Numerical Approach to a Model for Quasistatic Damage with Spatial BV -Regularization

  • Sören Bartels
  • Marijo Milicevic
  • Marita ThomasEmail author
Part of the Springer INdAM Series book series (SINDAMS, volume 27)


We address a model for rate-independent, partial, isotropic damage in quasistatic small strain linear elasticity, featuring a damage variable with spatial BV -regularization. Discrete solutions are obtained using an alternate time-discrete scheme and the Variable-ADMM algorithm to solve the constrained nonsmooth optimization problem that determines the damage variable at each time step. We prove stability of the method and show that a discrete version of a semistable energetic formulation of the rate-independent system holds. Moreover, we present our numerical results for two benchmark problems.



This work was carried out within the project Finite element approximation of functions of bounded variation and application to models of damage, fracture, and plasticity within the DFG Priority Programme SPP 1748 “Reliable Simulation Techniques in Solid Mechanics. Development of Non-standard Discretisation Methods, Mechanical and Mathematical Analysis.”


  1. 1.
    Alberty, J., Carstensen, C., Funken, S.A., Klose, R.: Matlab implementation of the finite element method in elasticity. Computing 69, 239–263 (2002)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Ambati, M., Kruse, R., De Lorenzis, L.: A phase-field model for ductile fracture at finite strains and its experimental verification. Comput. Mech. 57 (2016)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bartels, S.: Total variation minimization with finite elements: convergence and iterative solution. SIAM J. Numer. Anal. pp. 1162–1180 (2012)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bartels, S.: Numerical Methods for Nonlinear Partial Differential Equations. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  5. 5.
    Bartels, S., Milicevic, M.: Alternating direction method of multipliers with variable step sizes (2017). URL Cited 13 Mar 2017
  6. 6.
    Beck, A., Teboulle, M.: Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Trans. Image Process. 18, 2419–2434 (2009)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bonetti, E., Schimperna, G.: Local existence for Frémond’s model of damage in elastic materials. Contin. Mech. Thermodyn. 16(4), 319–335 (2004). DOI 10.1007/s00161-003-0152-2. URL
  8. 8.
    Bonetti, E., Schimperna, G., Segatti, A.: On a doubly nonlinear model for the evolution of damaging in viscoelastic materials. J. Differ. Equ. 218(1), 91–116 (2005). DOI 10.1016/j.jde.2005.04.015. URL
  9. 9.
    Bouchitté, G., Mielke, A., Roubíček, T.: A complete-damage problem at small strain. Zeit. Angew. Math. Phys. 60, 205–236 (2009)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Bourdin, B.: Numerical implementation of the variational formulation for quasi-static brittle fracture. Interfaces Free Boundaries 9, 411–430 (2007)Google Scholar
  11. 11.
    Braides, A., Cassano, B., Garroni, A., Sarrocco, D.: Quasi-static damage evolution and homogenization: a paradigmatic case of non-commutability. Ann. Inst. H. Poincaré Anal. Non Linéaire, online (2014)Google Scholar
  12. 12.
    Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer, New York (2008)Google Scholar
  13. 13.
    Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20, 89–97 (2004)Google Scholar
  14. 14.
    Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40, 120–145 (2011)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Fiaschi, A., Knees, D., Stefanelli, U.: Young-measure quasi-static damage evolution. IMATI-Preprint 28PV10/26/0 (2010), Pavia (2010)Google Scholar
  16. 16.
    Fortin, M., Glowinski, R.: Augmented Lagrangian Methods. North-Holland, Amsterdam (1983)Google Scholar
  17. 17.
    Frémond, M.: Non-Smooth Thermomechanics. Springer, Berlin (2002)CrossRefGoogle Scholar
