Advertisement

Eigenvalues of even very nice Toeplitz matrices can be unexpectedly erratic

  • Mauricio Barrera
  • Albrecht Böttcher
  • Sergei M. Grudsky
  • Egor A. Maximenko
Conference paper
Part of the Operator Theory: Advances and Applications book series (OT, volume 268)

Abstract.

It was shown in a series of recent publications that the eigenvalues of \(n\;\times\;n\) Toeplitz matrices generated by so-called simple-loop symbols admit certain regular asymptotic expansions into negative powers of n + 1. On the other hand, recently two of the authors considered the pentadiagonal Toeplitz matrices generated by the symbol g(x) = (2 sin(x/2))4, which does not satisfy the simple-loop conditions, and derived asymptotic expansions of a more complicated form. Here we use these results to show that the eigenvalues of the pentadiagonal Toeplitz matrices do not admit the expected regular asymptotic expansion. This also delivers a counter-example to a conjecture by Ekström, Garoni, and Serra-Capizzano and reveals that the simple-loop condition is essential for the existence of the regular asymptotic expansion.

Keywords.

Toeplitz matrix eigenvalue spectral asymptotics 

Mathematics Subject Classification (2010).

Primary 15B05 Secondary 15A18 41A60 47B35 65F15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Mauricio Barrera
    • 1
  • Albrecht Böttcher
    • 2
  • Sergei M. Grudsky
    • 1
  • Egor A. Maximenko
    • 3
  1. 1.Departamento de MatemáticasCINVESTAVCiudad de MéxicoMexico
  2. 2.Fakultät für MathematikTechnische Universität ChemnitzChemnitzGermany
  3. 3.Escuela Superior de Física y MatemáticasInstituto Politécnico NacionalCiudad de MéxicoMexico

Personalised recommendations