Ants: Ecology and Impacts in Dead Wood

  • Joshua R. KingEmail author
  • Robert J. WarrenII
  • Daniel S. Maynard
  • Mark A. Bradford
Part of the Zoological Monographs book series (ZM, volume 1)


Although rarely considered as a saproxylic insect group, ants are an important, highly abundant insect taxon in dead wood environments worldwide. Ants directly impact the dead wood environment primarily through nesting in standing dead trees, logs, stumps, and coarse and fine woody materials, contributing to the physical breakdown of woody materials. Ants indirectly impact the dead wood environment through predation of a wide variety of arthropods, particularly termites, and by serving as a food source for other animals, particularly birds (woodpeckers) and bears that physically break down dead wood to prey upon ant colonies. The known impacts of ant nesting and predation in dead wood are reviewed with a case study that provides new information on the role of abiotic factors affecting nesting site location in dead wood in the eastern temperate US forests. Results showed horizontal and vertical nest stratification of ant nests that shifted with spatial scale. At broad scales, climate determines disparate ranges among species across a latitudinal gradient. At the scale of a forest floor, however, microsite temperature, moisture, and biotic interactions affect nesting locations in downed logs. Future research aimed at better understanding the interactions between ants and other organisms in dead wood environments is necessary to improve our understanding of the importance of ants in shaping dead wood communities and ecosystem processes like decomposition.



We thank Ella Bradford, Ben Gochnour, Lindsay Gustafson, Sarah Huber, Mary Schultz, and Anna Wade for field and lab assistance. This is the Termite Ecology And Myrmecology (TEAM) working group publication number 3. Research was supported by US National Science Foundation grants to M.A.B. (DEB-1021098), J.R.K. (DEB-1020415) and the Coweeta LTER Program.


  1. Abe T (1990) Evolution of worker caste in termites. In: Veeresh GK, Mallik B, Viraktamath CA (eds) Social insects and the environment. Oxford/IBH, New Dehli, pp 29–30Google Scholar
  2. Abe T, Bignell DE, Higashi M (eds) (2000) Termites: evolution, sociality, symbiosis, ecology. Kluwer Academic, DordrechtGoogle Scholar
  3. Akaike H (1973) Information theory as an extension of the maximum likelihood principle. In: Petrov BN, Csaki F (eds) Second international symposium on information theory. Akademiai Kiado, Budapest, pp 267–281Google Scholar
  4. Akre RD, Hansen LD (1990) Management of carpenter ants. In: Vander Meer RK, Jaffe K, Cedeno A (eds) Applied myrmecology: a world perspective. Westview, Boulder, pp 693–700Google Scholar
  5. Andersen AN (1986) Diversity, seasonality and community organization of ants at adjacent heath and woodland sites in southeastern Australia. Aust J Zool 34:53–64CrossRefGoogle Scholar
  6. Anderson MT, Mathis A (1999) Diets of two sympatric neotropical salamanders, Bolitoglossa mexicana and B. rufiscens, with notes on reproduction for B. rufiscens. J Herpetol 33:601–607CrossRefGoogle Scholar
  7. Andrew N, Rodgerson L, York A (2000) Frequent fuel-reduction burning: the role of logs and associated leaf litter in the conservation of ant biodiversity. Austral Ecol 25:99–107CrossRefGoogle Scholar
  8. Ausmus BS (1977) Regulation of wood decomposition rates by arthropod and annelid populations. Ecol Bull 25:180–192Google Scholar
  9. Banschbach VS, Levit N, Herbers JM (1997) Nest temperatures and thermal preferences of a forest ant species: is seasonal polydomy a thermoregulatory mechanism? Insect Soc 44:109–122CrossRefGoogle Scholar
  10. Bargali HS, Akhtar N, Chauhan NPS (2004) Feeding ecology of sloth bears in a disturbed area in central India. Ursus 15:212–217CrossRefGoogle Scholar
  11. Baroni-Urbani C, Pisarski B (1978) Appendix 1. In: Brian MV (ed) Production ecology of ants and termites. Cambridge University Press, Cambridge, pp 333–339Google Scholar
  12. Basalingappa S (1970) Environmental hazards to the reproductives of Odontotermes assmuthi Holmgren. Ind Zool 1:45–50Google Scholar
