It’s the End of the Wood as We Know It: Insects in Veteris (Highly Decomposed) Wood

  • Michael L. Ferro
Part of the Zoological Monographs book series (ZM, volume 1)


The final decay stage of wood, termed veteris wood, is a dynamic habitat that harbors high biodiversity and numerous species of conservation concern and is vital for keystone and economically important species. Veteris wood is characterized by chemical and structural degradation, including absence of bark, oval bole shape, and invasion by roots, and includes red rot, mudguts, and sufficiently decayed wood in living trees and veteran trees. Veteris wood may represent up to 50% of the volume of woody debris in forests and can persist from decades to centuries. Economically important and keystone species such as the black bear [Ursus americanus (Pallas)] and pileated woodpecker [Dryocopus pileatus (L.)] are directly impacted by veteris wood. Nearly every order of insect contains members dependent on veteris wood, including species of conservation concern such as Lucanus cervus (L) (Lucanidae) and Osmoderma eremita (Scopoli) (Scarabaeidae). Due to the extreme time needed for formation, veteris wood may be of particular conservation concern. Veteris wood is ideal for research because invertebrates within it can be collected immediately after sampling. Imaging techniques such as Lidar, photogrammetry, and sound tomography allow for modeling the interior and exterior aspects of woody debris, including veteran trees, and, if coupled with faunal surveys, would make veteris wood and veteran trees some of the best understood keystone habitats.



I thank Matt Bertone for advice on Diptera and John Morse for advice on Trichoptera. I thank Michael Ulyshen for the opportunity to participate in this volume. I thank family, friends, and colleagues who put up with me while I worked on this project. I thank the anonymous reviewers for their helpful suggestions. This project was partly supported by USDA/NIFA projects SC-1700527 & SC-1700434. This is Technical Contribution No. [6633] of the Clemson University Experiment Station.

Journal titles should not be abbreviated (Ferro and Mayor 2016). The following is a key to the abbreviated journal titles given: Adv Ecol Res = Advances in Ecological Research; Agr Forest Entomol = Agricultural and Forest Entomology; Am Ent = American Entomologist; Am Nat = American Naturalist; Anim Biodiv Conserv = Animal Biodiversity and Conservation; Ann Entomol Soc Am = Annals of the Entomological Society of America; Ann Mo Bot Gard = Annals of the Missouri Botanical Garden; Annu Rep Dept Geol Nat Resour Indiana = Annual Report of the Department of Geology and Natural Resources of Indiana; Annu Rev Ecol Syst = Annual Review of Ecology and Systematics; Annu Rev Entomol = Annual Review of Entomology; Arch Hydrobiol = Archiv für Hydrobiologie; B Am Mus Nat Hist = Bulletin of the American Museum of Natural History; B Illinois St Lab Nat Hist = Bulletin of the Illinois State Laboratory of Natural History; B Mus Comp Zool = Bulletin of the Museum of Comparative Zoology; Behav Ecol Sociobiol = Behavioral Ecology and Sociobiology; Biodivers Conserv = Biodiversity and Conservation; Biol Conserv = Biological Conservation; Biol Rev = Biological Reviews; Bollett Di Zoologia Gen E Agr = Bollettino del Laboratorio di Zoologia Generale e Agraria della R. Scuola Superiore d’Agricoltura in Portici; Br Wildl = British Wildlife: The Magazine for the Modern Naturalist; Can Entomol = The Canadian Entomologist; Can J Forest Res = Canadian Journal of Forest Research; Can J Zool = Canadian Journal of Zoology; Coleopt Bull = The Coleopterists Bulletin; Cretaceous Res = Cretaceous Research; Crop Forage Turfgrass Manage = Crop, Forage & Turfgrass Management; Curr Biol = Current Biology; Ecol Appl = Ecological Applications; Ecol Bull = Ecological Bulletins; Ecol Bull = Ecological Bulletins (Stockholm); Ecol Entomol = Ecological Entomology; Ecol Evol = Ecology and Evolution; Ecol Monogr = Ecological Monographs; Ecol Res = Ecological Research; Entomol Exp Appl = Entomologia Experimentalis et Applicata; Entomol Fennica = Entomologica Fennica; Entomol Gaze = Entomologist’s Gazette; Entomol Mon Mag = Entomologist’s Monthly Magazine; Entomol News = Entomological News; Entomol Obozr = Entomologicheskoe Obozrenie; Environ Entomol = Environmental Entomology; Environ Modeling Asses = Environmental Modeling and Assessment; Environ Rev = Environmental Reviews; Eur J Soil Biol = European Journal of Soil Biology; Fla Entomol = Florida Entomologist; Folia Fac Sci Nat Un Biol = Folia Facultatis Scientiarum Naturalium Universitatis Masarykianae Brunensis, Biologia; Forest Ecol Manag = Forest Ecology and Management; Forest Sci = Forest Science; Front Biol China = Frontiers of Biology in China; Glob Change Biol = Global Change Biology; Illinois Nat Hist Surv Bull = Illinois Natural History Survey Bulletin; Insect Conserv Diver = Insect Conservation and Diversity; Insect Soc = Insectes Sociaux; J Anim Ecol = Journal of Animal Ecology; J Arboric = Journal of Arboriculture; J Chem Ecol = Journal of Chemical Ecology; J Cult Herit = Journal of Cultural Heritage; J Forest = Journal of Forestry; J Insect Conserv = Journal of Insect Conservation; J Insect Physiol = Journal of Insect Physiology; J Insect Sci = Journal of Insect Science; J Kansas Entomol Soc = Journal of the Kansas Entomological Society; J N Am Benthol Soc = Journal of the North American Benthological Society; J Nat Hist = Journal of Natural History; J Torrey Bot Soc = Journal of the Torrey Botanical Society; J Veg Sci = Journal of Vegetation Science; J Wash Acad Sci = Journal of the Washington Academy of Sciences; J Zool = Journal of Zoology; J Zool Syst Evol Res = Journal of Zoological Systematics and Evolutionary Research; Linzer Biol Beitr = Linzer Biologische Beiträge; Mem Am Acad Arts Sci = Memoirs of the American Academy of Arts and Sciences; Mem Entomol Soc Can = Memoirs of the Entomological Society of Canada; Murrelet = The Murrelet; Nat Area J = Natural Areas Journal; New Sci Sci J = New Scientist and Science Journal; North J Appl For = Northern Journal of Applied Forestry; Northwest Sci = Northwest Science; Occas Pap Calif Acad Sci = Occasional Papers of the California Academy of Sciences; P Acad Nat Sci Phila = Proceedings of the Academy of Natural Sciences of Philadelphia; P Entomol Soc Wash = Proceedings of the Entomological Society of Washington; P Minn Acad Sci = Proceedings of the Minnesota Academy of Science; P Mont Acad Sci = Proceedings of the Montana Academy of Sciences; P US Natl Mus = Proceedings of the US National Museum; Pearce-Sellards Ser = The Pearce-Sellards Series; Philos T R Soc B = Philosophical Transactions of the Royal Society B; Polish J Entomol = Polish Journal of Entomology; Rec Aust Mus = Records of the Australian Museum; Rev Écol (Terre Vie) = Revue d’Ecologie (Terre et Vie); Rev Soc Entomol Argent = Revista de la Sociedad Entomológica Argentina; Scand J Forest Res = Scandinavian Journal of Forest Research; Silva Fenn = Silva Fennica; Southeast Nat = Southeastern Naturalist; Sov J Ecol+ = The Soviet Journal of Ecology; Syst Entomol = Systematic Entomology; T Am Entomol Soc = Transactions of the American Entomological Society; T Kans Acad Sci = Transactions of the Kansas Academy of Science; Tasmanian Naturalist = The Tasmanian Naturalist; Univ Calif Publ Entomol = University of California Publications in Entomology; Us Dep Ag Biol Surv Bull = US Department of Agriculture Biological Survey Bulletin; Verh Internat Verein Limnol = Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie; Wilson Bull = The Wilson Bulletin; Z Angew Entomol = Zeitschrift für Angewandte Entomologie; Z Morph U Ökol Tier = Zeitschrift für Morphologie und Ökologie der Tiere; and Zool J Linn Soc-Lond = Zoological Journal of the Linnean Society.


