  159. 159.
    Yuan H, Li J, Shen Q, Zhang L (2012) In situ synthesis and sintering of ZrB2 porous ceramics by the spark plasma sintering–reactive synthesis (SPS–RS) method. Int J Refract Metals Hard Mater 34:3–7CrossRefGoogle Scholar
  160. 160.
    Dudina DV, Bokhonov BB, Mukherjee AK (2016) Formation of aluminum particles with shell morphology during pressureless spark plasma sintering of Fe-Al mixtures: current-related or Kirkendall effect? Materials 9:375 10 pCrossRefGoogle Scholar
  161. 161.
    Dudina DV, Legan MA, Fedorova NV, Novoselov AN, Anisimov AG, Esikov MA (2017) Structural and mechanical characterization of porous iron aluminide FeAl obtained by pressureless spark plasma sintering. Mater Sci Eng A 695:309–314CrossRefGoogle Scholar
  162. 162.
    Dudina DV, Bokhonov BB, Legan MA, Novoselov AN, Skovorodin IN, Bulina NV, Esikov MA, Mali VI (2017) Analysis of the formation of FeAl with a high open porosity during electric current-assisted sintering of loosely packed Fe-Al powder. Vacuum 146:74–78CrossRefGoogle Scholar
  163. 163.
    Scheele M, Oeschler N, Veremchuk I, Peters S, Littig A, Kornowski A, Klinke C, Weller H (2011) Thermoelectric properties of lead chalcogenide core-shell nanostructures. ACS Nano 5:8541–8551CrossRefGoogle Scholar
  164. 164.
    Bokhonov BB, Dudina DV (2017) Preparation of porous materials by spark plasma sintering: peculiarities of alloy formation during consolidation of Fe@Pt core-shell and hollow Pt(Fe) particles. J Alloys Compd 707:233–237CrossRefGoogle Scholar
  165. 165.
    Buscaglia MT, Vivani M, Zhao Z, Buscaglia V, Nanni P (2006) Synthesis of BaTiO3 core-shell particles and fabrication of dielectric ceramics with local graded structure. Chem Mater 18(17):4002–4010CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Eugene A. Olevsky
    • 1
  • Dina V. Dudina
    • 2
  1. 1.College of EngineeringSan Diego State UniversitySan DiegoUSA
  2. 2.Lavrentyev Institute of Hydrodynamics, Siberian Branch of the Russian Academy of SciencesNovosibirskRussia

Personalised recommendations