Advertisement

Developmental Transitions to Fruiting in Red Raspberry

  • Julie Graham
  • Craig Simpson
Chapter
Part of the Compendium of Plant Genomes book series (CPG)

Abstract

Climate change is impacting soft fruit crops. In raspberry, uneven bud break, greater variability in time to fruit ripening and crumbly fruit are already in evidence. Understanding the developmental process and how the environment impacts will be crucial in sustaining the industry in this changing climate against a background of biotic stresses. This chapter reviews regulation of processes leading to flowering time and fertilisation, developing fruit, ripening, colour, flavour and size. Recent developments of genomic and transcriptome tools which will have a significant role in breeding of the next generation of raspberry fruit are considered.

References

  1. Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, Araki T (2005) FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309:1052–1056CrossRefPubMedGoogle Scholar
  2. Aharoni A, Keizer LCP, Van den Broeck HC, Blanco-Portales R, Munoz-Blanco J, Bois G, Smit P De, Vos RCH, O’Connell AP (2002) Novel insight into vascular, stress, and auxin-dependent and -independent gene expression programs in strawberry, a non-climacteric fruit. Plant Physiol 129:1019–1031CrossRefPubMedPubMedCentralGoogle Scholar
  3. Alfenito MR, Souer E, Goodman CD, Buell R, Mol J, Koes R, Walbot V (1998) Functional complementation of anthocyanin sequestration in the vacuole by widely divergent glutathione S-transferases. Plant Cell 10:1135–1149CrossRefPubMedPubMedCentralGoogle Scholar
  4. Amano T, Smithers RJ, Sparke TH, Sutherland WJ (2010) A 250-year index of first flowering dates and its response to temperature changes Proc R Soc B-Biol Sci 277:2451–2457CrossRefPubMedGoogle Scholar
  5. Arora R, Rowland LJ, Tanino K (2003) Induction and release of bud dormancy in woody perennials: a science comes of age. HortScience 38:911–921Google Scholar
  6. Beekwilder J, Jonker H, Meesters P, Hall RD, van der Meer IM, de Vos CHR (2005) Antioxidants in raspberry: on-line analysis links antioxidant activity to a diversity of individual metabolites. J Agric Food Chem 53:3313–3320CrossRefPubMedGoogle Scholar
  7. Brennan RM, Graham J (2009) Improving fruit quality in Rubus and Ribes through breeding (Invited review). Funct Plant Sci Biotechnol 3:22–29Google Scholar
  8. Burton-Freeman BM, Sandhu AK, Edirisinghe I (2016) Red raspberries and their bioactive polyphenols: cardiometabolic and neuronal health links. Adv Nutr 7:44–65CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bushakra JM et al (2013) QTL involved in the modification of cyanidin compounds in black and red raspberry fruit. Theor Appl Genet 126(3):847–865CrossRefPubMedGoogle Scholar
  10. Cao et al (2016) Simulated warming shifts the flowering phenology and sexual reproduction of Cardamine hirsuta under different Planting densities. Sci Rep 6:27835CrossRefPubMedPubMedCentralGoogle Scholar
  11. Castaneda-Ovando A, Pacheco-Hernandez MD, Paez-Hermandez ME, Rodriguez JA, Galan-Vidal CA (2009) Chemical studies of anthocyanins: a review. Food Chem 113:859–871CrossRefGoogle Scholar
  12. Castellarin SD, Di Gaspero SD (2007) Transcriptional control of anthocyanin biosynthetic genes in extreme phenotypes for berry pigmentation of naturally occurring grapevines. BMC Plant Biol 7:6.  https://doi.org/10.1186/1471-2229-7-46CrossRefGoogle Scholar