  1. Abe T (1987) Evolution of life types in termites. In: Kawano S, Connell JH, Hidaka T (eds) Evolution and coadaptation in biotic communities. University of Tokyo Press, Tokyo, pp 125–148Google Scholar
  2. Acorn J (2006) The world’s biggest bug is a grub. Am Ent 52(4):270–272CrossRefGoogle Scholar
  3. Adams CC (1915) An ecological study of prairie and forest invertebrates. B Illinois St Lab Nat Hist 11:30–280Google Scholar
  4. Alexander CP (1931) Deutsche limnologische sunda-expedition. The crane-flies (Tipulidae, Diptera). Arch Hydrobiol Suppl-Bd 9:135–191Google Scholar
  5. Alexander KNA (2008) Tree biology and saproxylic Coleoptera: issues of definitions and conservation language. Rev Écol (Terre Vie) Suppl 10:9–13Google Scholar
  6. Allen RT (2002) A synopsis of the Diplura of North America: keys to higher taxa, systematics, distributions and descriptions of new taxa (Arthropoda: Insecta). T Am Entomol Soc 128(4):403–466Google Scholar
  7. Allison RB, Wang X (2015) Chapter 7: Nondestructive testing in the urban forest. USDA Forest Service, Forest Products Laboratory, General Technical Report, FPL-GTR-238:77–86Google Scholar
  8. Ando H (ed) (1982) Biology of the Notoptera. Kashiyo-Insatsu, Nagando, JapanGoogle Scholar
  9. Angers AV, Drapeau P, Bergeron Y (2010) Snag degradation pathways of four North American boreal tree species. Forest Ecol Manag 259:246–256CrossRefGoogle Scholar
  10. Animal Inn (2003) Animal inn formation handbook. Accessed 18 July 2017
  11. Antweb (2017) Antweb v6.96. Accessed 18 July 2017
  12. Aspöck H (2002) The biology of Raphidioptera: a review of present knowledge. Acta Zool Acad Sci H 48(Suppl 2):35–50Google Scholar
  13. AU (2002) Logs have life inside music and education kit. Environment Australia. Accessed 18 July 2017
  14. Ausmus BS (1977) Regulation of wood decomposition rates by arthropod and annelid populations. Ecol Bull (Stockholm) 25:180–192Google Scholar
  15. Barclay S, Ash JE, Rowell DM (2000) Environmental factors influencing the presence and abundance of a log-dwelling invertebrate, Euperipatoides rowelli (Onychophora: Peripatopsidae). J Zool 250:425–436. Scholar
  16. Beckwith RC, Bull EL (1985) Scat analysis of the arthropod component of pileated woodpecker diet. Murrelet 66:90–92CrossRefGoogle Scholar
  17. Beebe W (1925) Jungle days. Putnam’s Sons, New YorkCrossRefGoogle Scholar
  18. Bei-Bienko GY (1951) A new representative of orthopteroid insects of the group Grylloblattidea (Orthoptera) in the fauna of the USSR. Entomol Obozr 31:506–509. (in Russian)Google Scholar
  19. Bell WJ, Roth LM, Nalepa CA (2007) Cockroaches: ecology, behavior, and natural history. The Johns Hopkins University Press, Baltimore, MDGoogle Scholar
  20. Bergman K, Jansson N, Claesson K, Palmer MW, Milberg P (2012) How much and at what scale? Multiscale analysis as decision support for conservation of saproxylic oak beetles. Forest Ecol Manag 265:133–141CrossRefGoogle Scholar
  21. Berry FH (1969) Decay in the upland oak stands of Kentucky. Research Paper NE-126. U.S. Department of Agriculture, Forest Service Northeastern Forest Experiment Station 1–16, Upper Darby, PAGoogle Scholar
  22. Berry FH, Beaton JA (1972) Decay in oak in the central hardwood region. Research Paper NE-242. U.S. Department of Agriculture, Forest Service, Northeastern Forest Experiment Station 1–11, Upper Darby, PAGoogle Scholar
  23. Bidwell A (1979) Observations of the biology of nymphs of Povilla adusta Navas (Ephemeroptera: Polymitarchidae) in Lake Kainji, Nigeria. Hydrobiologia 67(2):161–172CrossRefGoogle Scholar
  24. Bignell DE (2018) Wood-feeding termites. In: Ulyshen MD (ed) Saproxylic insects: diversity, ecology and conservation. Springer, Heidelberg, pp 339–373Google Scholar
  25. Birtele D (2003) The succession of saproxylic insects in dead wood: a new research method. In: Mason F, Nardi G, Tisato M (eds) Proceedings of the International Symposium “Dead wood: a key to biodiversity”, Mantova, 29–31 May 2003. Sherwood 95(Suppl 2):91–93Google Scholar
  26. Blackman MW, Stage HH (1918) Notes on insects bred from the bark and wood of the American larch. The New York State College of Forestry, Technical Publication No. 10:11–115Google Scholar
  27. Blackman MW, Stage HH (1924) On the succession of insects living in the bark and wood of dying, dead, and decaying hickory. New York State College of Forestry at Syracuse University. Technical Publication 17:1–269Google Scholar
  28. Blatchley WS (1902) The Orthoptera of Indiana; an illustrated descriptive catalogue of the species known to occur in the state, with bibliography, synonymy, and descriptions of new species. Annu Rep Dept Geol Nat Resour Indiana 27:123–471 + ixGoogle Scholar
  29. Blatchley WS (1920) Orthoptera of North-Eastern America. The Nature Publishing Company, Indianapolis, INGoogle Scholar
  30. Blatchley WS (1926) Heteroptera or true bugs of eastern North America. With especial reference to the faunas of Indiana and Florida. The Nature Publishing Company, Indianapolis, INCrossRefGoogle Scholar
  31. Bobiec A, Gutowski JM, Laudenslayer WF, Pawlaczyk P, Zub K (eds) (2005) The afterlife of a tree. WWF Polska, Foundation of Environmental and Natural Resources Economists, Warszawa, PolandGoogle Scholar
  32. Bogusch P, Horák J (2018) Saproxylic bees and wasps. In: Ulyshen MD (ed) Saproxylic insects: diversity, ecology and conservation. Springer, Heidelberg, pp 217–235Google Scholar
  33. Bossart JL, Carlton CE (2002) Insect conservation in America: status and perspectives. Am Ent 48(2):82–92CrossRefGoogle Scholar
  34. Boucher P, Hebert C, Francoeur A, Sirois L (2015) Postfire succession of ants (Hymenoptera: Formicidae) nesting in dead wood of northern Boreal forest. Environ Entomol 44(5):1316–1327PubMedPubMedCentralCrossRefGoogle Scholar
  35. Bouget C, Brin A, Brustel H (2011) Exploring the “last biotic frontier”: are temperate forest canopies special for saproxylic beetles? Forest Ecol Manag 261:211–220CrossRefGoogle Scholar
  36. Bowen CP (ed) (2003) Proceedings of the second pan-European conference on saproxylic beetles. Royal Holloway, University of London, June 2002. People’s Trust for Endangered Species; LondonGoogle Scholar
  37. Bowles DE, Contreras-Ramos A, Sarmiento-Cordero MA, Ferro ML (2015) New distributional records for pleasing lacewings (Neuroptera: Dilaridae, Nallachius spp.) in the Americas. Insecta Mundi 406:1–10Google Scholar
  38. Brais S, Sadi F, Bergeron Y, Genier Y (2005) Coarse woody debris dynamics in a post-fire jack pine chronosequence and its relation with site productivity. Forest Ecol Manag 220:216–226CrossRefGoogle Scholar
