Advertisement

Genomic Resources for the Woodland Strawberry (Fragaria vesca)

  • Elizabeth I. Alger
  • Marivi Colle
  • Patrick P. Edger
Chapter
Part of the Compendium of Plant Genomes book series (CPG)

Abstract

Fragaria vesca is one of the putative diploid progenitors and donor of subgenome A in the octoploid genome of the economically important cultivated strawberry (Fragaria × ananassa). With its small genome size, short generation time, and well-established transformation system, F. vesca is an ideal model species for Fragaria and other rosaceous crops. The F. vesca genome was first sequenced in 2011 and since then, with the availability of other molecular genetics and genomic resources, the assembly and annotation of the draft genome were further improved. The F. vesca draft genome has been an invaluable resource to the strawberry research community, with numerous studies using it as reference genome to identify candidate genes related to agronomically important traits. It has led to the generation of a 90 K array, metabolic pathways database, and various other new genetic resources. The strawberry genome also has been used in comparative genomics studies that elucidated the relationship among members of the Rosaceae family and identified genes and genomic signals across several rosaceous species. Altogether, the discoveries made with this genome will provide potential ways to improve cultivated strawberry and expand on our understanding of the Rosaceae family.

References

  1. Albani MC, Battey NH and Wilkinson MJ (2004). The development of ISSR-derived SCAR markers around the Seasonal Flowering Locus (SFL) in Fragaria vesca. Theor Appl Gen 109(3):571–579Google Scholar
  2. Bassil NV, Davis TM, Zhang H, Ficklin S, Mittmann M, Webster T, Mahoney L, Wood D, Alperin ES, Rosyara UR, et al (2015) Development and preliminary evaluation of a 90 K Axiom® SNP array for the allo-octoploid cultivated strawberry Fragaria × ananassa. BMC Genom 1–30Google Scholar
  3. Bombarely A, Merchante C, Csukasi F, Cruz-Rus E, Caballero JL, Medina-Escobar N, Blanco-Portales R, Botella MA, Muñoz-Blanco J, Sánchez-Sevilla JF, Valpuesta V (2010) Generation and analysis of ESTs from strawberry (Fragaria × ananassa) fruits and evaluation of their utility in genetic and molecular studies. BMC Genomics 11:503 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Chagné D, Crowhurst RN, Pindo M, Thrimawithana A, Deng C, Ireland H, Fiers M, Dzierzon H, Cestaro A, Fontana P et al (2014) The draft genome sequence of European pear (Pyrus communis L. “Bartlett”). PLoS One 9:e92644 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Chin C-S, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, Clum A, Copeland A, Huddleston J, Eichler EE et al (2013) Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 10:563–571CrossRefPubMedPubMedCentralGoogle Scholar
  6. Darwish O, Shahan R, Liu Z, Slovin JP, Alkharouf NW (2015) Re-annotation of the woodland strawberry (Fragaria vesca) genome. BMC Genom 16:1–9CrossRefGoogle Scholar
  7. Davis TM, Shields ME, Zhang Q, Tombolato-Terzić D, Bennetzen JL, Pontaroli AC, Wang H, Yao Q, SanMiguel P, Folta KM (2010) An examination of targeted gene neighborhoods in strawberry. BMC Plant Biol 10(1):81CrossRefPubMedPubMedCentralGoogle Scholar
  8. Deng C, Davis TM (2001) Molecular identification of the yellow fruit color (c) locus in diploid strawberry: a candidate gene approach. Theor Appl Genet 10(2–3):316–322CrossRefGoogle Scholar
  9. Denoyes-Rothan B, Guerin G, Lerceteau-Köhler E, Risser G (2005) Inheritance of resistance to Colletotrichum acutatum in Fragaria × ananassa. Phytopathology 95:405–412CrossRefPubMedGoogle Scholar
  10. Edger PP, VanBuren R, Colle M, Poorten TJ, Wai CM, Niederhuth CE, Alger EI, Ou S, Acharya CB, Wang J et al (2018) Single-molecule sequencing and optical mapping yields an improved genome of woodland strawberry (Fragaria vesca) with chromosome-scale contiguity. Gigascience 7:1–7Google Scholar
  11. Goldberg MT, Spigler RB, Ashman T (2010) Comparative genetic mapping points to different sex chromosomes in sibling species of wild strawberry (Fragaria). Genetics 186:1425–1433CrossRefPubMedPubMedCentralGoogle Scholar