  18. 18.
    Frémond, M., Nedjar, B.: Damage, gradient of damage and principle of virtual power. Int. J. Solids Struct. 33, 1083–1103 (1996)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Comp. Maths. Appls. 2, 17–40 (1976)CrossRefGoogle Scholar
  20. 20.
    Glowinski, R.: Numerical Methods for Nonlinear Variational Problems. Springer, New York (1984)CrossRefGoogle Scholar
  21. 21.
    Glowinski, R., Le Tallec, P.: Augmented Lagrangians and Operator-Splitting Methods in Nonlinear Mechanics. IAM, Philadelphia (1989)Google Scholar
  22. 22.
    Glowinski, R., Marroco, A.: Sur l’approximation par éléments finis d’ordre un, et la résolution, par pénalisation-dualité d’une classe de problèmes de dirichlet non linéaires. Revue française d’automatique, informatique, recherche opérationelle. Analyse numérique 9, 41–76 (1975)Google Scholar
  23. 23.
    Goldstein, T., O’Donoghue, B., Setzer, S., Baraniuk, R.: Fast alternating direction optimization methods. SIAM J. Imaging Sci. 7, 1588–1623 (2014)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Goldstein, T., Osher, S.: The split Bregman method for L1 regularized problems. SIAM J. Imaging Sci. 2, 323–343 (2009)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Gurtin, M., Francis, E.: Simple rate-independent model for damage. J. Spacecr. Rocket. 18(3), 285–286 (1981)CrossRefGoogle Scholar
  26. 26.
    Hackl, K., Stumpf, H.: Micromechanical concept for the analysis of damage evolution in thermo-viscoelastic and quasi-static brittle fracture. Int. J. Solids Struct. 30, 1567–1584 (2003)Google Scholar
  27. 27.
    Halphen, B., Nguyen, Q.: Sur les matériaux standards généralisés. J. Mécanique 14, 39–63 (1975)Google Scholar
  28. 28.
    Hanke, H., Knees, D.: A phase-field damage model based on evolving microstructure. Asymptot. Anal. 101(3), 149–180 (2017)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Heinemann, C., Kraus, C.: Existence of weak solutions for Cahn–Hilliard systems coupled with elasticity and damage. Adv. Math. Sci. Appl. 321–359 (2011)Google Scholar
  30. 30.
    Heinemann, C., Kraus, C.: Complete damage in linear elastic materials – modeling, weak formulation and existence results. Calc. Var. Partial Differ. Equ. 217–250 (2015)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Hintermüller, M., Rautenberg, C.N., Hahn, J.: Functional-analytic and numerical issues in splitting methods for total variation-based image reconstruction. Inverse Prob. 30(5), 055,014 (2014)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Kachanov, L.: On creep rupture time (in russian). Izv. Acad. Nauk. SSSR Otd. Techn. Nauk. (8), 26–31 (1958)Google Scholar
  33. 33.
    Kachanov, L.: Introduction to Continuum Damage Mechanics, 2nd edn. Mechanics of Elastic Stability. Kluwer Academic Publishers, Dordrecht (1990)Google Scholar
  34. 34.
    Knees, D., Negri, M.: Convergence of alternate minimization schemes for phase-field fracture and damage. Accepted in M3AS (2015). URL http:// cvgmt. sns. it/ media/ doc/ paper/ 2832/ KneesNegri.pdf
  35. 35.
    Knees, D., Rossi, R., Zanini, C.: A vanishing viscosity approach to a rate-independent damage model. Math. Models Methods Appl. Sci. 23(04), 565–616 (2013)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16, 964–979 (1979)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Marigo, J., Maurini, C., Pham, K.: An overview of the modelling of fracture by gradient damage models. Meccanica 51(12), 3107–3128 (2016)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Miehe, C., Hofacker, M., Welschinger, F.: A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Comput. Methods Appl. Mech. Eng. 199(45), 2765–2778 (2010)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Miehe, C., Welschinger, F., Hofacker, M.: Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations. Int. J. Numer. Meth. Eng. 83, 1273–1311 (2010)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Mielke, A.: Evolution in rate-independent systems (Ch.6). In: Dafermos, C., Feireisl, E. (eds.) Handbook of Differential Equations, Evolutionary Equations, vol. 2, pp. 461–559. Elsevier B.V., Amsterdam (2005)CrossRefGoogle Scholar