  13. Bayliss J, Fielding A (2002) Termitophagous foraging by Pachycondyla analis (Formicidae, Ponerinae) in a Tanzanian coastal dry forest. Sociobiology 39:102–122Google Scholar
  14. Blake CH (1941) Ants preying on termites (Hymen. Formicidae; Isoptera Rhinotermitidae). Entomol News 52:38Google Scholar
  15. Boddy L, Frankland JC, van West P (2008) Ecology of saprotrophic basidiomycetes. Academic Press, LondonGoogle Scholar
  16. Bolton B, Fisher BL (2008) Afrotropical ants of the ponerine genera Centromyrmex Mayr, Promyopias Santschi gen. rev. and Feroponera gen. n., with a revised key to genera of African Ponerinae (Hymenoptera: Formicidae). Zootaxa 1929:1–37Google Scholar
  17. Booher D, MacGown JA, Hubbell SP, Duffield RM (2017) Density and dispersion of cavity dwelling ant species in nuts of Eastern US forest floors. Trans Am Entomol Soc 143:79–93CrossRefGoogle Scholar
  18. Boucher P, Hebert C, Francoeur A, Sirois L (2015) Postfire succession of ants (Hymenoptera: Formicidae) nesting in dead wood of northern boreal forest. Environ Entomol 44:1316–1327PubMedCrossRefPubMedCentralGoogle Scholar
  19. Bradford MA, Warren RJ, Baldrien P et al (2014) Climate fails to predict wood decomposition at regional scales. Nat Clim Chang 4:625–630CrossRefGoogle Scholar
  20. Bradford MA, Berg B, Maynard DS et al (2016) Understanding the dominant controls on litter decomposition. J Ecol 104:229–238CrossRefGoogle Scholar
  21. Brown MJF (1999) Nest relocation and encounters between colonies of the seed-harvesting ant Messor andrei. Insect Soc 46:66–70CrossRefGoogle Scholar
  22. Buczkowski G, Bennett G (2007) Protein marking reveals predation on termites by the woodland ant, Aphaenogaster rudis. Insect Soc 54:219–224CrossRefGoogle Scholar
  23. Buczkowski G, Bennett G (2008) Behavioral interactions between Aphaenogaster rudis (Hymenoptera: Formicidae) and Reticulitermes flavipes (Isoptera: Rhinotermitidae): the importance of physical barriers. J Insect Behav 21:296–305CrossRefGoogle Scholar
  24. Cabrera BJ, Kamble ST (2001) Effects of decreasing thermophotoperiod on the Eastern subterranean termite (Isoptera: Rhinotermitidae). Environ Entomol 30:166–171CrossRefGoogle Scholar
  25. Calaby JH (1960) Observations on the banded ant-eater Myrmecobius F. faciatus Waterhouse (Marsupialia), with particular reference to its food habits. J Zool 135:183–207Google Scholar
  26. Caldwell JP, Vitt LJ (1999) Dietary asymmetry in leaf litter frogs and lizards in a transitional northern Amazonian rain forest. Oikos 84:383–397CrossRefGoogle Scholar
  27. Carlson DM, Gentry JB (1973) Effects of shading on the migratory behavior of the Florida harvester ant, Pogonomyrmex badius. Ecology 54:452–453CrossRefGoogle Scholar
  28. Chen Y, Hansen LD, Brown JJ (2002) Nesting sites of the carpenter ant Camponotus vicinus (Mayr) (Hymenoptera: Formicidae) in northern Idaho. Environ Entomol 31:1037–1042CrossRefGoogle Scholar
  29. Christy HR (1952) Vertical temperature gradients in a beech forest in central Ohio. Ohio J Sci 52:199–209Google Scholar
  30. Cornwell WK, Cornelissen JHC, Allison SD et al (2009) Plant traits and wood fates across the globe: rotted, burned, or consumed? Glob Chang Biol 15:2431–2449CrossRefGoogle Scholar
  31. Crowther TW, Maynard DS, Crowther TR et al (2012) Interactive effects of warming and invertebrate grazing on the outcomes of competitive fungal interactions. FEMS Microbiol Ecol 81:419–426PubMedCrossRefPubMedCentralGoogle Scholar
  32. De la Mora A, Philpott SM (2010) Wood-nesting ants and their parasites in forests and coffee agroecosystems. Environ Entomol 39:1473–1481CrossRefGoogle Scholar
  33. de Souza DR, Fernandes TT, de Olivera Nascimento JR et al (2012) Characterization of ant communities (Hymenoptera: Formicidae) in twigs in the leaf litter of the Atlantic rainforest and eucalyptus trees in the southeast region of Brazil. Psyche 2012:1–12CrossRefGoogle Scholar
  34. Deheer CJ, Vargo EL (2004) Colony genetic organization and colony fusion in the termite Reticulitermes flavipes as revealed by foraging patterns over time and space. Mol Ecol 13:431–441PubMedCrossRefPubMedCentralGoogle Scholar
  35. Dejean A, Evraerts C (1997) Predatory behavior in the genus Leptogenys: a comparative study. J Insect Behav 10:177–191CrossRefGoogle Scholar