  13. Chao WS (2002) Contemporary methods to investigate seed and bud dormancy. Weed Sci 50:215–226CrossRefGoogle Scholar
  14. Cosgrove DJ (2016) F1000Res. 2016 Catalysts of plant cell wall loosening. Version 1. F1000Res. 5: F1000 Faculty Rev-119Google Scholar
  15. Costa G, Noferini M, Fiori G, Tadiello A, Trainotti L, Casadoro G, Ziosi V (2008) A non-destructive index (IAD) to characterize ripening evolution in fruit. HortScience 43:1129Google Scholar
  16. Daubeny HA, Crandall PC, Eaton GW (1967) Crumbliness in the red raspberry with special reference to the ‘Sumner’ variety. Proc Am Soc Hortic Sci 9:224–230Google Scholar
  17. Daubeny HA, Stacesmith R, Freeman JA (1978) Occurrence and effects of raspberry bushy dwarf virus in red raspberry. HortScience 13:358Google Scholar
  18. Davies C, Boss PK, Robinson SP (1997) Treatment of grape berries, a nonclimacteric fruit with a synthetic auxin, retards ripening and alters the expression of developmentally regulated genes. Plant Physiol 115:1155–1161CrossRefPubMedPubMedCentralGoogle Scholar
  19. Dennis FG (1994) Dormancy: what we know (and don’t know). HortScience 11:1249–1255Google Scholar
  20. Dobson P, Graham J, Stewart D, Brennan R, Hackett C, McDougall GJ (2012) Over season analysis of quantitative trait loci affecting phenolic content and antioxidant capacity in raspberry. J Agric Food Chem 60:5360–5366CrossRefPubMedGoogle Scholar
  21. El-Sharkawy I, Sherif S, El Kayal W, Jones B, Li Z, Sullivan AJ, Jayasankar S (2016) Overexpression of plum auxin receptor PslTIR1 in tomato alters plant growth, fruit development and fruit shelf-life characteristics. BMC Plant Biol 16:56CrossRefPubMedPubMedCentralGoogle Scholar
  22. Espley RV, Hellens RP, Putterill J, Stevenson DE, Kutty-Amma S, Allan AC (2007) Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. Plant J 49:414–427CrossRefPubMedPubMedCentralGoogle Scholar
  23. Faust M, Erez A, Rowland LJ, Wang SY, Norman HA (1997) Bud dormancy in perennial fruit trees: physiological basis for dormancy induction, maintenance and release. HortScience 32:623–629Google Scholar
  24. Fitter AH, Fitter RSR (2002) Rapid changes in flowering time in British plants. Science 296:1689–1691CrossRefPubMedGoogle Scholar
  25. Fornara et al (2010) Snapshot control of flowering in Arabidopsis. Cell 141.  https://doi.org/10.1016/j.cell.2010.04.024
  26. Fortes AM, Teixeira RT, Agudelo-Romero P (2015) Complex interplay of hormonal signals during grape berry ripening. Molecules 20:9326–9343CrossRefPubMedGoogle Scholar
  27. Frary A, Nesbitt TC, Frary A, Grandillo S, van der Knaap E, Cong B, Lui JP, Meller J, Elber R, Alpert KB, Tanksley SD (2000) fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289:85–88CrossRefPubMedGoogle Scholar
  28. Fuchigami LH, Wisniewski ME (1997) Quantifying bud dormancy: physiological approaches. HortScience 32:618–623Google Scholar
  29. Fuentes L, Monsalve L, Morales-Quintana L, Valdenegro M, Martinez JP, Defilippi BG, Gonzalez-Aguero M (2015) Differential expression of ethylene biosynthesis genes in drupelets and receptacle of raspberry (Rubus idaeus). J Plant Physiol 179:100–105CrossRefPubMedGoogle Scholar