  39. Brauns A (1954) Die Sukzession der Dipterenlarven bei der Stockhumifizierung. Z Morph U Ökol Tier 43(4):313–320CrossRefGoogle Scholar
  40. Brown JK (1974) Handbook for inventorying downed woody material. United States Department of Interior Forest Service General Technical Report INT-16, 1–24Google Scholar
  41. Brown JK, See TE (1981) Downed and dead woody fuel and biomass in the northern Rocky Mountains. United States Department of Agriculture General Technical Report INT-117, 1–48Google Scholar
  42. Buckland PC, Dinnin MH (1993) Holocene woodlands, the fossil insect evidence. In: Kirby KJ, Drake CM (eds) Dead wood matters: the ecology and conservation of saproxylic invertebrates in Britain. English Nature Science No. 7. Peterborough, Cambridgeshire, pp 6–20Google Scholar
  43. Bull EL, Parks CG, Torgersen TR (1997) Trees and logs important to wildlife in the interior Columbia River Basin. General Technical Report PNW-GTR-391. U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station 1–55, Portland, ORGoogle Scholar
  44. Burnside CA, Smith PT, Kambhampati S (1999) Three new species of the wood roach, Cryptocercus (Blattodea: Cryptocercidae), from the eastern United States. J Kansas Entomol Soc 72(4):361–378Google Scholar
  45. Byrne MM (1994) Ecology of twig-dwelling ants in a wet lowland tropical forest. Biotropica 26(1):61–72CrossRefGoogle Scholar
  46. Campanaro A, Zapponi L, Hardersen S, Méndez M, Al Fulaij N, Audisio P, Bardiani M, Carpaneto GM, Corezzola S, Della Rocca F, Harvey D, Hawes C, Kadej M, Karg J, Rink M, Smolis A, Sprecher E, Thomaes A, Toni I, Vrezec A, Zauli A, Zilioli M, Chiari S (2016) A European monitoring protocol for the stag beetle, a saproxylic flagship species. Insect Conserv Diver 9:574–584CrossRefGoogle Scholar
  47. Carmona MR, Armesto JJ, Aravena JC, Pérez CA (2002) Coarse woody debris biomass in successional and primary temperate forests in Chiloé Island, Chile. Forest Ecol Manag 164:265–275CrossRefGoogle Scholar
  48. Carpaneto GM, Mazziotta A, Coletti G, Luiselli L, Audisio P (2010) Conflict between insect conservation and public safety: the case study of a saproxylic beetle (Osmoderma eremita) in urban parks. J Insect Conserv 14:555–565CrossRefGoogle Scholar
  49. Caterino MS, Tishechkin AK (2006) DNA identification and morphological description of the first confirmed larvae of Hetaeriinae (Coleoptera: Histeridae). Syst Entomol 31:405–418. Scholar
  50. Cavalli R, Mason F (2003) Techniques for reestablishment of dead wood for saproxylic fauna conservation. LIFE Nature project NAT/IT/996245 “Bosco della Fontana” Mantova, Italy. Scientific Reports 2. Centro Nazionale per lo Studio e la Conservazione della Biodiversita Forestale di Vernoa-Bosco della Fontana. Gianluigi Arcari Editore; Mantova, ItalyGoogle Scholar
  51. Chamovitz D (2013) What a plant knows: a field guide to the senses. Farrar Straus & Giroux, New YorkGoogle Scholar
  52. Chen Y, Hansen LD, Brown JJ (2002) Nesting sites of the carpenter ant, Camponotus vicinus (Mayr) (Hymenoptera: Formicidae) in northern Idaho. Environ Entomol 31(6):1037–1042CrossRefGoogle Scholar
  53. Chiari S, Carpaneto GM, Zauli A, Marini L, Audisio P, Ranius T (2012) Habitat of an endangered saproxylic beetle, Osmoderma eremita, in Mediterranean woodlands. Ecoscience 19(4):299–307CrossRefGoogle Scholar
  54. Chiari S, Carpaneto GM, Zauli A, Zirpoli GM, Audisio P, Ranius T (2013a) Dispersal patterns of a saproxylic beetle, Osmoderma eremita, in Mediterranean woodlands. Insect Conserv Diver 6:309–318CrossRefGoogle Scholar
  55. Chiari S, Zauli A, Mazziotta A, Luiselli L, Audisio P, Carpaneto GM (2013b) Surveying an endangered saproxylic beetle, Osmoderma eremita, in Mediterranean woodlands: a comparison between different capture methods. J Insect Conserv 17:171–181CrossRefGoogle Scholar
  56. Clark JT (1976) The capitulum of phasmid eggs (Insecta: Phasmida). Zool J Linn Soc-Lond 59:365–375CrossRefGoogle Scholar
  57. Cleveland LR (1934) The wood feeding roach Cryptocercus, its protozoa, and the symbiosis between protozoa and roach. Mem Am Acad Arts Sci 17(2):185–342 + 60 platesCrossRefGoogle Scholar
  58. Compton SG, Ware AB (1991) Ants disperse the elaiosome-bearing eggs of an African walking stick insect. Psyche 98:207–213CrossRefGoogle Scholar
  59. Conle OV, Hennemann FH, Dossey AT (2009) Survey of the color forms of the southern twostriped walkingstick (Phasmatodea: Areolatae: Pseudophasmatidae: Pseudophasmatinae: Anisomorphini), with notes on its range, habitats, and behaviors. Ann Entomol Soc Am 102(2):210–232CrossRefGoogle Scholar
  60. Conner RN, Miller OK Jr, Adkisson CS (1976) Woodpecker dependence on trees infected by fungal heart rots. Wilson Bull 88(4):575–581Google Scholar
  61. Copeland TP, Imadaté G (1990) Insecta: Protura. In: Dindal DL (ed) Soil biology guide. Wiley, New York, pp 911–933Google Scholar
  62. Corbet PS (1999) Dragonflies: behavior and ecology of Odonata. Cornell University Press, New YorkGoogle Scholar
  63. Crew B (2012) Lord Howe Island stick insects are going home. Scientific American blogs, 22 August 2012. Accessed 18 July 2017
  64. Dahlberg A, Stockland JN (2004) Substrate requirements in wood-inhabiting species: a compilation and analysis of 3600 species [in Swedish with an English summary]. Skogsstyrelsen Rapport 2004:1–75Google Scholar
  65. Dajoz R (2000) Insects and forests: the role and diversity of insects in the forest environment. Intercept Ltd., New YorkGoogle Scholar
  66. Daniels LD, Dobry J, Klinka K, Feller MC (1997) Determining year of death of logs and snags of Thuja plicata in southwestern coastal British Columbia. Can J Forest Res 27:1132–1141CrossRefGoogle Scholar
  67. de la Mora A, Philpott SM (2010) Wood-nesting ants and their parasites in forests and coffee agroecosystems. Environ Entomol 39(5):1473–1481CrossRefGoogle Scholar
  68. Deyrup M, Mosley JG (2004) Natural history of the flat bug Aradus gracilicornis in fire-killed pines (Heteroptera: Aradidae). Fla Entomol 87(1):79–81CrossRefGoogle Scholar
  69. Donlan CJ, Berger J, Bock CE, Bock JH, Burney DA, Estes JA, Foreman D, Martin PS, Roemer GW, Smith FA, Soule ME, Green HW (2006) Pleistocene rewilding: an optimistic agenda for twenty-first century conservation. Am Nat 168:660–681CrossRefGoogle Scholar
  70. Donovan SE, Eggleton P, Bignell DE (2001) Gut content analysis and a new feeding group classification of termites. Ecol Entomol 26:356–366CrossRefGoogle Scholar
  71. Eggleton P, Tayasu I (2001) Feeding groups, lifetypes and the global ecology of termites. Ecol Res 16:941–960CrossRefGoogle Scholar
  72. Ehnström B (2001) Leaving dead wood for insects in Boreal forests—suggestions for the future. Scand J Forest Res (Suppl 3):91–98CrossRefGoogle Scholar