  36. Dejean A, Feneron R (1999) Predatory behaviour in the ponerine ant, Centromyrmex bequaerti: a case of termitolesty. Behav Process 47:125–133CrossRefGoogle Scholar
  37. Dejean A, Bolton B, Durand JL (1997) Cubitermes subarquatus termitaries as shelters for soil fauna in African rainforests. J Nat Hist 31:1289–1302CrossRefGoogle Scholar
  38. Deligne J, Quennedey A, Blum MS (1981) The enemies and defense mechanisms of termites. In: Hermann HR (ed) Social insects, vol II. Academic, New York, pp 2–76Google Scholar
  39. Eguchi K (2001) A revision of the Bornean species of the ant genus Pheidole (Insecta: Hymenoptera: Formicidae: Myrmicinae). Tropics Monogr 2:1–154Google Scholar
  40. Eguchi K, Yamane S (2003) Species diversity of ants (Hymenoptera: Formicidae) in a lowland rainforest, northwestern Borneo. New Entomol 52:49–59Google Scholar
  41. Emerson AE (1936) Termite distribution in the United States. Science 83:410–411PubMedCrossRefPubMedCentralGoogle Scholar
  42. Feener DH (1988) Effects of parasites on foraging and defense behavior of a termitophagous ant, Pheidole titanis Wheeler. Behav Ecol Sociobiol 22:421–427CrossRefGoogle Scholar
  43. Fernandes TT, da Silva RR, de Souza DR et al (2012) Undecomposed twigs in the leaf litter as nest-building resources for ants (Hymenoptera: Formicidae) in areas of the Atlantic forest in the southeastern region of Brazil. Psyche 2012:1–8Google Scholar
  44. Fernandez-Marin H, Zimmerman JK, Rehner SA, Wcislo WT (2006) Active use of the metapleural glands by ants in controlling fungal infection. Proc R Soc B 273:1689–1695PubMedPubMedCentralCrossRefGoogle Scholar
  45. Foitzik S, Backus VL, Trindl A, Herbers JM (2004) Ecology of Leptothorax ants: impact of food, nest sites, and social parasites. Behav Ecol Sociobiol 55:484–493CrossRefGoogle Scholar
  46. Fox J, Weisberg S (2011) An R companion to applied regression. Sage, Thousand Oaks, CAGoogle Scholar
  47. Franch J, Espadaler X (1988) Ants as colonizing agents in pine stumps in San Juan de la Pena (Huesca, Spain). Vie Milieu 38:149–154Google Scholar
  48. Francoeur A (1997) Ants (Hymenoptera: Formicidae) of the Yukon. In: Danks HV, Downes JA (eds) Insects of the Yukon. Biological survey of Canada (Terrestrial Arthropods). Ottawa, Ontario, pp 901–910Google Scholar
  49. Gayahan GG, Tschinkel WR (2008) Fire ants (Solenopsis invicta) dry and store insect pieces for later use. J Insect Sci 8:1–8CrossRefGoogle Scholar
  50. Giladi I (2004) The role of habitat-specific demography, habitat-specific dispersal, and the evolution of dispersal distances in determining current and future distributions of the ant-dispersed forest herb, Hexastylis artifolia. Ph.D. Dissertation, University of Georgia, Athens, GA, USAGoogle Scholar
  51. Gordon DM, Dektar KN, Pinter-Wollman N (2013) Harvester ant colony variation in foraging activity and response to humidity. PLoS One 8:e63363PubMedPubMedCentralCrossRefGoogle Scholar
  52. Große C, Kaczensky P, Knauer F (2003) Ants: a food source sought by Slovenian brown bears (Ursus arctos)? Can J Zool 81:1996–2005CrossRefGoogle Scholar
  53. Hamilton WJ (1932) The food and feeding habits of some eastern salamanders. Copeia 1932:83–86CrossRefGoogle Scholar
  54. Hansen LD, Akre RD (1990) Biology of carpenter ants. In: Vander MR, Jaffe K, Cedeno A (eds) Applied myrmecology: a world perspective. Westview, Boulder, CO, pp 274–280Google Scholar
  55. Hansen LD, Klotz JH (2005) Carpenter ants of the United States and Canada. Comstock Publishing Associates, Ithaca, NYGoogle Scholar
  56. Hashimoto Y, Morimoto Y, Widodo ES, Mohamed M (2006) Vertical distribution pattern of ants in a Bornean tropical rainforest. Sociobiology 47:697–710Google Scholar
  57. Headley AE (1949) A population study of the ant Aphaenogaster fulva ssp. aquia Buckley (Hymenoptera: Formicidae). Ann Entomol Soc Am 42:265–272CrossRefGoogle Scholar
  58. Herbers JM (1986) Nest site limitation and facultative polygyny in the ant Leptothorax longispinosus. Behav Ecol Sociobiol 19:115–122CrossRefGoogle Scholar
  59. Herbers J (1989) Community structure in north temperate ants: temporal and spatial variation. Oecologia 81:201–211PubMedCrossRefPubMedCentralGoogle Scholar