  30. Goetz M, Hooper LC, Johnson SD, Rodrigues JCM, Vivian-Smith A, Koltunow AM (2007) Expression of aberrant forms of AUXIN RESPONSE FACTOR8 stimulates parthenocarpy in Arabidopsis and tomato. Plant Physiol 145:351–366CrossRefPubMedPubMedCentralGoogle Scholar
  31. Gotame T, Andersen L, Petersen KK, Pedersen HL, Ottosen CO, Graham J (2013) Chlorophyll fluorescence and flowering behaviour of annual-fruiting raspberry cultivars under elevated temperature regimes. EJHS 78:193–202Google Scholar
  32. Graham J, Jennings SN (2009) Raspberry breeding. In: Jain SM, Priyadarshan M (eds). Breeding plantation tree crops: temperate species. IBH & Science Publication Inc, Oxford, UK, Chapter 7, pp 233–248Google Scholar
  33. Graham J, Smith K, MacKenzie K, Jorgensen L, Hackett CA, Powell W (2004) The construction of a genetic linkage map of red raspberry (Rubus idaeus subsp. idaeus) based on AFLPs, genomic-SSR and EST-SSR markers. Theor Appl Genet 109:740–749CrossRefPubMedGoogle Scholar
  34. Graham J, Smith K, Tierney I, MacKenzie K, Hackett C (2006) Mapping gene H controlling cane pubescence in raspberry and its association with resistance to cane botyritis and spur blight, rust and cane spot. Theor Appl Genet 112:818–831CrossRefPubMedGoogle Scholar
  35. Graham J, Hackett CA, Smith K, Woodhead M, Hein I, McCallum S (2009a) Mapping QTLs for developmental traits in raspberry from bud break to ripe fruit. Theor Appl Genet 118:1143–1155CrossRefPubMedGoogle Scholar
  36. Graham J, Woodhead M, Smith K, Russell JR, Marshall B, Ramsay G, Squire GR (2009b) New insight into wild red raspberry populations using simple sequence repeat markers. J Am Soc Hortic Sci 134:109–119Google Scholar
  37. Hancock RD, Morris WL, Ducreux LJM, Morris JA, Usman M, Verrall SR, Fuller J, Simpson CG, Zhang R, Hedley PE, Taylor MA (2014) Physiological, biochemical and molecular responses of the potato (Solanum tuberosum L.) plant to moderately elevated temperature. Plant, Cell Environ 37:439–450CrossRefGoogle Scholar
  38. Harrison RE, Brennan RM, Morel S, Hunter EA, Muior DD (1999) Genotypic, environmental and processing effects on the sensory character of Rubus and Ribes. Acta Hortic 505:23–31Google Scholar
  39. Heide OM, Sonsteby A (2011) Physiology of flowering and dormancy regulation in annual- and biennial-fruiting red raspberry (Rubus idaeus L.)—a review. J Hortic Sci Biotechnol 86:433–442CrossRefGoogle Scholar
  40. Iannetta PPM et al (1999) The role of ethylene and cell wall modifying enzymes in raspberry (Rubus idaeus) fruit ripening. Physiol Plant 105(2):338–347CrossRefGoogle Scholar
  41. Iannetta PPM, Wyman M, Neelam A, Jones C, Taylor M, Davies HV, Sexton R (2000) A causal role for ethylene and endo-beta-1,4-glucanase in the abscission of red-raspberry (Rubus idaeus) drupelets. Physiol Plant 110:535–543CrossRefGoogle Scholar
  42. Jaakola L (2007) Flavonoid biosynthesis. Comp Biochem Physiol A-Mol Integr Physiol 146:S244–S244CrossRefGoogle Scholar
  43. Jennings DL (1967a) Balanced lethals and polymorphism in Rubus idaeus. Heredity 465–479CrossRefGoogle Scholar
  44. Jennings DL (1967b) Observations on some instances of partial sterility in red raspberry cultivars. Hortic Res 7:116–122Google Scholar
  45. Jennings DL (1988) Raspberries and blackberries: their breeding, diseases and growth. Academic Press, London, p 145Google Scholar