  73. Elton CS (1966) The pattern of animal communities. Methuen & Co., LondonGoogle Scholar
  74. Engel MS (2006) A note on the relic silverfish Tricholepidion gertschi (Zygentoma). T Kans Acad Sci 109(3/4):236–238CrossRefGoogle Scholar
  75. Ennos R (2016) Trees: A complete guide to their biology and structure. Cornell University Press, Ithaca, NYGoogle Scholar
  76. Enrong Y, Xihua W, Jianjun H (2006) Concept and classification of coarse woody debris in forest ecosystems. Front Biol China 1:76–84Google Scholar
  77. Esch ED, Spence JR, Langor DW (2017) Grylloblatta campodeiformis (Grylloblattodea: Grylloblattidae) uses saproxylic habitats in subalpine forests of western Alberta, Canada: implications for conservation. Can Entomol 1–4. doi:10.4039/tce.2017.50CrossRefGoogle Scholar
  78. Fager EW (1968) The community of invertebrates in decaying oak wood. J Anim Ecol 37:121–142CrossRefGoogle Scholar
  79. Feller M (1997) Coarse woody debris in forests: an overview of the coarse woody debris study and the Sicamous Creek study area. In: Hollestedt C, Vyse A (eds) Sicamous Creek silvicultural systems project: workshop proceedings April 24–25, 1996, Kamloops, British Columbia, Canada. British Columbia Ministry of Forests, Research Branch, Victoria. Working Paper No. 24/1997, pp 134–143Google Scholar
  80. Feller M (2003) Coarse woody debris in the old-growth forests of British Columbia. Environ Rev 11(Suppl 1):135–157CrossRefGoogle Scholar
  81. Ferguson LM (1990) Insecta: Microcoryphia and Thysanura. In: Dindal DL (ed) Soil biology guide. Wiley, New York, NY, pp 935–949Google Scholar
  82. Fernandes TT, da Silva RR, de Souza DR, Araújo N, de Castro Morini MS (2012) Undecomposed twigs in the leaf litter as nest-building resources for ants (Hymenoptera: Formicidae) in areas of the Atlantic forest in the southeastern region of Brazil. Psyche 896473:1–8. Scholar
  83. Ferro ML, Carlton CE (2010) Fifteen new species of Sonoma Casey from the eastern United States and a description of the male of Sonoma tolulae (LeConte) (Coleoptera: Staphylinidae: Pselaphinae). Insecta Mundi 0137:1–44Google Scholar
  84. Ferro ML, Carlton CE (2011) A practical emergence chamber for collecting Coleoptera from rotting wood, with a review of emergence chamber designs to collect saproxylic insects. Coleopt Bull 65:115–124CrossRefGoogle Scholar
  85. Ferro ML, Mayor AJ (2016) The elusive citation for Haplocnemus subinteger Pic, 1902 (Coleoptera: Rhadalidae: Aplocnemini). Coleopt Bull 70(3):654–655CrossRefGoogle Scholar
  86. Ferro ML, Gimmel ML, Harms KE, Carlton CE (2012a) Comparison of the Coleoptera communities in leaf litter and rotten wood in Great Smoky Mountains National Park, USA. Insecta Mundi 0259:1–58Google Scholar
  87. Ferro ML, Gimmel ML, Harms KE, Carlton CE (2012b) Comparison of Coleoptera emergent from various decay classes of downed coarse woody debris in Great Smoky Mountains National Park, USA. Insecta Mundi 0260:1–80Google Scholar
  88. Field LH (ed) (2001) The biology of wetas, king crickets and their allies. Cabi Publishing, New York, NYGoogle Scholar
  89. Field LH, Sandlant GR (2001) The gallery-related ecology of New Zealand tree wetas, Hemideina femorata and Hemideina crassidens (Orthoptera, Anostomatidae). In: Field LH (ed) The biology of wetas, king crickets and their allies. Cabi Publishing, New York, NY, pp 243–257CrossRefGoogle Scholar
  90. Foster JR, Lang GE (1982) Decomposition of red spruce and balsam fir boles in the White Mountains of New Hampshire. Can J Forest Res 12:617–626CrossRefGoogle Scholar
  91. Fowler HG, Roberts RB (1982) Carpenter ant (Hymenoptera: Formicidae) induced wind breakage in New Jersey shade trees. Can Entomol 114:649–650CrossRefGoogle Scholar
  92. Franc N, Götmark F, Økland B, Nordén B, Paltto H (2007) Factors and scales potentially important for saproxylic beetles in temperate mixed oak forest. Biol Conserv 135:86–98CrossRefGoogle Scholar
  93. Froeschner RC (1988) Family Aradidae Spinola, 1837 (=Dysodiidae Reuter, 1912; Meziridae Oshanin, 1908): the flat bugs. In: Henry TJ, Froeschner RC (eds) Catalog of the Heteroptera, or true bugs, of Canada and the continental United States. E. J. Brill, New York, NY, pp 29–46Google Scholar
  94. Gange AC (2005) Chapter 2. Sampling insects from roots. In: Leather SR (ed) Insect sampling in forest ecosystems. Blackwell, Malden, MA, pp 16–36CrossRefGoogle Scholar
  95. García-López G, Martínez-Falcón AP, Micó E, Estrada P, Grez AA (2016) Diversity distribution of saproxylic beetles in Chilean Mediterranean forests: influence of spatiotemporal heterogeneity and perturbation. J Insect Conserv 20:723–736CrossRefGoogle Scholar
  96. Gibbs GW (2001) Habitats and biogeography of New Zealand’s Deinacridine and tusked weta species. In: Field LH (ed) The biology of wetas, king crickets and their allies. Cabi Publishing, New York, NY, pp 35–55CrossRefGoogle Scholar
  97. Giller PS (1996) The diversity of soil communities, the ‘poor man’s tropical rainforest’. Biodivers Conserv 5:135–168CrossRefGoogle Scholar
  98. Gimmel ML, Ferro ML (2018) General overview of saproxylic Coleoptera. In: Ulyshen MD (ed) Saproxylic insects: diversity, ecology and conservation. Springer, Heidelberg, pp 51–128Google Scholar
  99. Goodburn JM, Lorimer CG (1998) Cavity trees and coarse woody debris in old-growth and managed northern hardwood forests in Wisconsin and Michigan. Can J Forest Res 28:427–438CrossRefGoogle Scholar
  100. Gossner MM, Damken C (2018) Diversity and ecology of saproxylic Hemiptera. In: Ulyshen MD (ed) Saproxylic insects: diversity, ecology and conservation. Springer, Heidelberg, pp 263–317Google Scholar
  101. Graham SA (1925) The felled tree trunk as an ecological unit. Ecology 6:397–411CrossRefGoogle Scholar
  102. Grandcolas P (1994) Phylogenetic systematics of the subfamily Polyphaginae, and the assignment of Cryptocercus Scudder, 1862 to this taxon (Blattaria, Blaberoidea, Polyphagidae). Syst Entomol 19:145–158Google Scholar
  103. Grandcolas P, Park YC, Choe JC, Piulachs MD, Bellés X, d’Haese C, Farine JP, Brossut R (2001) What does Cryptocercus kyebangensis, n.sp. (Dictyoptera: Blattaria: Polyphagidae) from Korea reveal about Cryptocercus evolution? A study in morphology, molecular phylogeny, and chemistry of tergal glands. Proc Acad Nat Sci Phila 151:61–79CrossRefGoogle Scholar
  104. Grandcolas P, Legendre F, Park YC, Bellés X, Murienne J, Pellens R (2005) The genus Cryptocercus in East Asia: distribution and new species (Insecta, Dictyoptera, Blattaria, Polyphagidae). Zoosystema 27(4):725–732Google Scholar
  105. Green T (1995) Creating decaying trees. Br Wildl 6(5):310–311Google Scholar