  60. Higgins RJ, Lindgren BS (2006) The fine scale physical attributes of coarse woody debris and effects of surrounding stand structure on its utilization by ants (Hymenoptera: Formicidae) in British Columbia, Canada. In: Grove SJ, Hanula JL (eds) Insect biodiversity and dead wood: proceedings of a symposium for the 22nd international congress of entomology. United States Department of Agriculture, Forest Service, Southern Research Station, Asheville, NC, USA, pp 67–74Google Scholar
  61. Higgins RJ, Lindgren BS (2012) The effect of manipulated shading on the colony abundance of two species of ants, Formica aserva and Leptothorax muscorum, in dead wood. Entomol Exp Appl 143:292–300CrossRefGoogle Scholar
  62. Higgins RJ, Lindgren BS (2015) Seral changes in ant (Hymenoptera: Formicidae) assemblages in the sub-boreal forests of British Columbia. Insect Conserv Divers 8:337–347CrossRefGoogle Scholar
  63. Higgins RJ, Gillingham MG, Lindgren BS (2017) Critical habitat elements, with an emphasis on coarse woody debris, associated with ant presence or absence in moist cold sub-boreal forests of the interior of British Columbia. Forests 8:1–12CrossRefGoogle Scholar
  64. Hirai T, Matsui M (2000) Myrmecophagy in a ranid frog Rana rugosa: specialization or weak avoidance to ant eating. Zool Sci 17:459–466Google Scholar
  65. Hölldobler B, Wilson EO (1990) The ants. Harvard University Press, Cambridge, MACrossRefGoogle Scholar
  66. Horn S, Hanula JL (2008) Relationships on coarse woody debris to arthropod availability for red-cockaded woodpeckers and other bark-foraging birds on loblolly pine boles. J Entomol Sci 43:153–168CrossRefGoogle Scholar
  67. Houseman RM, Gold RE, Pawson BM (2001) Resource partitioning in two sympatric species of subterranean termites, Reticulitermes flavipes and Reticulitermes hageni (Isoptera: Rhinotermitidae). Environ Entomol 30:673–685CrossRefGoogle Scholar
  68. Hurlbert SH, Lombardi CM (2009) Final collapse of the Newman-Pearson decision theoretic framework and the rise of the neoFisherian. Ann Zool Fenn 46:311–349CrossRefGoogle Scholar
  69. Ito F (1998) Colony composition and specialized predation on millipedes in the enigmatic ponerine ant genus Problomyrmex (Hymenoptera, Formicidae). Insect Soc 45:79–83CrossRefGoogle Scholar
  70. Jaffe K, Ramos C, Issa S (1995) Trophic interactions between ants and termites that share common nests. Ann Entomol Soc Am 88:328–333CrossRefGoogle Scholar
  71. Jones JC, Oldroyd BP (2006) Nest thermoregulation in social insects. Adv Insect Phys 33:153–191CrossRefGoogle Scholar
  72. Kajak A, Breymeyer A, Petal J, Olechowicz E (1972) The influence of ants on the meadow invertebrates. Ekol Pol 20:163–171Google Scholar
  73. Kaspari M (1996) Testing resource-based models of patchiness in four neotropical litter ant assemblages. Oikos 76:443–454CrossRefGoogle Scholar
  74. Kaspari M, Powell S, Lattke J, O’Donnell S (2011) Predation and patchiness in the tropical litter: do swarm-raiding army ants skim the cream or drain the bottle. J Anim Ecol 80:818–823PubMedCrossRefPubMedCentralGoogle Scholar
  75. Kempf WW (1966) A synopsis of the neotropical ants of the genus Centromyrmex Mayr (Hymenoptera: Formicidae). Stud Entomol 9:401–410Google Scholar
  76. King JR (2010) Size-abundance relationships in Florida ant communities reveal how ants break the energetic equivalence rule. Ecol Entomol 35:287–298CrossRefGoogle Scholar
  77. King JR (2016) Where do social insects fit into soil food webs? Soil Biol Biochem 102:55–62CrossRefGoogle Scholar
  78. King JR, Warren RJ, Bradford MA (2013) Social insects dominate eastern US temperate hardwood forest macroinvertebrate communities in warmer regions. PLoS One 8:e75843PubMedPubMedCentralCrossRefGoogle Scholar
  79. Klotz JH, Greenberg L, Reid BL, Davis L (1998) Spatial distribution of colonies of three carpenter ants Camponotus pennsylvanicus, Camponotus floridanus, Camponotus laevigatus (Hymenoptera: Formicidae). Sociobiology 32:51–62Google Scholar
  80. Korb J (2007) Termites. Curr Biol 17:995–999CrossRefGoogle Scholar
  81. Kuriachan I, Vinson SB (2000) A queen’s worker attractiveness influences her movement in polygynous colonies of the red imported fire ant (Hymenoptera: Formicidae) in response to adverse temperature. Environ Entomol 29:943–949CrossRefGoogle Scholar