  41. 41.
    Mielke, A., Roubíček, T.: Rate-independent damage processes in nonlinear elasticity. Math. Models Methods Appl. Sci. 16(2), 177–209 (2006)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Mielke, A., Roubíček, T.: Rate-independent Systems: Theory and Application. Applied Mathematical Sciences, vol. 193. Springer, New York (2015)CrossRefGoogle Scholar
  43. 43.
    Mielke, A., Roubíček, T., Zeman, J.: Complete damage in elastic and viscoelastic media and its energetics. Comput. Methods Appl. Mech. Eng. 199, 1242–1253 (2010). Submitted. WIAS preprint 1285MathSciNetCrossRefGoogle Scholar
  44. 44.
    Mielke, A., Roubíček, T., Zeman, J.: Complete damage in elastic and viscoelastic media and its energetics. Comput. Methods Appl. Mech. Eng. 199, 1242–1253 (2010)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Persson, P.O., Strang, G.: A simple mesh generator in matlab. SIAM Rev. 42, 329–345 (2004)Google Scholar
  46. 46.
    Rocca, E., Rossi, R.: “entropic” solutions to a thermodynamically consistent pde system for phase transitions and damage. SIAM J. Math. Anal. 74, 2519–2586 (2015)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control. Optim. 14, 877–898 (1976)MathSciNetCrossRefGoogle Scholar
  48. 48.
    Roubíček, T., Thomas, M., Panagiotopoulos, C.: Stress-driven local-solution approach to quasistatic brittle delamination. Nonlinear Anal. Real World Appl. 22, 645–663 (2015). DOI 10.1016/j.nonrwa.2014.09.011. URL
  49. 49.
    Roubíček, T., Panagiotopoulos, C.G., Mantič, V.: Local-solution approach to quasistatic rate-independent mixed-mode delamination (2015)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Roubíček, T., Valdman, J.: Perfect plasticity with damage and healing at small strains, its modelling, analysis, and computer implementation. SIAM J. Appl. Math. 76, 314–340 (2016)MathSciNetCrossRefGoogle Scholar
  51. 51.
    Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)MathSciNetCrossRefGoogle Scholar
  52. 52.
    Schlüter, A., Willenbücher, A., Kuhn, C., Müller, R.: Phase field approximation of dynamic brittle fracture. Comput. Mech. 54, 1141–1161 (2014)MathSciNetCrossRefGoogle Scholar
  53. 53.
    Thomas, M.: Quasistatic damage evolution with spatial BV -regularization. Discrete Contin. Dyn. Syst. Ser. S 6, 235–255 (2013)Google Scholar
  54. 54.
    Thomas, M., Bonetti, E., Rocca, E., Rossi, R.: A rate-independent gradient system in damage coupled with plasticity via structured strains. In: Düring, B., Schönlieb, C.B., Wolfram, M. (eds.) Gradient Flows: From Theory to Application, vol. 54, pp. 54–69. EDP Sciences (2016)Google Scholar
  55. 55.
    Thomas, M., Mielke, A.: Damage of nonlinearly elastic materials at small strain: existence and regularity results. Zeit. Angew. Math. Mech. 90(2), 88–112 (2010)MathSciNetCrossRefGoogle Scholar
  56. 56.
    Weinberg, K., Dally, T., Schuß, S., Werner, M., Bilgen, C.: Modeling and numerical simulation of crack growth and damage with a phase field approach. GAMM-Mitt. 39(1), 55–77 (2016)MathSciNetCrossRefGoogle Scholar
  57. 57.
    Wu, C., Tai, X.C.: Augmented Lagrangian method, dual methods, and split Bregman iteration for ROF, vectorial TV, and higher order models. SIAM J. Imaging Sci. 3, 300–339 (2010)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Sören Bartels
    • 1
  • Marijo Milicevic
    • 1
  • Marita Thomas
    • 2
    Email author
  1. 1.Department of Applied Mathematics, Mathematical InstituteUniversity of FreiburgFreiburg i. Br.Germany
  2. 2.Weierstrass-Institute for Applied Analysis and StochasticsBerlinGermany

Personalised recommendations