  106. Grimaldi D, Engel MS (2005) Evolution of the insects. Cambridge University Press, New York, NYGoogle Scholar
  107. Grove SJ (2002) Saproxylic insect ecology and the sustainable management of forests. Annu Rev Ecol Syst 33:1–23CrossRefGoogle Scholar
  108. Grove S (2007) Mudguts. Tasmanian Naturalist 129:2–7Google Scholar
  109. Grove SJ (2009) A decade of deadwoodology at Warra. Tasmanian Naturalist 131:25–35Google Scholar
  110. Grove SJ, Forster L (2011) A decade of change in the saproxylic beetle fauna of eucalypt logs in the Warra long-term log-decay experiment, Tasmania. 1. Description of the fauna and seasonality patterns. Biodivers Conserv 20:2149–2165CrossRefGoogle Scholar
  111. Grove SJ, Stamm L, Wardlaw TJ (2011) How well does a log decay-class system capture the ecology of decomposition? —A case-study from Tasmanian Eucalyptus obliqua forest. Forest Ecol Manag 262:692–700CrossRefGoogle Scholar
  112. Gurney AB (1947a) Notes on Dilaridae and Berothidae, with special reference to the immature stages of the Nearctic genera (Neuroptera). Psyche 54(3):145–169CrossRefGoogle Scholar
  113. Gurney AB (1947b) Notes on some remarkable Australasian walkingsticks, including a synopsis of the genus Extatosoma (Orthoptera: Phasmatidae). Ann Entomol Soc Am 40(3):373–396CrossRefGoogle Scholar
  114. Gurney AB (1953) Recent advances in the taxonomy and distribution of Grylloblatta (Orthoptera: Grylloblattidae). J Wash Acad Sci 43(10):325–332Google Scholar
  115. Hagan JM, Grove SL (1999) Coarse woody debris. J Forest 97:6–11Google Scholar
  116. Hale CM, Pastor J (1998) Nitrogen content, decay rates, and decompositional dynamics of hollow versus solid hardwood logs in hardwood forests of Minnesota, U.S.A. Can J Forest Res 28:1276–1285CrossRefGoogle Scholar
  117. Hale CM, Pastor J, Rusterholz KA (1999) Comparison of structural and compositional characteristics in old-growth and mature, managed hardwood forests of Minnesota, U.S.A. Can J Forest Res 29:1479–1489CrossRefGoogle Scholar
  118. Hamilton WD (1978) Evolution and diversity under bark. In: Mound LA, Waloff N (eds) Diversity of insect faunas symposia of the Royal Entomological Society of London No. 9. Blackwell, London, pp 154–175Google Scholar
  119. Hammond HEJ, Langor DW, Spence JR (2004) Saproxylic beetles (Coleoptera) using Populus in boreal aspen stands of western Canada: spatiotemporal variation and conservation of assemblages. Can J Forest Res 34:1–19CrossRefGoogle Scholar
  120. Harding PT, Alexander KNA (1993) The saproxylic invertebrates of historic parklands: progress and problems. In: Kirby KJ, Drake CM (eds) Dead wood matters: the ecology and conservation of saproxylic invertebrates in Britain. English Nature Science No. 7. Peterborough, Cambridgeshire, pp 58–73Google Scholar
  121. Hardt RA, Swank WT (1997) A comparison of structural and compositional characteristics of southern Appalachian young second-growth, maturing second-growth, and old-growth stands. Nat Area J 17:42–52Google Scholar
  122. Harmon ME (1992) Long-term experiments on log decomposition at the H. J. Andrews Experimental Forest. U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, Portland, OR. General Technical Report PNW-GTR-280:1–28Google Scholar
  123. Harmon ME (2002) Moving towards a new paradigm for woody detritus management. In: Laudenslayer WF Jr, Shea PJ, Valentine BE, Weatherspoon CP, Lisle TE (technical coordinators) Proceedings of the symposium on the ecology and management of dead wood in western forests, 2–4 November 1999, Reno, NV. USDA Forest Service, Pacific Southwest Research Station, Albany, CA. General Technical Report PSW-GTR-181, pp 929–944Google Scholar
  124. Harmon ME, Franklin JF, Swanson FJ, Sollins P, Gregory SV, Lattin JD, Anderson NH, Cline SP, Aumen NG, Sedell JR, Lienkaemper GW, Cromack K Jr, Cummins KW (1986) Ecology of coarse woody debris in temperate ecosystems. Adv Ecol Res 15:133–302CrossRefGoogle Scholar
  125. Harmon ME, Whigham DF, Sexton J, Olmsted I (1995) Decomposition and mass of woody debris in the dry tropical forests of the northeastern Yucatan Peninsula, Mexico. Biotropica 27(3):305–316CrossRefGoogle Scholar
  126. Harvey DJ, Gange AC, Hawes CJ, Rink M (2011a) Bionomics and distribution of the stag beetle, Lucanus cervus (L.) across Europe. Insect Conserv Diver 4:23–38CrossRefGoogle Scholar
  127. Harvey DJ, Hawes CJ, Gange AC, Finch P, Chesmore D, Farr I (2011b) Development of non-invasive monitoring methods for larvae and adults of the stag beetle, Lucanus cervus. Insect Conserv Diver 4:4–14CrossRefGoogle Scholar
  128. Hawes CJ (2008) The stag beetle Lucanus cervus (Linnaeus, 1758) (Coleoptera: Lucanidae): a mark-release-recapture study undertaken in one United Kingdom residential garden. Rev Écol (Terre Vie) 63:131–138Google Scholar
  129. Hendrix PF (1996) Earthworms, biodiversity, and coarse woody debris in forest ecosystems of the Southeastern U.S.A. In: McMinn JW, Crossley DA (eds) Biodiversity and coarse woody debris in southern forests. Proceedings of the workshop on coarse woody debris in southern forests: effects on biodiversity. U.S. Department of Agriculture, Forest Service, Southeastern Forest Experiment Station, Asheville, NC. General Technical Report SE-94, pp 43–48Google Scholar
  130. Hennon PE, McClellan MH, Palkovic P (2002) Comparing deterioration and ecosystem function of decay-resistant and decay susceptible species of dead trees. In: Laudenslayer WF Jr, Shea PJ, Valentine BE, Weatherspoon CP, Lisle TE (technical coordinators) Proceedings of the symposium on the ecology and management of dead wood in western forests, 2–4 November 1999, Reno, NE. USDA Forest Service, Pacific Southwest Research Station, Albany, CA. General Technical Report PSW-GTR-181, pp 435–444Google Scholar
  131. Hickin NE (1963) The insect factor in wood decay. Hutchinson and Co., New York, NYGoogle Scholar
  132. Higgins RJ, Lindgren BS (2012) The effect of manipulated shading on the colony abundance of two species of ants, Formica aserva and Leptothorax muscorum, in dead wood. Entomol Exp Appl 143:292–300CrossRefGoogle Scholar
  133. Hill GF (1942) Termites (Isoptera) from the Australian region (including Australia, New Guinea and islands south of the equator between 140°E. longitude and 170°W. longitude). H. E. Daw, Government Printer, MelbourneGoogle Scholar
  134. Hilszczański J (2018) Ecology, diversity and conservation of saproxylic hymenopteran parasitoids. In: Ulyshen MD (ed) Saproxylic insects: diversity, ecology and conservation. Springer, Heidelberg, pp 193–216Google Scholar