  82. Lampasona TP (2015) Malagasy ant Pheidole longispinosa (Forel, 1891) behavior as regionally dominant ant predator in rainforest environment (Hymenoptera: Formicidae). J Insect Behav 28:359–368CrossRefGoogle Scholar
  83. LaRosa PS, Brooks JP, Deych E et al (2012) Hypothesis testing and power calculations for taxonomic-based human microbiome data. PLoS One 7:e52078CrossRefGoogle Scholar
  84. Laskis K, Tschinkel W (2009) The seasonal natural history of the ant, Dolichoderus mariae, in northern Florida. J Insect Sci 9:1–26CrossRefGoogle Scholar
  85. Leal IR, Oliveira PS (1995) Behavioral ecology of the neotropical termite-hunting ant Pachycondyla (=Termitopone) marginata: colony founding, group-raiding and migratory patterns. Behav Ecol Sociobiol 37:373–383CrossRefGoogle Scholar
  86. Lemaire M, Nagnan P, Clement J-L et al (1990) Geranyllinalool (diterpene alcohol) an insecticidal component of pine wood and termites (Isoptera: Rhinotermitidae) in four European ecosystems. J Chem Ecol 16:2067–2079PubMedCrossRefPubMedCentralGoogle Scholar
  87. Lemperiere G, Marage D (2010) The influence of forest management and habitat on insect communities associated with dead wood: a case study in forests of the southern French Alps. Insect Conserv Divers 3:236–245Google Scholar
  88. Levieux J (1966) Note preliminaire sur les colonnes de chasse de Megaponera foetens F. (Hymenoptere Formicidae). Insect Soc 13:117–126CrossRefGoogle Scholar
  89. Levieux J (1972) Le role des fourmis dans les reseaux trophiques d’une savanae preforestier de Cote d’Ivoire. Ann l’Universie d’Abidjan Ser E 5:143–240Google Scholar
  90. Levings SC, Franks NR (1982) Patterns of nested dispersion in a tropical ground ant community. Ecology 63:338–344CrossRefGoogle Scholar
  91. Levings SC, Traniello JFA (1981) Territoriality, nest dispersion, and community structure in ants. Psyche 88:265–321CrossRefGoogle Scholar
  92. Lindenmayer DB, Burton PJ, Franklin JF (2012) Salvage logging and its ecological consequences. Island Press, Washington, DCGoogle Scholar
  93. Lindgren BS, MacIsaac AM (2002) A preliminary study of ant diversity and ant dependence on dead wood in central interior British Columbia. USDA Forest Service General Technical Report PSW-GTR-181, pp 111–119Google Scholar
  94. Longhurst C, Johnson RA, Wood TG (1978) Predation by Megaponera foetens (Fabr.) (Hymenoptera: Formicidae) on termites in the Nigerian southern Guinea Savanna. Oecologia 32:101–107PubMedCrossRefPubMedCentralGoogle Scholar
  95. Longhurst C, Johnson RA, Wood TG (1979) Foraging, recruitment and predation by Decamorium uelense (Sanstchi) (Formicidae: Myrmicinae) on termites in southern Guinea Savanna, Nigeria. Oecologia 38:83–91PubMedCrossRefPubMedCentralGoogle Scholar
  96. Longino JT, Nadkarni NM (1990) A comparison of ground and canopy leaf litter ants (Hymenoptera: Formicidae) in a neotropical montane forest. Psyche 97:81–93CrossRefGoogle Scholar
  97. Lubertazzi D (2012) The biology and natural history of Aphaenogaster rudis. Psyche 2012:1–11CrossRefGoogle Scholar
  98. Luke SH, Fayle TM, Eggleton P et al (2014) Functional structure of ant and termite assemblages in old growth forest, logged forest and oil palm plantation in Malaysian Borneo. Biodivers Conserv 23:2817–2832CrossRefGoogle Scholar
  99. Lynch JF (1981) Seasonal, successional and vertical segregation in a Maryland ant community. Oikos 37:183–198CrossRefGoogle Scholar
  100. Mahli Y (2002) Carbon in the atmosphere and terrestrial biosphere in the 21st century. Philos Trans A Math Phys Eng Sci 360:2925–2945CrossRefGoogle Scholar
  101. Majer JD, Brennan KEC, Moir ML (2007) Invertebrates and the restoration of a forest ecosystem: 30 years of research following bauxite mining in Western Australia. Restor Ecol 15:S104–S115CrossRefGoogle Scholar
  102. Masuko K (1994) Specialized predation on oribatid mites by two species of the ant genus Myrmecina (Hymenoptera: Formicidae). Psyche 101:159–173CrossRefGoogle Scholar
  103. Mattson DJ (2001) Myrmecophagy by Yellowstone grizzly bears. Can J Zool 79:779–793CrossRefGoogle Scholar
  104. Maynard DS, Crowther TW, King JR et al (2015) Temperate forest termites: ecology, biogeography, and ecosystem impacts. Ecol Entomol 40:199–210CrossRefGoogle Scholar
