• Eugene A. Olevsky
  • Dina V. Dudina


This chapter includes the general introduction to field-assisted sintering techniques. A brief historical overview of field-assisted powder consolidation methods is presented. The general categorization of field-assisted sintering technologies is introduced. The underlying physical mechanisms of field-assisted sintering are described in terms of thermal and nonthermal factors influencing mass transport.


Categorization Mass transport Thermal effect Nonthermal effect Heating rate Thermal diffusion Electromigration Electroplasticity Non-equilibrium 


  1. 1.
    Bordia R, Kang SJ, Olevsky EA (2017) Current understanding and future research directions at the onset of the next century of sintering science and technology. J Am Ceram Soc 100:2314–2335CrossRefGoogle Scholar
  2. 2.
    Edison TA (1879) Electric Light. US Patent 219628Google Scholar
  3. 3.
    Voelker WL (1898) G.B. Patent 6149Google Scholar
  4. 4.
    Sauerwald F (1922) Apparatus for direct resistance heating to high temperature under pressureGoogle Scholar
  5. 5.
    Taylor GF (1933) Apparatus for making hard metal compositions. US Patent No. 1896854Google Scholar
  6. 6.
    Lenel FV (1955) Resistance sintering under pressure. JOM 7(1):158–167CrossRefGoogle Scholar
  7. 7.
    Inoue K (1962) Electric Discharge sintering. US Patent 3241965Google Scholar
  8. 8.
    Inoue K (1966) Apparatus for electrically sintering discrete bodies. US Patent 3250892Google Scholar
  9. 9.
    Greenspan J (1976) Impulse resistance sintering of tungsten. Army Materials and Mechanics Research Center, USAGoogle Scholar
  10. 10.
    Tokita M (1993) Trends in advanced SPS spark plasma sintering systems and technology. J Soc Powder Technol Jpn 30(11):790−804CrossRefGoogle Scholar
  11. 11.
    Omori M (2000) Basic research and industrial production using the spark plasma system (SPS). Mater Sci Eng A 287(2):183−188CrossRefGoogle Scholar
  12. 12.
    Groza JR, Zavaliangos A (2000) Sintering activation by external electrical field. Mater Sci Eng A 287(2):171−177CrossRefGoogle Scholar
  13. 13.
    Groza JR, Zavaliangos A (2003) Nanostructured bulk solids by field activated sintering. Rev Adv Mater Sci 5:24−33Google Scholar
  14. 14.
    Mamedov V (2002) Spark plasma sintering as advanced PM sintering method. Powder Metall 45(4):322−328CrossRefGoogle Scholar
  15. 15.
    Munir ZA, Anselmi-Tamburini U, Ohyanagi M (2006) The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method. J Mater Sci 41(3):763−777CrossRefGoogle Scholar
  16. 16.
    Munir ZA, Quach D, Ohyanagi M (2011) Electric current activation of sintering: a review of the pulsed electric current sintering process. J Am Ceram Soc 94(1):1−19CrossRefGoogle Scholar
  17. 17.
    Orrù R, Licheri R, Locci AM, Cincotti A, Cao G (2009) Consolidation/synthesis of materials by electric current activated/assisted sintering. Mater Sci Eng R 63(4–6):127−287Google Scholar
  18. 18.
    Grasso S, Sakka Y, Maizza G (2009) Electric current activated/assisted sintering (ECAS): a review of patents 1906–2008. Sci Technol Adv Mater 10:1–24CrossRefGoogle Scholar
  19. 19.
    Dudina DV, Mukherjee AK (2013) Reactive spark plasma sintering: successes and challenges of nanomaterial synthesis. J Nanomater 625218, 12 pGoogle Scholar
  20. 20.
    Dudina DV, Mukherjee AK (2013) Reactive spark plasma sintering for the production of nanostructured materials. In: Sinha S, Navani NK (eds) Nanotechnology series, vol. 4: nanomaterials and nanostructures. Studium Press LLC, USA, pp 237–264Google Scholar
  21. 21.
    Olevsky EA, Aleksandrova EV, Ilyina AM, Dudina DV, Novoselov AN, Pelve KY, Grigoryev EG (2013) Outside mainstream electronic databases: review of studies conducted in the USSR and post-soviet countries on electric current-assisted consolidation of powder materials. Materials 6:4375–4440CrossRefGoogle Scholar
  22. 22.
    Yurlova MS, Demenyuk VD, Lebedeva LY, Dudina DV, Grigoryev EG, Olevsky EA (2014) Electric pulse consolidation: an alternative to spark plasma sintering. J Mater Sci 49:952–985CrossRefGoogle Scholar
  23. 23.
    Raichenko AI (1987) Basics of electric current-assisted sintering. Metallurgiya, Moscow, p 128Google Scholar
  24. 24.
    Belyavin KE, Mazyuk VV, Min’ko DV, Sheleg VK (1997) Theory and practice of electric pulse sintering of porous materials. Minsk, Remiko, p 180 (in Russian)Google Scholar
  25. 25.