  135. Hilszczański J, Jaworski T, Plewa R, Jansson N (2014) Surrogate tree cavities: boxes with artificial substrate can serve as temporary habitat for Osmoderma barnabita (Motsch.) (Coleoptera, Cetoniinae). J Insect Conserv 18:855–861CrossRefGoogle Scholar
  136. Hofgaard A (1993) Structure and regeneration patterns in a virgin Picea abies forest in northern Sweden. J Veg Sci 4:601–608CrossRefGoogle Scholar
  137. Holland WJ (1913) The moth book: a popular guide to a knowledge of the moths of North America. Doubleday, Page and Company, New York, NYGoogle Scholar
  138. Holzinger WE, Triess T (2014) Erstnachweis der nordischen rindenzikade Cixidia lapponica Zetterstedt, 1840 aus Österreich (Insecta: Hemiptera, Auchenorrhyncha, Achilidae). Linzer Biol Beitr 46(2):1337–1341Google Scholar
  139. Hopkin SP (1997) Biology of the springtails (Insecta: Collembola). Oxford University Press, New York, NYGoogle Scholar
  140. Hövemeyer K, Schauermann J (2003) Succession of Diptera on dead beech wood: a 10-year study. Pedobiologia 47:61–75CrossRefGoogle Scholar
  141. Howden HF, Vogt GB (1951) Insect communities of standing dead pine (Pinus virginiana Mill.) Ann Entomol Soc Am 44:581–595CrossRefGoogle Scholar
  142. Hsü J (1983) Late Cretaceous and Cenozoic vegetation in China, emphasizing their connections with North America. Ann Mo Bot Gard 70:490–508CrossRefGoogle Scholar
  143. Huang T-I (2018) Diversity and ecology of stag beetles (Lucanidae). In: Ulyshen MD (ed) Saproxylic insects: diversity, ecology and conservation. Springer, Heidelberg, pp 149–165Google Scholar
  144. Hubbard HG (1899) Insect fauna of the giant cactus of Arizona: letters from the southwest. Psyche Suppl 1:1–8Google Scholar
  145. Hynes H (1975) The stream and its valley. Verh Internat Verein Limnol 19:1–15Google Scholar
  146. Irmler U, Heller K, Warning J (1996) Age and tree species as factors influencing the populations of insects living in dead wood (Coleoptera, Diptera: Sciaridae, Mycetophilidae). Pedobiologia 40:134–148Google Scholar
  147. Jansson N, Ranius T, Larsson A, Milberg P (2009) Boxes mimicking tree hollows can help conservation of saproxylic beetles. Biodivers Conserv 18:3891–3908CrossRefGoogle Scholar
  148. Jaworski T (2018) Diversity of saproxylic Lepidoptera. In: Ulyshen MD (ed) saproxylic insects: diversity, ecology and conservation. Springer, Heidelberg, pp 319–338Google Scholar
  149. Jaworski T, Plewa R, Hilszczański J (2012) First report of Dryadaula caucasica (Zagulajev, 1970) from Central Europe and records for further rare tineids (Lepidoptera: Tineidae) in Białowieża Primeval Forest. Polish J Entomol 81:73–79CrossRefGoogle Scholar
  150. Jaworski T, Hilszczański J, Plewa R, Szczepkowski A (2014) Fungus moths (Lepidoptera, Tineidae) of the Białowieża Forest. Polish J Entomol 83:5–21CrossRefGoogle Scholar
  151. Jaworski T, Plewa R, Hilszczański J, Szczepkowski A, Horak J (2016) Saproxylic moths reveal complex within-group and group-environment patterns. J Insect Conserv 20:677–690CrossRefGoogle Scholar
  152. Jiménez-Soto E, Philpot SM (2015) Size matters: nest colonization patterns for twig-nesting ants. Ecol Evol 5(16):3288–3298PubMedPubMedCentralCrossRefGoogle Scholar
  153. Johnson JB, Hagen KS (1981) A neuropterous larvae uses an allomone to attack termites. Nature 289:506–507CrossRefGoogle Scholar
  154. Jonsell M (2004) Old park trees: a highly desirable resource for both history and beetle diversity. J Arboric 30(4):238–244Google Scholar
  155. Jonsell M (2012) Old park trees as habitat for saproxylic beetle species. Biodivers Conserv 21:619–642CrossRefGoogle Scholar
  156. Jonsson BG (2012) Population dynamics and evolutionary strategies. In: Stokland JN, Siitonen J, Jonsson BG (eds) Biodiversity in dead wood. Cambridge University Press, New York, NY, pp 338–355CrossRefGoogle Scholar
  157. Jonsson BG, Kruys N (eds) (2001) Ecology of woody debris in boreal forests. Ecol Bull 49:9–283Google Scholar
  158. Käärik AA (1974) Decomposition of wood. In: Dickinson CH, Pugh GJF (eds) Biology of plant litter decomposition, vol I. Academic Press, London, pp 129–174CrossRefGoogle Scholar
  159. Katz HL (1997) Clothes moths. In: Mallis A, Moreland D (eds) Handbook of pest control, 8th edn. Mallis Handbook and Technical Training Company, Cleveland, OH, pp 427–463Google Scholar
  160. Keller M, Palace M, Asner GP, Pereira R Jr, Silva JNM (2004) Coarse woody debris in undisturbed and logged forests in the eastern Brazilian Amazon. Glob Change Biol 10:784–795CrossRefGoogle Scholar
  161. Kelly PE, Cook ER, Larson DW (1994) A 1397-year tree-ring chronology of Thuja occidentalis from cliff faces of the Niagara Escarpment, southern Ontario, Canada. Can J Forest Res 24:1049–1057CrossRefGoogle Scholar
  162. Ketchum RM (1970) The secret life of the forest. American Heritage Press, New York, NYGoogle Scholar
  163. Kettunen J, Kobro S, Martikainen P (2005) Thrips (Thysanoptera) from dead aspen (Populus tremula) trees in Eastern Finland. Entomol Fennica 16:246–250Google Scholar
  164. Key RS, Ball SG (1993) Positive management for saproxylic invertebrates. In: Kirby KJ, Drake CM (eds) Dead wood matters: the ecology and conservation of saproxylic invertebrates in Britain. English Nature Science No. 7. Peterborough, Cambridgeshire, pp 89–101Google Scholar
  165. King JR, Warren II RJ, Maynard DS, Bradford MA (2018) Ants: ecology and impacts in dead wood. In: Ulyshen MD (ed) Saproxylic insects: diversity, ecology and conservation. Springer, Heidelberg, pp 237–262Google Scholar
  166. Kirby P (1992) [2013 reprint] Habitat management for invertebrates. Pelagic Publishing, ExeterGoogle Scholar
  167. Kirby KJ, Drake CM (eds) (1993) Dead wood matters: the ecology and conservation of saproxylic invertebrates in Britain. English Nature Science No. 7. Peterborough, CambridgeshireGoogle Scholar
  168. Kitching RL (2000) Food webs and container habitats: the natural history and ecology of phytotelmata. Cambridge University Press, New York, NYCrossRefGoogle Scholar
  169. Klass K-D, Zompro O, Kristensen NP, Adis J (2002) Mantophasmatodea: a new insect order with extant members in the Afrotropics. Science 296(5572):1456–1459PubMedCrossRefPubMedCentralGoogle Scholar
  170. Kobro S (2001) Hoplothrips polysticta (Thysanoptera) on the wood-rotting polypore Trichaptum abietinum infesting dead Picea abies in Norway. Entomol Fennica 12:15–21Google Scholar
  171. Komonen A, Siitonen J, Mutanen M (2001) Insects inhabiting two old-growth forest polypore species. Entomol Fennica 12:3–14Google Scholar
  172. Komonen A, Halme P, Jäntti M, Koskela T, Kotiaho JS, Toivanen T (2014) Created substrates do not fully mimic natural substrates in restoration: the occurrence of polypores on spruce logs. Silva Fenn 48(1):1–12, article id 980Google Scholar