  105. Maynard DS, Crowther TW, Bradford MA (2017) Fungal interactions reduce carbon use efficiency. Ecol Lett 20:1034–1042PubMedCrossRefPubMedCentralGoogle Scholar
  106. McGlynn TP, Carr RA, Carson JH, Buma J (2004) Frequent nest relocation in the ant Aphaenogaster araneoides: resources, competition, and natural enemies. Oikos 106:611–621CrossRefGoogle Scholar
  107. McGlynn TP, Dunn T, Wayman E, Romero A (2010) A thermophile in the shade: light-directed nest relocation in the Costa Rican ant Ectatomma ruidum. J Trop Ecol 26:559–562CrossRefGoogle Scholar
  108. Mertl AL, Traniello JFA, Wilkie KR, Constantino R (2012) Associations of two ecologically significant social insect taxa in the litter of an Amazonian rainforest: is there a relationship between ant and termite species richness? Psyche 2012:1–12CrossRefGoogle Scholar
  109. Miller LR (1994) Nests and queen migration in Schedorhinotermes actuosus (Hill), Schedorhinotermes breinli (Hill) and Coptotermes acinaciformis (Froggatt) (Isoptera: Rhinotermitidae). Aust J Entomol 33:317–318CrossRefGoogle Scholar
  110. Miyata H, Shimamura T, Hirosawa H, Higashi S (2003) Morphology and phenology of the primitive ponerine ant Onychomyrmex hedleyi (Hymenoptera: Formicidae: Ponerinae) in a highland rainforest of Australia. J Nat Hist 37:115–125CrossRefGoogle Scholar
  111. Moseley KR, Castleberry SB, Hanula JL, Ford WM (2005) Diet of southern toads (Bufo terrestris) in loblolly pine (Pinus taeda) stands subject to coarse woody debris management. Am Midl Nat 153:327–337CrossRefGoogle Scholar
  112. Moyano M, Feener DH (2014) Nest relocation in the ant Pheidole dentata. Insect Soc 61:71–81CrossRefGoogle Scholar
  113. Nakano MA, Feitosa RM, Moraes CO et al (2012) Assembly of Myrmelachista Roger (Formicidae: Formicinae) in twigs fallen on the leaf litter of Brazilian Atlantic forest. J Nat Hist 46:33–34CrossRefGoogle Scholar
  114. Ness JH, Morin DF, Giladi I (2009) Uncommon specialization in a mutualism between a temperate herbaceous plant guild and an ant: are Aphaenogaster ants keystone mutualists? Oikos 12:1793–1804CrossRefGoogle Scholar
  115. Neupane A, Maynard DS, Bradford MA (2015) Consistent effects of eastern subterranean termites (Reticulitermes flavipes) on properties of a temperate forest soil. Soil Biol Biochem 91:84–91CrossRefGoogle Scholar
  116. Oberst S, Bann G, Lai JCS, Evans TA (2017) Cryptic termites avoid predatory ants by eavesdropping on vibrational cues from their footsteps. Ecol Lett 20:212–221PubMedCrossRefPubMedCentralGoogle Scholar
  117. Ofer J (1970) Polyrhachis simplex the weaver ant of Israel. Insect Soc 17:49–82CrossRefGoogle Scholar
  118. Pan Y, Birdsey RA, Fang J et al (2011) A large and persistent carbon sink in the world’s forests. Science 333:988–993PubMedCrossRefPubMedCentralGoogle Scholar
  119. Parr CL, Eggleton P, Davies AB et al (2016) Suppression of savanna ants alters invertebrate composition and influences key ecosystem processes. Ecology 97:1611–1617PubMedCrossRefPubMedCentralGoogle Scholar
  120. Penick CA, Tschinkel WR (2008) Thermoregulatory brood transport in the fire ant, Solenopsis invicta. Insect Soc 55:176–182CrossRefGoogle Scholar
  121. Petal J (1978) The role of ants in ecosystems. In: Brian MV (ed) Production ecology of ants and termites. Cambridge University Press, Cambridge, pp 293–325Google Scholar
  122. Powell S (2009) How ecology shapes caste evolution: linking resource use, performance and fitness in a superorganism. J Evol Biol 22:1004–1013PubMedCrossRefPubMedCentralGoogle Scholar
  123. Pranschke AM, Hooper-Bùi LM (2003) Influence of abiotic factors on red imported fire ant (Hymenoptera: Formicidae) mound population ratings in Louisiana. Environ Entomol 32:204–207CrossRefGoogle Scholar
  124. Pyle C, Brown MM (1998) A rapid system of decay classification for hardwood logs of the eastern deciduous forest floor. J Torrey Bot Soc 125:237–245CrossRefGoogle Scholar
  125. Raimundo RL, Freitas AVL, Oliveira PS (2009) Seasonal patterns in activity rhythm and foraging ecology in the neotropical forest-dwelling ant, Odontomachus chelifer (Formicidae: Ponerinae). Ann Entomol Soc Am 102:1151–1157CrossRefGoogle Scholar
  126. Raley CM, Aubry KB (2006) Foraging ecology of pileated woodpeckers in coastal forests of Washington. J Wildl Manag 70:1266–1275CrossRefGoogle Scholar
