Advertisement

Abstract

A finite impulse response (FIR) digital filter, as the name implies, has an impulse response sequence that is of finite duration as opposed to an IIR digital filter, which has an impulse response that is of infinite duration. Therefore, the Z-transform of the impulse response of an FIR digital filter in general can be written as

Supplementary material

450626_1_En_7_MOESM1_ESM.zip (2.2 mb)
Chapter7_Thyag(2213KB.zip)

References

  1. 1.
    Blackman RB (1965) Linear data smoothing and prediction in theory and practice. Addison-Wesley, ReadingzbMATHGoogle Scholar
  2. 2.
    Boite R, Leich H (1981) A new procedure for the design of high-order minimum-phase FIR digital or CCD filters. Sig Process 3:101–108CrossRefGoogle Scholar
  3. 3.
    Crochiere RE, Rabiner LR (1976) On the properties of frequency transformations for variable cutoff linear phase digital filters. IEEE Trans Circ Syst CAS-23:684–686CrossRefGoogle Scholar
  4. 4.
    Dutta Roy SC, Kumar B (1989) On digital differentiators, Hilbert transformers, and half-band lowpass filters. IEEE Trans Edu 32:314–318CrossRefGoogle Scholar
  5. 5.
    Fatinopoulos I, Stathai T, Constantinides A(2001) A method for FIR filter design from joint amplitude and group delay characteristics. In: Proceedings of IEEE international conference on acoustics, speech, and signal processing, pp 621–625Google Scholar
  6. 6.
    Helms HD (1968) Nonrecursive digital filters: Design methods for achieving specifications on frequency response. IEEE Trans Audio Electroacoust AU-16:336–342CrossRefGoogle Scholar
  7. 7.
    Herrmann O, Schussler HW (1970) Design of nonrecursive digital filters with minimum phase. Electron Lett 6:329–630CrossRefGoogle Scholar
  8. 8.
    Herrmann O, Rabiner LR, Chan DSK (1973) Practical design rules for optimum finite impulse response lowpass digital filters. Bell Syst Tech J 52:769–799CrossRefGoogle Scholar
  9. 9.
    Jarske P, Neuvo Y, Mitra SK (1988) A simple approach to the design of FIR digital filters with variable characteristics. Sig Process 14:313–326MathSciNetCrossRefGoogle Scholar
  10. 10.
    Kaiser JF (1974) Nonrecursive digital filter design using the I0-sinh window function. In: Proceedings of IEEE international symposium on circuits and systems, San Francisco, CA, pp 20–23Google Scholar
  11. 11.
    Kaiser JF, Hamming RW (1977) Sharpening the response of a symmetric nonrecursive filter by multiple use of the same filter. IEEE Trans Acoust Speech Sig Process ASSP-25:415–422CrossRefGoogle Scholar
  12. 12.
    McClellan JH, Parks TW (1973) A unified approach to the design of optimum FIR linear phase digital filters. IEEE Trans Circ Theory CT-20:697–701CrossRefGoogle Scholar
  13. 13.
    Mitra SK (2011) Digital signal processing: a computer-based approach, 4th edn. McGraw Hill, New YorkGoogle Scholar
  14. 14.
    Neuvo Y, Dong C-Y, Mitra SK (1984) Interpolated finite impulse response filters. IEEE Trans Acoust Speech Sig Process ASSP-32:563–570CrossRefGoogle Scholar
  15. 15.
    Oetken G, Parks TW, Schussler HW (1975) New results in the design of digital interpolators. IEEE Trans Acoust Speech Sig Process ASSP-23:301–309CrossRefGoogle Scholar
  16. 16.
    Oppenheim AV, Schafer RW (1975) Digital signal processing. Prentice Hall, Englewood CliffszbMATHGoogle Scholar
  17. 17.
    Oppenheim AV, Mecklenbrauker WFG, Mersereau RM (1976) Variable cutoff linear phase digital filters. IEEE Trans Circ Syst CAS-23:199–203CrossRefGoogle Scholar
  18. 18.
    Oppenheim AV, Schafer RW (1999) Discrete-time signal processing, 2nd edn. Prentice Hall, Englewood CliffszbMATHGoogle Scholar
  19. 19.
    Parks TW, McClellan JH (1972) Chebyshev approximation for nonrecursive digital filters with linear phase. IEEE Trans Circ Theory CT-19:189–194CrossRefGoogle Scholar
  20. 20.
    Rabiner LR (1973) Approximate design relationships for low-pass FIR digital filters. IEEE Trans Audio Electroacoust AU-21:456–460CrossRefGoogle Scholar
  21. 21.
    Rabiner LR, Crochiere RE (1975) A novel implementation for narrow-band FIR digital filters. IEEE Trans Acoust Speech Sig Process 23(5):457–464CrossRefGoogle Scholar
  22. 22.
    Rabiner LR, Gold B, McGonegal CA (1970) An approach to the approximation problem for nonrecursive digital filters. IEEE Trans Audio Electroacoust AU-18:83–106CrossRefGoogle Scholar
  23. 23.
    Rabiner LR, McClellan JH, Parks TW (1975) FIR digital filter design techniques using weighted Chebyshev approximation. Proc IEEE 63(4):595–610CrossRefGoogle Scholar
  24. 24.
    Saramaki T, Neuvo Y, Mitra SK (1988) Design of computationally efficient interpolated FIR filters. IEEE Trans Circ Syst CAS-35:70–88CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • K. S. Thyagarajan
    • 1
  1. 1.Extension ProgramUniversity of California, San DiegoSan DiegoUSA

Personalised recommendations