  46. Jimenez-Bermudez S, Redondo-Nevado J, Munoz-Blanco J, Caballero JL, Lopez-Aranda JM, Valpuesta V, Pliego-Alfaro F, Quesada MA, Mercado JA (2002) Manipulation of strawberry fruit softening by antisense expression of a pectate lyase gene. Plant Physiol 128:751–759CrossRefPubMedPubMedCentralGoogle Scholar
  47. Kassim A, Poette J, Paterson A, Zait D, McCallum S, Woodhead M, Smith K, Hackett CA, Graham J (2009) Environmental and seasonal influences on red raspberry anthocyanin antioxidant contents and identification of quantitative traits loci (QTL). Mol Nutr Food Res 53:625–634CrossRefPubMedGoogle Scholar
  48. Keep E (1964) Sepaloidy in red raspberry Rubus idaeus L. Can J Genet Cytol 6:52CrossRefGoogle Scholar
  49. Lang GA, Early JD, Martin GC (1987) Endo-, para- and eco-dormancy: physiological terminology and classification for dormancy research. HortScience 22:371–377Google Scholar
  50. Larsen M, Poll L, Callesen O, Lewis M (1991) Relations between the content of aroma compounds and the sensory evaluation of 10 raspberry varieties (Rubus-idaeus L). Acta Agric Scand 41:447–454CrossRefGoogle Scholar
  51. Lee JH, Park SH, Lee JS, Ahn JH (2007) A conserved role of Short Vegetative Phase (SVP) in controlling flowering time of Brassica plants. Biochim Biophys Acta-Gene Struct Exp 1769:455–461 CrossRefGoogle Scholar
  52. Lijavetzky D, Ruiz-Garcia L, Cabezas JA, De Andres MT, Bravo G, Ibanez A, Carreno J, Cabello F, Ibanez J, Martinez-Zapater JM (2006) Molecular genetics of berry colour variation in table grape. Mol Genet Genomics 276:427–435CrossRefPubMedGoogle Scholar
  53. Luo J, Butelli E, Hill L, Parr A, Niggeweg R, Bailey P, Weisshaar B, Martin C (2008) AtMYB12 regulates caffeoyl quinic acid and flavonol synthesis in tomato: expression in fruit results in very high levels of both types of polyphenol. Plant J 56:316–326CrossRefPubMedGoogle Scholar
  54. Måge F (1975) Dormancy in buds of red raspberry. Meldinger fra NorgeLandbruskshogskole 54:1–25Google Scholar
  55. Martinoia E, Massonneau A, Frangne N (2000) Transport processes of solutes across the vacuolar membrane of higher plants. Plant Cell Physiol 41:1175–1186CrossRefPubMedGoogle Scholar
  56. Mazur SP, Nes A, Wold AB, Remberg SF, Aaby K (2014) Quality and chemical composition of ten red raspberry (Rubus idaeus L.) genotypes during three harvest seasons. Food Chem 160:233–240CrossRefPubMedGoogle Scholar
  57. Mazzitelli L et al (2007) Co-ordinated gene expression during phases of dormancy release in raspberry (Rubus idaeus L.) buds. J Exp Bot 58(5):1035–1045CrossRefPubMedGoogle Scholar
  58. McAtee P, Karim S, Schaffer R, David K (2013) A dynamic interplay between phytohormones is required for fruit development, maturation, and ripening. Front Plant Sci 17(4):79Google Scholar
  59. McCallum S, Woodhead M, Hackett CA, Kassim A, Paterson A, Graham J (2010) Genetic and environmental effects influencing fruit colour. Theor Appl Genet 121:611–627CrossRefPubMedGoogle Scholar
  60. McDougall G, Stewart D. (2012) Berries and Health: A review of the evidence. Food Health Innovation ServGoogle Scholar
  61. McKenzie K, Williamson S, Smith K, Woodhead M, McCallum S, Graham J (2015) Characterisation of the Gene H region in red raspberry: exploring its role in cane morphology, disease resistance, and timing of fruit ripening. J Hortic 2:3Google Scholar