    Khasanov OL, Dvilis ES, Bikbaeva ZG (2008) Methods of compaction and consolidation of nanostructured materials and products. Textbook, Tomsk Polytechnic University Publishing, Tomsk, 212 p (in Russian)Google Scholar
  26. 26.
    Olevsky EA, Kandukuri S, Froyen L (2007) Consolidation enhancement in spark-plasma sintering: impact of high heating rates. J Appl Phys 102:114913CrossRefGoogle Scholar
  27. 27.
    Crivelli IV, Esposito E, Mele G, Siniscalchi A (1973) Formatura per Spark Sintering. Metall Italiana 65(11):611–618Google Scholar
  28. 28.
    Zavodov NN, Kozlov AV, Luzganov SN, Polishchuk VP, Shurupov AV (1999) Sintering of metal powders by a series of heavy current pulses. High Temp 37(1):130–135Google Scholar
  29. 29.
    Zhou Y, Hirao K, Yamauchi Y, Kanzaki S (2003) Effects of heating rate and particle size on pulse electric current sintering of alumina. Scr Mater 48:1631–1636CrossRefGoogle Scholar
  30. 30.
    Johnson DL (1990) Comment on “temperature-gradient-driven diffusion in rapid-rate sintering”. J Am Ceram Soc 73(8):2576–2578CrossRefGoogle Scholar
  31. 31.
    Chipman J (1926) The Soret effect. J Am Chem Soc 48:2577–2589CrossRefGoogle Scholar
  32. 32.
    Shewmon P (1958) Thermal diffusion of vacancies in zinc. J Chem Phys 29(5):1032–1036CrossRefGoogle Scholar
  33. 33.
    Schottky G (1965) A theory of thermal diffusion based on lattice dynamics of a linear chain. Phys Status Solidi 8(1):357–368CrossRefGoogle Scholar
  34. 34.
    Kornyushin YV (1980) Influence of external magnetic and electric-fields on sintering, structure and properties. J Mater Sci 15(3):799–801CrossRefGoogle Scholar
  35. 35.
    Searcy AW (1987) Theory for sintering in temperature-gradients-role of long-range mass-transport. J Am Ceram Soc 70(3):C61–C62CrossRefGoogle Scholar
  36. 36.
    Young RM, McPherson R (1989) Temperature-gradient-driven diffusion in rapid-rate sintering. J Am Ceram Soc 72(6):1080–1081CrossRefGoogle Scholar
  37. 37.
    Young RM, McPherson R (1990) Temperature-gradient-driven diffusion in rapid-rate sintering – reply. J Am Ceram Soc 73(8):2579–2580CrossRefGoogle Scholar
  38. 38.
    Gostomelskiy VS, Krupnova LV (1985) Growth and healing of pores in metals under the action of current pulses. Phys Chem Mater Treat (Fizika I Khimiya obrabotki Materialov) 4:82–87 (in Russian)Google Scholar
  39. 39.
    Olevsky E, Froyen L (2009) Influence of thermal diffusion on spark-plasma sintering. J Am Ceram Soc 92:S122–S132CrossRefGoogle Scholar
  40. 40.
    Chen W, Anselmi-Tamburini U, Garay JE, Groza JR, Munir ZA (2005) Fundamental investigations on the spark-plasma sintering/synthesis process I. Effect of dc pulsing on reactivity. Mater Sci Eng A 394(1–2):132–138CrossRefGoogle Scholar
  41. 41.
    Kuz’mov AV, Olevskii EA, Aleksandrova EV (2013) Effect of micrononuniform heating of powder in field-assisted sintering on shrinkage kinetics. Powder Metall Met Ceram 51(11–12):657–665CrossRefGoogle Scholar
  42. 42.
    Mukherjee AK, Bird JE, Dorn JE (1969) Experimental correlation for high-temperature creep. Trans ASM 62:155–179Google Scholar
  43. 43.
    Tuchinskii LI (1982) Plastic relaxation of thermal stresses during sintering under nonisothermal conditions. Sov Powder Metall Met Ceram 21(11):849–853CrossRefGoogle Scholar
  44. 44.
    Tuchinskii LI (1983) Possibility of plastic relaxation of thermal stresses in porous bodies. Sov Powder Metall Met Ceram 22(4):269–273Google Scholar
  45. 45.
    Skorokhod VV, Tuchinskii LI (1978) Condition of plasticity of porous bodies. Sov Powder Metall Met Ceram 17(11):880–883CrossRefGoogle Scholar
  46. 46.
    Asoka-Kumar P, O’Brien K, Lynn KG, Simpson PJ, Rodbell KP (1996) Detection of current-induced vacancies in thin aluminum–copper lines using positrons. Appl Phys Lett 68:406CrossRefGoogle Scholar
  47. 47.
    Garay JE, Glade SC, Anselmi-Tamburini U, Asoka-Kumar P, Munir ZA (2004) Electric current enhanced defect mobility in Ni3Ti intermetallics. Appl Phys Lett 85:573CrossRefGoogle Scholar
  48. 48.