  12. Guérin G, Lerceteau-Kohler E, Laigret F, Roudeillac P, Denoyes B (2003) Development of a SCAR marker linked to dominant gene conferring resistance to Colletotrichum acutatum in strawberry (Fragaria × ananassa). Acta Hortic 626:85–91CrossRefGoogle Scholar
  13. Haymes KM, Davis TM (1998) Agrobacterium-mediated transformation of “Alpine” Fragaria vesca, and transmission of transgenes to R1 progeny. Plant Cell Rep 17:279–283CrossRefGoogle Scholar
  14. Haymes KM, Henken B, Davis TM, van de Weg WE (1997) Identification of RAPD markers linked to a Phytophthora fragariae resistance gene (Rpf1) in the cultivated strawberry. Theor Appl Genet 94:1097–1101CrossRefGoogle Scholar
  15. Hollender CA, Kang C, Darwish O, Geretz A, Matthews BF, Slovin J, Alkharouf N, Liu Z (2014) Floral transcriptomes in woodland strawberry uncover developing receptacle and anther gene networks. Plant Physiol 165:1062–1075CrossRefPubMedPubMedCentralGoogle Scholar
  16. Hummer KE, Hancock J (2009) Strawberry genomics: botanical history, cultivation, traditional breeding, and new technologies. Genetics and genomics of Rosaceae. Springer, New York. pp 413–435 Google Scholar
  17. Husaini AM, Abdin MZ (2008) Development of transgenic strawberry (Fragaria × ananassa Duch.) plants tolerant to salt stress. Plant Sci 174:446–455CrossRefGoogle Scholar
  18. Kaczmarska E, Hortynski JA (2002) The application of RAPD markers for genetic studies on Fragaria × ananassa Duch. (strawberry) with due consideration for permanent flowering. Electron J Polish Agric Univ 5Google Scholar
  19. Kang C, Darwish O, Geretz A, Shahan R, Alkharouf N, Liu Z (2013) Genome-scale transcriptomic insights into early-stage fruit development in woodland strawberry Fragaria vesca. Plant Cell 25:1960–1978CrossRefPubMedPubMedCentralGoogle Scholar
  20. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM (2017) Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res 27:722–736CrossRefPubMedPubMedCentralGoogle Scholar
  21. Liston A, Cronn R, Ashman TL (2014) Fragaria: a genus with deep historical roots and ripe for evolutionary and ecological insights. Am J Bot 101:1686–1699CrossRefPubMedGoogle Scholar
  22. Naithani S, Partipilo CM, Raja R, Elser JL, Jaiswal P (2016) FragariaCyc: a metabolic pathway database for woodland strawberry Fragaria vesca. Front Plant Sci 7:1–10CrossRefGoogle Scholar
  23. Njuguna W, Liston A, Cronn R, Ashman TL, Bassil N (2013) Insights into phylogeny, sex function and age of Fragaria based on whole chloroplast genome sequencing. Mol Phylogen Evol 66(1):17–29 CrossRefPubMedGoogle Scholar
  24. Oosumi T, Gruszewski HA, Blischak LA, Baxter AJ, Wadl PA, Shuman JL, Veilleux RE, Shulaev V (2006) High-efficiency transformation of the diploid strawberry (Fragaria vesca) for functional genomics. Planta 223:1219–1230CrossRefPubMedGoogle Scholar
  25. Pontaroli AC, Rogers RL, Zhang Q, Shields ME, Davis TM, Folta KM, SanMiguel P, Bennetzen JL (2009) Gene content and distribution in the nuclear genome of Fragaria vesca. Plant Genom J 2(1):93CrossRefGoogle Scholar
  26. Potter D, Luby JL, Harrison RE (2000) Phylogenetic relationships among species of Fragaria (Rosaceae) inferred from non-coding nuclear and chloroplast DNA sequences. Systematic Botany 25(2):337 CrossRefGoogle Scholar
  27. Rousseau-Gueutin M, Gaston A, Aïnouche A, Aïnouche ML, Olbricht K, Staudt G, Richard L, Denoyes-Rothan B (2009) Tracking the evolutionary history of polyploidy in Fragaria L. (strawberry): new insights from phylogenetic analyses of low-copy nuclear genes. Mol Phylogenet Evol 51(3):515–530CrossRefPubMedGoogle Scholar
  28. Ruiz-Rojas JJ, Sargent DJ, Shulaev V, Dickerman AW, Pattison J, Holt SH, Ciordia A, Veilleux RE (2010) SNP discovery and genetic mapping of TDNA insertional mutants in Fragaria vesca L. Theor Appl Genet 121(3):449–463 CrossRefPubMedGoogle Scholar
  29. Sargent DJ, Cipriani G, Vilanova S, Gil-Ariza D, Arus P, Simpson DW, Tobutt KRR, Monfort A, Arús P, Simpson DW et al (2008) The development of a bin mapping population and the selective mapping of 103 markers in the diploid Fragaria reference map. Genome 51:120–127CrossRefPubMedGoogle Scholar
  30. Spigler RB, Lewers KS, Main DS, Ashman TL (2008) Genetic mapping of sex determination in a wild strawberry, Fragaria virginiana, reveals earliest form of sex chromosome. Heredity 101:507–517CrossRefPubMedGoogle Scholar