  62. Medina-Puche L, Blanco-Portales R, Molina-Hidalgo FJ, Cumplido-Laso G, Garcia-Caparros N, Moyano-Canete E, Caballero-Repullo JL, Munoz-Blanco J, Rodriguez-Franco A (2016) Extensive transcriptomic studies on the roles played by abscisic acid and auxins in the development and ripening of strawberry fruits. Funct Integr Genomics 16:671–692CrossRefGoogle Scholar
  63. Mezetti B, Landi L, Pandolfini T, Spena A (2004) The defH9-iaaM auxin-synthesizing gene increases plant fecundity and fruit production in strawberry and raspberry. BMC Biotechnol 4:4CrossRefGoogle Scholar
  64. Miret JA, Munné-Bosch S (2016) Abscisic acid and pyrabactin improve vitamin C contents in raspberries. Food Chem 203:216–223CrossRefPubMedGoogle Scholar
  65. Molina-Bravo R, Fernandez GE, Sosinski BR (2014) Quantitative trait locus analysis of tolerance to temperature fluctuations in winter, fruit characteristics, flower color, and prickle-free canes in raspberry. Mol Breeding 33:267–280CrossRefGoogle Scholar
  66. Mueller LA, Goodman CD, Silady RA, Walbot V (2002) AN9, a petunia glutathione S-transferase required for anthocyanin sequestration, is a flavonoid-binding protein. Plant Physiol 123:1561–1570CrossRefGoogle Scholar
  67. Murant AF, Chambers J, Jones AT (1974) Spread of raspberry bushy dwarf virus by pollination, its association with crumbly fruit, and problems of control. Ann Appl Biol 77:271–281CrossRefGoogle Scholar
  68. Nielsen K, Deroles SC, Markham KR, Bradley MJ, Podivinsky E, Manson D (2002) Antisense flavonol synthase alters copigmentation and flower color in lisianthus. Mol Breeding 9:217–229CrossRefGoogle Scholar
  69. Nwankno AJ, Gordon SL, Verrall SR, Brennan RM, Hancock RD (2012) Treatment with fungicides influences phytochemical quality of blackcurrant juice. Annal Appl Biol 160:86–96.  https://doi.org/10.1111/j.1744-7348.2011.00523.xCrossRefGoogle Scholar
  70. Olsen JE (2003) Molecular and physiological mechanisms of bud dormancy regulation. Acta Hortic 618:437–453CrossRefGoogle Scholar
  71. Osorio S, Alba R, Damasceno CMB, Lopez-Casado G, Lohse M, Zanor MI, Tohge T, Usadel B, Rose JKC, Fei ZJ, Giovannoni JJ, Fernie AR (2011) Systems biology of tomato fruit development: combined transcript, protein, and metabolite analysis of tomato transcription factor (nor, rin) and ethylene receptor (Nr) mutants reveals novel regulatory interactions. Plant Physiol 157:405–425.  https://doi.org/10.1104/pp.111.175463
  72. Pandolfini T, Molensini B, Spena A (2007) Molecular dissection of the role of auxin in fruit initiation. Trends Plant Sci 12:327–329CrossRefPubMedGoogle Scholar
  73. Patterson A, Kassim A, McCallum S, Woodhead M, Smith K, Zait D, Graham J (2013) Environmental and seasonal influences on red raspberry flavour volatiles and identification of quantitative trait loci (QTL) and candidate genes. Theor Appl Genet 126:33–48.  https://doi.org/10.1007/s00122-012-1957-9CrossRefPubMedGoogle Scholar
  74. Perkins-Veazie P, Nonnecke G (1992) Physiological changes during the ripening of raspberry fruit. HortScience 27:331–333Google Scholar
  75. Pin PA, Nilsson O (2012) The multifaceted roles of FLOWERING LOCUS T in plant development. Plant, Cell Environ 35:1742–1755CrossRefGoogle Scholar
  76. Rallo L, Martin GC (1991) The role of chilling in releasing olive floral buds from dormancy. J Am Soc Hortic Sci 116:1058–1062Google Scholar