  127. Redford KH (1987) Ants and termites as food. In: Genoways HH (ed) Current mammalogy. Springer, Boston, MA, pp 349–399CrossRefGoogle Scholar
  128. Roberts DW, Humber RA (1981) Entomogenous fungi. In: Cole GT, Kendrick B (eds) Biology of conidial fungi. Academic, New York, NY, pp 201–236CrossRefGoogle Scholar
  129. Roces F, Nunez JA (1989) Brood translocation and circadian variation of temperature preference in the ant Camponotus mus. Oecologia 81:33–37PubMedCrossRefPubMedCentralGoogle Scholar
  130. Ryti RT, Case TJ (1992) The role of neighborhood competition in the spacing and diversity of ant communities. Am Nat 139:355–374CrossRefGoogle Scholar
  131. Sagata K, Mack AL, Wright DD, Lester PJ (2010) The influence of nest availability on the abundance of twig-dwelling ants in a Papua New Guinea forest. Insect Soc 57:333–341CrossRefGoogle Scholar
  132. Sheppe W (1970) Invertebrate predation on termites. Insect Soc 17:205–218CrossRefGoogle Scholar
  133. Smallwood J (1982a) Nest relocation in ants. Insect Soc 29:138–147CrossRefGoogle Scholar
  134. Smallwood J (1982b) The effect of shade and competition on emigration rate in the ant Aphaenogaster rudis. Ecology 63:124–134CrossRefGoogle Scholar
  135. Smallwood J, Culver DC (1979) Colony movements of some North American ants. J Anim Ecol 48:373–382CrossRefGoogle Scholar
  136. Snyder LE, Herbers JM (1991) Polydomy and sexual allocation ratios in the ant Myrmica punctiventris. Behav Ecol Sociobiol 28:409–415CrossRefGoogle Scholar
  137. Steinmetz R, Garshelis DL, Chutipong W, Seuaturien N (2011) The shared preference niche of sympatric Asiatic black bears and sun bears in a tropical forest mosaic. PLoS One 6:e14509PubMedPubMedCentralCrossRefGoogle Scholar
  138. Stradling DJ (1978) Food and feeding habits of ants. In: Brian MV (ed) Production ecology of ants and termites. Cambridge University Press, Cambridge, pp 81–106Google Scholar
  139. Swenson JE, Jansson A, Riig R, Sandegren F (1999) Bears and ants: myrmecophagy by brown bears in central Scandinavia. Can J Zool 77:551–561CrossRefGoogle Scholar
  140. Talbot M (1951) Populations and hibernating conditions of the ant Aphaenogaster (Attomyrma) rudis Emery (Hymenoptera: Formicidae). Ann Entomol Soc Am 44:302–307CrossRefGoogle Scholar
  141. Team RDC (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  142. Thorne BL, Traniello JFA, Adams ES, Bulmer MS (1999) Reproductive dynamics and colony structure of subterranean termites of the genus Reticulitermes (Isoptera: Rhinotermitidae): a review of the evidence from behavioral, ecological, and genetic studies. Ethol Ecol Evol 11:149–169CrossRefGoogle Scholar
  143. Torgersen TR, Bull EL (1995) Down logs as habitat for forest-dwelling ants: the primary prey of pileated woodpeckers in Northeastern Oregon. Northwest Sci 69:294–303Google Scholar
  144. Traniello JFA (1981) Enemy deterrence in the recruitment strategy of a termite: soldier-organized foraging in Nasutitermes costalis. Proc Natl Acad Sci U S A 78:1976–1979PubMedPubMedCentralCrossRefGoogle Scholar
  145. Tranter C, Graystock P, Shaw C et al (2014) Sanitizing the fortress: protection of ant brood and nest material by worker antibiotics. Behav Ecol Sociobiol 68:499–507CrossRefGoogle Scholar
  146. Tschinkel WR (2006) The fire ants. Harvard University Press, Cambridge, MAGoogle Scholar
  147. Tschinkel WR (2014) Nest relocation and excavation in the Florida harvester ant, Pogonomyrmex badius. PLoS One 9:e112981PubMedPubMedCentralCrossRefGoogle Scholar
  148. Tschinkel WR (2015) The architecture of subterranean ant nests: beauty and mystery underfoot. J Bioecon 17:271–291CrossRefGoogle Scholar
  149. Ulyshen MD (2016) Wood decomposition as influenced by invertebrates. Biol Rev 91:70–85PubMedCrossRefPubMedCentralGoogle Scholar
  150. Ulyshen MD, Hanula JL (2009) Litter-dwelling arthropod abundance peaks near coarse woody debris in loblolly pine forests of the southeastern United States. Fla Entomol 92:163–164CrossRefGoogle Scholar
  151. Umphrey GJ (1996) Morphometric discrimination among sibling species in the fulva-rudis-texana complex of the ant genus Aphaenogaster (Hymenoptera: Formicidae). Can J Zool 74:528–559CrossRefGoogle Scholar