  31. Spigler RB, Lewers KS, Johnson AL, Ashman TL (2010) Comparative mapping reveals autosomal origin of sex chromosome in octoploid Fragaria virginiana. J Hered 101:107–117 CrossRefPubMedGoogle Scholar
  32. Shulaev V, Sargent DJ, Crowhurst RN, Mockler TC, Folkerts O, Delcher AL, Jaiswal P, Mockaitis K, Liston A, Mane SP et al (2011) The genome of woodland strawberry (Fragaria vesca). Nat Genet 43:109–116CrossRefPubMedGoogle Scholar
  33. Staudt G (1959) Cytotaxonomy and phylogenetic relationships in the genus Fragaria. Proc IX Intern Bot Congr 2:377 Google Scholar
  34. Sugimoto T, Tamaki K, Matsumoto J, Yamamoto Y, Shiwaku K, Watanabe K (2005) Detection of RAPD markers linked to the everbearing gene in Japanese cultivated strawberry. Plant Breed 124:498–501CrossRefGoogle Scholar
  35. Tennessen JA, Govindarajulu R, Liston A, Ashman T (2013) Targeted sequence capture provides insight into genome structure and genetics of male sterility in a gynodioecious diploid strawberry, Fragaria vesca ssp. bracteata (Rosaceae). Genes Genomes Genet 3:1341–1351Google Scholar
  36. Tennessen JA, Govindarajulu R, Ashman T-L, Liston A (2014) Evolutionary origins and dynamics of octoploid strawberry subgenomes revealed by dense target captured linkage maps. Genome Biol Evol 6:3295–3313CrossRefPubMedPubMedCentralGoogle Scholar
  37. USDA National Agricultural Statistics Service (NASS) (2017) Noncitrus fruits and nuts 2016 summary. USDA economics, statistics, and market information system: http://usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.do?documentID=1113
  38. Vanburen R, Bryant D, Bushakra JM, Vining KJ, Edger PP, Rowley ER, Priest HD, Michael TP, Lyons E, Filichkin SA et al (2016) The genome of black raspberry (Rubus occidentalis). Plant J 87:535–547CrossRefPubMedGoogle Scholar
  39. Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M, Pruss D et al (2010) The genome of the domesticated apple (Malus × domestica Borkh.). Nat Genet 42:833–839CrossRefPubMedGoogle Scholar
  40. Verde I, Abbott AG, Scalabrin S, Jung S, Shu S, Marroni F, Zhebentyayeva T, Dettori MT, Grimwood J, Cattonaro F et al (2013) The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat Genet 45:487–496CrossRefPubMedGoogle Scholar
  41. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, Cuomo CA, Zeng Q, Wortman J, Young SK et al (2014) Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 9:1–14Google Scholar
  42. Wang X, Chen X, Yang T, Cheng Q, Cheng Z (2017) Genome-wide identification of bZIP family genes involved in drought and heat stresses in strawberry (Fragaria vesca). Int J Genomics 2017:1–14Google Scholar
  43. Wang J, Ge H, Peng S, Zhang H, Chen P, Xu J (2004) Transformation of strawberry (Fragaria ananassa Duch.) with late embryogenesis abundant protein gene. J Horticul Sci Biotech 79(5):735–738CrossRefGoogle Scholar
  44. Wilhelm S, Saeen JE (1972) A history of the strawberry from ancient gardens to modern markets. Agricultural Publications, Univ. of California, BerkeleyGoogle Scholar
  45. Wu J, Wang Z, Shi Z, Zhang S, Ming R, Zhu S, Khan MA, Tao S, Korban SS, Wang H et al (2013) The genome of pear (Pyrus bretschneideri Rehd.). Genome Res 23:396–408CrossRefPubMedPubMedCentralGoogle Scholar
  46. Xiang Y, Huang C, Hu Y, Wen J, Li S, Yi T, Chen H, Xiang J, Hong M (2016) Evolution of Rosaceae fruit types based on nuclear phylogeny in the context of geological times and genome duplication. Mol Biol Evol 34:262–281PubMedCentralGoogle Scholar
  47. Zhang Q, Chen W, Sun L, Zhao F, Huang B, Yang W, Tao Y, Wang J, Yuan Z, Fan G et al (2012) The genome of Prunus mume. Nat Commun 3:1–8Google Scholar
  48. Zorrilla-Fontanesi Y, Cabeza A, Domínguez P, Medina JJ, Valpuesta V, Denoyes-Rothan B, Sánchez-Sevilla JF, Amaya I (2011) Quantitative trait loci and underlying candidate genes controlling agronomical and fruit quality traits in octoploid strawberry (Fragaria × ananassa). Theor Appl Genet 123:755–778CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Elizabeth I. Alger
    • 1
  • Marivi Colle
    • 1
  • Patrick P. Edger
    • 1
  1. 1.Department of HorticultureMichigan State UniversityEast LansingUSA

Personalised recommendations