  173. Krogstad BO (1959) Some aspects of the ecology of Axymyia furcata McAtee (Diptera: Sylvicolidae). J Minn Acad Sci 27:175–177Google Scholar
  174. Kuuluvainen T, Syrjänen K, Kalliola R (2001) Logs in a pristine Picea abies forest: occurrence, decay stage distribution and spatial pattern. In: Jonsson BG, Kruys N (eds) Ecology of woody debris in boreal forests. Ecol Bull 49:105–113Google Scholar
  175. Lachat T, Nagel P, Cakpo Y, Attignon S, Goergen G, Sinsin B, Peveling R (2006) Dead wood and saproxylic beetle assemblages in a semi-deciduous forest in Southern Benin. Forest Ecol Manag 225:27–38CrossRefGoogle Scholar
  176. Laudenslayer WF Jr, Shea PJ, Valentine BE, Weatherspoon CP, Lisle TE (technical coordinators) (2002) Proceedings of the symposium on the ecology and management of dead wood in western forests, 2–4 November 1999, Reno, NE. USDA Forest Service, Pacific Southwest Research Station, Albany, CA. General Technical Report PSW-GTR-181Google Scholar
  177. Lawrence JF, Powell JA (1969) Host relationships in North American fungus-feeding moths (Oecophoridae, Oinophilidae, Tineidae). Bull Mus Comp Zool 138(2):29–51Google Scholar
  178. Lee S-L, Spence JR, Langor DW (2014) Succession of saproxylic beetles associated with decomposition of boreal white spruce logs. Agr Forest Entomol 16:391–405CrossRefGoogle Scholar
  179. Legendre F, Nel A, Svenson GJ, Robillard T, Pellens R, Grandcolas P (2015) Phylogeny of Dictyoptera: dating the origin of cockroaches, praying mantises and termites with molecular data and controlled fossil evidence. PLoS ONE 1–27. doi:10.1371/journal.pone.0130127CrossRefPubMedPubMedCentralGoogle Scholar
  180. Lo N, Tokuda G, Watanabe H, Rose H, Slaytor M, Maekawa K, Bandi C, Noda H (2000) Evidence from multiple gene sequences indicates that termites evolved from wood-feeding cockroaches. Curr Biol 10:801–804PubMedPubMedCentralCrossRefGoogle Scholar
  181. Lodge DJ, Winter D, González G, Clum N (2016) Effects of hurricane-felled tree trunks on soil carbon, nitrogen, microbial biomass, and root length in a wet tropical forest. Forests 7(264):1–19. Scholar
  182. Lofoth E (1998) The dead wood cycle. In: Voller J, Harrison S (eds) Conservation biology principles for forested landscapes. British Columbia Ministry of Forests, Vancouver, pp 185–214Google Scholar
  183. Logan WB (2005) Oak: the frame of civilization. W. W. Norton, New York, NYGoogle Scholar
  184. Longrich NR, Currie PJ (2009) Albertonykus borealis, a new alvarezsaur (Dinosauria: Theropoda) from the Early Maastrichtian of Alberta, Canada: implications for the systematics and ecology of the Alvarezsauridae. Cretaceous Res 30:239–252CrossRefGoogle Scholar
  185. Lonsdale D (ed) (2013) Ancient and other veteran trees: further guidance on management. The Tree Council, LondonGoogle Scholar
  186. Mamaev BM (1961) Dejatelnost’ krupnych bespozvonoˇcnych- odin iz osnovnych faktorov estestvennogo razruˇsenija drevesiny (Activity of larger invertebrates as one of the main factors of natural destruction of wood (in Russian, with English summary)). Pedobiologia 1:38–52Google Scholar
  187. Mamaev BM (1973) Ecology of the relic cockroach (Cryptocercus relictus). Sov J Ecol 4(6):519–521Google Scholar
  188. Martin MM (1991) The evolution of cellulose digestion in insects. Philos Trans R Soc B 333:281–288CrossRefGoogle Scholar
  189. Maser C, Trappe JM (technical eds) (1984) The seen and unseen world of the fallen tree. U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. General Technical Report PNW-GTR-164:1–56Google Scholar
  190. Maser C, Anderson RG, Cromack K Jr, Williams JT, Martin RE (1979) Dead and down woody material. In: Wildlife habitats in managed forests—the Blue Mountains of Oregon and Washington. U.S. Department of Agriculture, Forest Service. Agriculture Handbook No. 553, pp 78–95Google Scholar
  191. Maser C, Tarrant RF, Trappe JM, Franklin JF (technical eds) (1988) From the forest to the sea: a story of fallen trees. U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. General Technical Report PNW-GTR-229:1–153Google Scholar
  192. Mason WH, Odum EP (1969) The effect of coprophagy on retention and bioelimination of radionuclides by detritus-feeding animals. In: Nelson DJ, Evans FE (eds) Symposium on radioecology. Proceedings of the Second National Symposium on Radioecology, Ann Arbor, Michigan, 15–17 May 1967. U.S. Atomic Energy Commission Division of Biology and Medicine (TIO 4500), Washington, DC, pp 721–724Google Scholar
  193. Matthewman WG, Pielou DP (1971) Arthropods inhabiting the sporophores of Fomes fomentarius (Polyporaceae) in Gatineau Park, Quebec. Can Entomol 103(6):775–847CrossRefGoogle Scholar
  194. McAlpine JF, Peterson BV, Shewell GE, Teskey HJ, Vockeroth JR, Wood DM (eds) (1981) Manual of Nearctic Diptera, vol 1. Monograph number 27. Research Branch, Agriculture Canada, OttawaGoogle Scholar
  195. McAlpine JF, Peterson BV, Shewell GE, Teskey HJ, Vockeroth JR, Wood DM (eds) (1987) Manual of Nearctic Diptera, vol 2. Monograph number 28. Research Branch, Agriculture Canada, OttawaGoogle Scholar
  196. McAtee WL (1911) Woodpeckers in relation to trees and wood products. US Dep Agric Biol Surv Bull 39:1–99Google Scholar
  197. McKenna DD, Farrell BD, Caterino MS, Farnum CW, Hawks DC, Maddison DR, Seago AE, Short AEZ, Newton AF, Thayer MK (2015) Phylogeny and evolution of Staphyliniformia and Scarabaeiformia: forest litter as a stepping stone for diversification of nonphytophagous beetles. Syst Entomol 40:35–60CrossRefGoogle Scholar
  198. McMinn JW, Crossley DA (1996) Biodiversity and coarse woody debris in southern forests. Proceedings of the workshop on coarse woody debris in southern forests: effects on biodiversity. U.S. Department of Agriculture, Forest Service, Southeastern Forest Experiment Station, Asheville, NC. General Technical Report SE-94, pp 1–146Google Scholar
  199. Meggs J (1996) Pilot study of the effects of modern logging practices on the decaying-log habitat in wet eucalypt forest in south-east Tasmania. Report to the Tasmanian RFA Environment and Heritage Technical Committee ForestryGoogle Scholar
  200. Mertl AL, Wilkie KTR, Traniello JFA (2009) Impact of flooding on the species richness, density and composition of Amazonian litter-nesting ants. Biotropica 41(5):633–641CrossRefGoogle Scholar
  201. Micó E, Juárez M, Sánchez A, Galante E (2011) Action of the saproxylic scarab larva Cetonia aurataeformis (Coleoptera: Scarabaeoidea: Cetoniidae) on woody substrates. J Nat Hist 45(41–42):2527–2542CrossRefGoogle Scholar