    Frei JM, Anselmi-Tamburini U, Munir ZA (2007) Current effects on neck growth in the sintering of copper spheres to copper plates by the pulsed electric current method. J Appl Phys 101:114914CrossRefGoogle Scholar
  49. 49.
    Burenkov GL, Raichenko AI, Suraeva AM (1987) Dynamics of interparticle reactions in spherical metal powders during electric sintering. Sov Powder Metall Met Ceram 26(9):709–712CrossRefGoogle Scholar
  50. 50.
    Olevsky E, Froyen L (2006) Constitutive modeling of spark-plasma sintering of conductive materials. Scr Mater 55:1175–1178CrossRefGoogle Scholar
  51. 51.
    Cao WD, Lu XP, Sprecher AE, Conrad H (1990) Superplastic deformation behavior of 7475 aluminum alloy in an electric field. Mater Sci Eng A 129:157–166CrossRefGoogle Scholar
  52. 52.
    Conrad H, Yang D (2010) Influence of an applied dc electric field on the plastic deformation kinetics of oxide ceramics. Philos Mag 90(9):1141–1157CrossRefGoogle Scholar
  53. 53.
    Kim SW, Kim SG, Jung JI, Kang S-JL, Chen I-W (2011) Enhanced grain boundary mobility in yttria-stabilized cubic zirconia under an electric current. J Am Ceram Soc 94(12):4231–4238CrossRefGoogle Scholar
  54. 54.
    Ghosh S, Chokshi AH, Lee P, Raj R (2009) A huge effect of weak dc electrical fields on grain growth in zirconia. J Am Ceram Soc 92(8):1856–1859CrossRefGoogle Scholar
  55. 55.
    Holland TB, Anselmi-Tamburini U, Quach DV, Tran TB, Mukherjee AK (2012) Effects of local joule heating during the field assisted sintering of ionic ceramics. J Eur Ceram Soc 32(14):3667–3674CrossRefGoogle Scholar
  56. 56.
    Wang J, Raj R (1990) Estimate of the activation energies for boundary diffusion from rate-controlled sintering of pure alumina and alumina doped with zirconia or titania. J Am Ceram Soc 73:1172–1175CrossRefGoogle Scholar
  57. 57.
    Kim SW, Kang SJL, Chen IW (2013) Ionomigration of pores and gas bubbles in yttria-stabilized cubic zirconia. J Am Ceram Soc 96(4):1090–1098CrossRefGoogle Scholar
  58. 58.
    Osepchuk JM (1984) A history of microwave heating applications. IEEE Trans Microw Theory Tech 32(9):1200–1224CrossRefGoogle Scholar
  59. 59.
    Tinga WR, Voss WAG (1968) Microwave power engineering. Academic Press, New York, p 1968Google Scholar
  60. 60.
    Berteaud AJ, Badot JC (1976) High temperature microwave heating in refractory materials. J Microw Power 11(4):315–320CrossRefGoogle Scholar
  61. 61.
    Meek TT, Holcombe CE, Dykes N (1987) Microwave sintering of some oxide materials using sintering aids. J Mater Sci Lett 6(8):1060–1062CrossRefGoogle Scholar
  62. 62.
    Johnson DL (1991) Microwave and plasma sintering of ceramics. Ceram Int 17:295–300CrossRefGoogle Scholar
  63. 63.
    Johnson DL (1991) Microwave heating of grain boundaries in ceramics. J Am Ceram Soc 74(4):849–850CrossRefGoogle Scholar
  64. 64.
    Birnboim A, Gershon D, Calame J, Birman A, Carmel Y, Rodgers J, Levush B, Bykov Y, Eremeev A, Holoptsev V, Semenov V, Dadon D, Martin P, Rosen M, Hutcheon R (1998) Comparative study of microwave sintering of zinc oxide at 2.45, 30 and 83 GHz. J Am Ceram Soc 81:1493–1501CrossRefGoogle Scholar
  65. 65.
    Rybakov KI, Olevsky EA, Semenov VE (2012) The microwave ponderomotive effect on ceramic sintering. Scr Mater 66:1049–1052CrossRefGoogle Scholar
  66. 66.
    Olevsky EA, Maximenko AL, Grigoryev EG (2013) Ponderomotive effects during contact formation in microwave sintering. Model Simul Mater Sci Eng 21:055022CrossRefGoogle Scholar
  67. 67.
    Rybakov KI, Olevsky EA, Krikun EV (2013) Microwave sintering: fundamentals and modeling. J Am Ceram Soc 96(4):1003–1020CrossRefGoogle Scholar
  68. 68.
    Marder R, Estournès C, Chevallier G, Chaim R (2014) Spark and plasma in spark plasma sintering of rigid ceramic nanoparticles: a model system of YAG. J Eur Ceram Soc 35:211CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Eugene A. Olevsky
    • 1
  • Dina V. Dudina
    • 2
  1. 1.College of EngineeringSan Diego State UniversitySan DiegoUSA
  2. 2.Lavrentyev Institute of Hydrodynamics, Siberian Branch of the Russian Academy of SciencesNovosibirskRussia

Personalised recommendations