  77. Rao AV, Snyder DM (2010) Raspberries and human health: a review. J Agric Food Chem 58:3871–3883CrossRefPubMedGoogle Scholar
  78. Saez A et al (2014) Extremely frequent bee visits increase pollen deposition but reduce drupelet set in raspberry. J Appl Ecol 51(6):1603–1612CrossRefGoogle Scholar
  79. Santiago-Domenech N, Jimenez-Bemudez S, Matas AJ, Rose JKC, Munoz-Blanco J, Mercado JA, Quesada MA (2008) Antisense inhibition of a pectate lyase gene supports a role for pectin depolymerization in strawberry fruit. J Exp Bot 59:2769–2779CrossRefPubMedPubMedCentralGoogle Scholar
  80. Schwabe WM, Mills JJ (1981) Hormones and parthenocarpic fruit set. A literature survey (temperate, subtropical and tropical fruis and vegetables). Hortic Abs 51:661–698Google Scholar
  81. Seo E, Yu J, Ryu KH, Lee MM, Lee I (2011) WEREWOLF, a regulator of root hair pattern formation, controls flowering time through the regulation of FT mRNA stability. Plant Physiol 156:1867–1877CrossRefPubMedPubMedCentralGoogle Scholar
  82. Sexton R, Palmer JM, Whyte NA, Littlejohns S (1997) Cellulase, fruit softening and abscission in red raspberry Rubus idaeus L cv Glen Clova. Ann Bot 80:371–376CrossRefGoogle Scholar
  83. Simon et al (2015) Evolution of CONSTANS regulation and function after gene duplication produced a photoperiodic flowering switch in the brassicaceae. Mol Biol Evol 32:2284–2301CrossRefPubMedPubMedCentralGoogle Scholar
  84. Simpson C, Cullen D, Hackett C, Smith K, Hallett P, McNicol J, Woodhead M, Graham J (2016) Mapping and expression of genes associated with raspberry fruit ripening and softening. TAGCrossRefPubMedGoogle Scholar
  85. Song et al (2012) Vernalisation-a cold induced epigenetic switch. J Cell Sci 125:3723CrossRefPubMedGoogle Scholar
  86. Sonsteby A, Heide OM (2011) Contrasting environmental flowering responses in annual and biennial raspberries—a mini-review. Acta Hortic 926:221–228Google Scholar
  87. Sonsteby A, Heide OM (2014) Cold tolerance and chilling requirements for breaking bud dormancy in plants and severed shoots of raspberry (Rubus idaeus L.). J Hortic Sci Biotechnol 89:631–638CrossRefGoogle Scholar
  88. Stewart D, Iannetta PP, Davies HV (2001) Ripening-related changes in raspberry cell wall composition and structure. Phytochemistry 56:423–428CrossRefPubMedGoogle Scholar
  89. Stewart D, McDougall GJ, Sungurtas J, Verrall SR, Graham J, Martinussen I (2007) Metabolomic approach to identifying bioactive compounds in berries: advances toward fruit nutritional enhancement. Mol Nutr Food Res 51:645–651CrossRefPubMedGoogle Scholar
  90. Sweetman C, Wong DCJ, Ford CM, Drew DP (2012) Transcriptome analysis at four developmental stages of grape berry (Vitis vinifera cv. Shiraz) provides insights into regulated and coordinated gene expression. BMC Genomics 13.  https://doi.org/10.1186/1471-2164-13-691
  91. Tadiello A, Ziosi V, Negri AS, Noferini M, Fiori G, Busatto N, Espen L, Costa G, Trainotti L (2016) On the role of ethylene, auxin and a GOLVEN-like peptide hormone in the regulation of peach ripening. BMC Plant Biol 16:44CrossRefPubMedPubMedCentralGoogle Scholar
  92. Topham PB (1970) Histology of seed development in diploid and tetraploid raspberries (Rubus-idaeus L). Ann Bot 34:123CrossRefGoogle Scholar