  152. Vargo EL, Husseneder C (2009) Biology of subterranean termites: insights from molecular studies of Reticulitermes and Coptotermes. Annu Rev Entomol 54:379–403PubMedCrossRefPubMedCentralGoogle Scholar
  153. Ward PS, Blaimer BB, Fisher BL (2016) A revised phylogenetic classification of the ant subfamily Formicinae (Hymenoptera: Formicidae), with resurrection of the genera Colobopsis and Dinomyrmex. Zootaxa 4072:343–357PubMedCrossRefPubMedCentralGoogle Scholar
  154. Warren RJ (2010) An experimental test of well-described vegetation patterns across slope aspects using woodland herb transplants and manipulated abiotic drivers. New Phytol 185:1038–1049PubMedCrossRefPubMedCentralGoogle Scholar
  155. Warren RJ, Bradford MA (2011) The shape of things to come: woodland herb niche contraction begins during recruitment in mesic forest microhabitat. Proc R Soc B 278:1390–1398PubMedCrossRefPubMedCentralGoogle Scholar
  156. Warren RJ, Bradford MA (2012) Ant colonization and coarse woody debris decomposition in temperate forests. Insect Soc 59:215–221CrossRefGoogle Scholar
  157. Warren RJ, Giladi I, Bradford MA (2010) Ant-mediated seed dispersal does not facilitate niche expansion. J Ecol 98:1178–1185CrossRefGoogle Scholar
  158. Warren RJ, Giladi I, Bradford MA (2012) Environmental heterogeneity and interspecific interactions influence occupancy be key seed-dispersing ants. Environ Entomol 41:463–468PubMedCrossRefPubMedCentralGoogle Scholar
  159. Watt AD, Stork NE, Bolton B (2002) The diversity and abundance of ants in relation to forest disturbance and plantation establishment in southern Cameroon. J Appl Ecol 39:18–30CrossRefGoogle Scholar
  160. Weber NA (1949) New ponerine ants from equatorial Africa. Am Mus Novit 1398:1–9Google Scholar
  161. Weedon JT, Cornwell WK, Cornelissen JHC et al (2009) Global meta-analysis of wood decomposition rates: a role for trait variation among tree species? Ecol Lett 12:45–56PubMedCrossRefPubMedCentralGoogle Scholar
  162. Wheeler WH (1936) Ecological relations of Ponerine and other ants to termites. Proc Am Acad Arts Sci 71:159–243CrossRefGoogle Scholar
  163. Wilson EO (1959) Some ecological characteristics of ants in New Guinea rain forests. Ecology 40:437–447CrossRefGoogle Scholar
  164. Wilson EO (1971) The insect societies. Harvard University Press, Cambridge, MAGoogle Scholar
  165. Wilson EO (2003) Pheidole in the New World: a dominant, hyperdiverse ant genus. Harvard University Press, Cambridge, MAGoogle Scholar
  166. Wilson EO (2005) Oribatid mite predation by small ants of the genus Pheidole. Insect Soc 52:263–265CrossRefGoogle Scholar
  167. Wilson EO, Brown WL (1984) Behavior of the cryptobiotic predaceous ant Eurhopalothrix heliscata n. sp. (Hymenoptera: Formicidae: Basicerotini). Insect Soc 31:408–428CrossRefGoogle Scholar
  168. Wilson EO, Holldobler B (1986) Ecology and behavior of the neotropical cryptobiotic ant Basiceros manni (Hymenoptera: Formicidae: Basicerotini). Insect Soc 33:70–84CrossRefGoogle Scholar
  169. Wood TG, Sands WA (1978) The role of termites in ecosystems. In: Brian MV (ed) Production ecology of ants and termites. Cambridge University Press, Cambridge, pp 245–292Google Scholar
  170. Yusuf AA, Gordon I, Crewe RM, Pirk CWW (2014) Prey choice and raiding behaviour of the ponerine ant Pachycondyla analis (Hymenoptera: Formicidae). J Nat Hist 48:345–358CrossRefGoogle Scholar
  171. Zelikova TJ, Dunn RR, Sanders NJ (2008) Variation in seed dispersal along an elevational gradient in Great Smoky Mountains National Park. Acta Oecol 34:155–162CrossRefGoogle Scholar

Copyright information

© This is a U.S. government work and its text is not subject to copyright protection in the United States; however, its text may be subject to foreign copyright protection.  2018

Authors and Affiliations

  • Joshua R. King
    • 1
    Email author
  • Robert J. WarrenII
    • 2
  • Daniel S. Maynard
    • 3
  • Mark A. Bradford
    • 4
  1. 1.Biology DepartmentUniversity of Central FloridaOrlandoUSA
  2. 2.Department of BiologySUNY Buffalo StateBuffaloUSA
  3. 3.Department of Ecology and EvolutionUniversity of ChicagoChicagoUSA
  4. 4.Yale School of Forestry and Environmental StudiesYale UniversityNew HavenUSA

Personalised recommendations