  93. Trainotti L, Tadiello A, Casadoro G (2007) The involvement of auxin in the ripening of climacteric fruits comes of age: the hormone plays a role of its own and has an intense interplay with ethylene in ripening peaches. J Exp Bot 58:3299–3308CrossRefPubMedGoogle Scholar
  94. Uluisik S, Chapman NH, Smith R, Poole M, Adams G, Gillis RB, Besong, TMD, Sheldon J Stiegelmeyer S, Perez L, Samsulrizal N, Wang D, Fisk ID, Yang Ni, Baxter C, Rickett D, Fray R, Blanco-Ulate B, Powell ALT, Harding, SE, Craigon J, Rose JKC, Fich EA, Sun L, Domozych DS, Fraser PD, Tucker GA, Grierson D, Seymour GB (2016) Genetic improvement of tomato by targeted control of fruit softening. Nat Biotechnol 34:950–952CrossRefPubMedGoogle Scholar
  95. VanBuren R, Bryant D, Bushakra JM, Vining KJ, Edger PP, Rowley ER, Priest HD, Michael TP, Lyons E, Filichkin SA, Dossett M, Finn CE, Bassil NV, Mockler TC (2016) The genome of black raspberry (Rubus occidentalis). Plant J 87:535–547CrossRefPubMedGoogle Scholar
  96. Vicente AR, Ortugno C, Powell ALT, Greve LC, Labavitch JM (2007) Temporal sequence of cell wall disassembly events in developing fruits. 1. Analysis of raspberry (Rubus idaeus). J Agric Food Chem 55:4119–4124CrossRefPubMedGoogle Scholar
  97. Vriezen WH, Feron R, Maretto F, Keijman J, Mariani C (2008) Changes in tomato ovary transcriptome demonstrate complex hormonal regulation of fruit set. New Phytol 177:60–76PubMedGoogle Scholar
  98. Walker PG, Gordon SL, Brennan RM, Hancock RD (2006) High-throughput monolithic HPLC method for rapid vitamin C phenotyping of berry fruit. Phytochem Anal 17:284–290CrossRefPubMedGoogle Scholar
  99. Wang (2014) Regulation of flowering time by the miR156 mediated age pathway J Exp Bot 64:4723–4730CrossRefPubMedGoogle Scholar
  100. Weber CA, Perkins-Veazie P, Moore PP, Howard L (2008) Variability of antioxidant content in raspberry germplasm. Acta Hortic 777:493–497CrossRefGoogle Scholar
  101. White JM, Wainwright H, Ireland CR (1998) Interaction of endodormancy and paradormancy in raspberry (Rubus idaeus L.). Ann Appl Biol 132:487–495CrossRefGoogle Scholar
  102. Wu et al (2009) The Sequential Action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138:750–759CrossRefPubMedPubMedCentralGoogle Scholar
  103. Zait D (2012) Flavour quality factors and its regulation in red raspberry (Rubus idaeus). PhD thesis, University of Strathclyde, GlasgowGoogle Scholar
  104. Zheng D, Hrazdina G (2010) Cloning and characterization of an expansin gene, RiEXP1, and a 1-aminocyclopropane-1-carboxylic acid synthase gene, RiACS1 in ripening fruit of raspberry (Rubus idaeus L.). Plant Sci 179:133–139CrossRefGoogle Scholar
  105. Zifkin M, Jin A, Ozga JA, Zaharia LI, Schernthaner JP, Gesell A, Abrams SR, Kennedy JA, Constabel CP (2012) Gene expression and metabolite profiling of developing highbush blueberry fruit indicates transcriptional regulation of flavonoid metabolism and activation of abscisic acid metabolism. Plant Physiol 158:200–224.  https://doi.org/10.1104/pp.111.180950 CrossRefPubMedPubMedCentralGoogle Scholar
  106. Zygier S, Chaim AB, Efrati A, Kaluzky G, Borovsky Y, Paran I (2005) QTLs mapping for fruit size and shape in chromosomes 2 and 4 in pepper and a comparison of the pepper QTL map with that of tomato. Theor Appl Genet 11:437–445CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Cell and Molecular SciencesThe James Hutton InstituteDundeeUK

Personalised recommendations