  202. Miller RB, Stange LA (2006) Common name: an antlion. Scientific name: Glenurus gratus (Say) (Insecta: Neuroptera: Myrmeleontidae). University of Florida, Featured Creatures. Accessed 18 July 2017
  203. Minari E, Avanzi D, Fezzardi R (2003) Narrating dead wood: experiences in teaching and dissemination. In: Mason F, Nardi G, Tisato M (eds) Proceedings of the International Symposium “Dead wood: a key to biodiversity”, Mantova, 29–31 May 2003. Sherwood 95(Suppl 2):55–56Google Scholar
  204. Misof B, Liu S, Meusemann K, Peters RS, Donath A, Mayer C, Frandsen PB, Ware J, Flouri T, Beutel RG, Niehuis O, Petersen M, Izquierdo-Carrasco F, Wappler T, Rust J, Aberer AJ, Aspöck U, Aspöck H, Bartel D, Blanke A, Berger S, Böhm A, Buckley TR, Calcott B, Chen J, Friedrich F, Fukui M, Fujita M, Greve C, Grobe P, Gu S, Huang Y, Jermiin LS, Kawahara AY, Krogmann L, Kubiak M, Lanfear R, Letsch H, Li Y, Li Z, Li J, Lu H, Machida R, Mashimo Y, Kapli P, McKenna DD, Meng G, Nakagaki Y, Navarrete-Heredia JL, Ott M, Ou Y, Pass G, Podsiadlowski L, Pohl H, von Reumont BM, Schütte K, Sekiya K, Shimizu S, Slipinski A, Stamatakis A, Song W, Su X, Szucsich NU, Tan M, Tan X, Tang M, Tang J, Timelthaler G, Tomizuka S, Trautwein M, Tong X, Uchifune T, Walzl MG, Wiegmann BM, Wilbrandt J, Wipfler B, Wong TKF, Wu Q, Wu G, Xie Y, Yang S, Yang Q, Yeates DK, Yoshizawa K, Zhang Q, Zhang R, Zhang W, Zhang Y, Zhao J, Zhou C, Zhou L, Ziesmann T, Zou S, Li Y, Xu X, Zhang Y, Yang H, Wang J, Wang J, Kjer KM, Zhou X (2014) Phylogenomics resolves the timing and pattern of insect evolution. Science 346(6210):763–767PubMedPubMedCentralCrossRefGoogle Scholar
  205. Morley C (1935) A beech-tree’s insects and their parasites. Entomol Mon Mag 71:90–91Google Scholar
  206. Morse JC (ed) (2017) Trichoptera world checklist. Accessed 18 July 2017
  207. Mound LA (2005) Thysanoptera: diversity and interactions. Annu Rev Entomol 50:247–269PubMedCrossRefPubMedCentralGoogle Scholar
  208. Müller J, Noss RF, Bussler H, Brandl R (2010) Learning from a “benign neglect strategy” in a national park: response of saproxylic beetles to dead wood accumulation. Biol Conserv 143:2559–2569CrossRefGoogle Scholar
  209. Nalepa CA (1984) Colony composition, protozoan transfer and some life history characteristics of the woodroach Cryptocercus punctulatus Scudder (Dictyoptera: Cryptocercidae). Behav Ecol Sociobiol 14:273–279CrossRefGoogle Scholar
  210. Nalepa CA, Bandi C (1999) Phylogenetic status, distribution, and biogeography of Cryptocercus (Dictyoptera: Cryptocercidae). Ann Entomol Soc Am 92(3):292–303CrossRefGoogle Scholar
  211. Nalepa CA, Byers GW, Bandi C, Sironi M (1997) Description of Cryptocercus clevelandi (Dictyoptera: Cryptocercidae) from the northwestern United States, molecular analysis of bacterial symbionts in its fat body, and notes on biology, distribution, and biogeography. Ann Entomol Soc Am 90(4):416–424CrossRefGoogle Scholar
  212. Nalepa CA, Bignell DE, Bandi C (2001a) Detritivory, coprophagy, and the evolution of digestive mutualisms in Dictyoptera. Insect Soc 48:194–201CrossRefGoogle Scholar
  213. Nalepa CA, Li L, Lu W, Lazell J (2001b) Rediscovery of the woodeating cockroach Cryptocercus primarius (Dictyoptera: Cryptocercidae) in China, with notes on ecology and distribution. Acta Zootaxon Sin 26(2):184–190Google Scholar
  214. Nalepa CA, Shimada K, Maekawa K, Luykx P (2017) Distribution of karyotypes of the Cryptocercus punctulatus species complex (Blattodea: Cryptocercidae) in Great Smoky Mountains National Park. J Insect Sci 17(3):1–11CrossRefGoogle Scholar
  215. Nappi A, Drapeau P, Leduc A (2015) How important is dead wood for woodpeckers foraging in eastern North American boreal forests? Forest Ecol Manag 346:10–21CrossRefGoogle Scholar
  216. Newell P, King S, Kaller M (2009) Foraging behavior of pileated woodpeckers in partial cut and uncut bottomland hardwood forest. Forest Ecol Manag 258:1456–1464CrossRefGoogle Scholar
  217. Niemz P, Mannes D (2012) Non-destructive testing of wood and wood-based materials. J Cult Herit 13S:S26–S34. Scholar
  218. Nordén B, Götmark F, Tönnberg M, Ryberg M (2004) Dead wood in semi-natural temperate broadleaved woodland: contribution of coarse and fine dead wood, attached dead wood and stumps. Forest Ecol Manag 194:235–248CrossRefGoogle Scholar
  219. Nowak MA, Tarnita CE, Wilson EO (2010) The evolution of eusociality. Nature 466(7310):1057–1062PubMedPubMedCentralCrossRefGoogle Scholar
  220. Noyce KV, Kannowski PB, Riggs MR (1997) Black bears as ant-eaters: seasonal associations between bear myrmecophagy and ant ecology in north-central Minnesota. Can J Zool 75:1671–1686CrossRefGoogle Scholar
  221. O’Brien LB (1971) The systematics of the tribe Plectoderini in America north of Mexico (Homoptera: Fulgoroidea: Achilidae). Univ Calif Publ Entomol 64:1–79Google Scholar
  222. Ols C, Victorsson J, Jonsell M (2013) Saproxylic insect fauna in stumps on wet and dry soil: implications for stump harvest. Forest Ecol Manag 290:15–21CrossRefGoogle Scholar
  223. Omad GH, Pessacq P, Epele LB (2015) Spatial distribution, feeding and length–mass relationships of Diamphipnopsis samali (Plecoptera, Diamphipnoidae) in a North Patagonia Andean stream, Argentina. Rev Soc Entomol Argent 74(1–2):27–35Google Scholar
  224. Omasa K, Hosoi F, Uenishi TM, Shimizu Y, Akiyama Y (2008) Three-dimensional modeling of an urban park and trees by combined airborne and portable on-ground scanning LIDAR remote sensing. Environ Modeling Asses 13:473–481. Scholar
  225. Owens BE, Carlton CE (2015) “Berlese vs. Winkler”: comparison of two forest litter Coleoptera extraction methods and the ECOLI (extraction of Coleoptera in litter) protocol. Coleopt Bull 69(4):645–661CrossRefGoogle Scholar
  226. Pakenham T (2003) Remarkable trees of the world. W.W. Norton, New York, NYGoogle Scholar
  227. Parmain G, Bouget C (2018) Large solitary oaks as keystone structures for saproxylic beetles in European agricultural landscapes. Insect Conserv Diver 11:100–115. doi: Scholar
  228. Pass G, Szucsich NU (2011) 100 years of research on the Protura: many secrets still retained. Soil Organisms 83(3):309–334Google Scholar
  229. Paviour-Smith K, Elbourn CA (1993) A qualitative study of the fauna of small dead and dying wood in living trees in Wytham Woods, near Oxford. In: Kirby KJ, Drake CM (eds) Dead wood matters: the ecology and conservation of saproxylic invertebrates in Britain. English Nature Science No. 7. Peterborough, Cambridgeshire, pp 33–57Google Scholar
  230. Petr T (1970) Macroinvertebrates of flooded trees in the man-made Volta Lake (Ghana) with special reference to the burrowing mayfly Povilla adusta Navas. Hydrobiologia 36(3–4):373–398CrossRefGoogle Scholar
  231. Petr T (1971) Lake Volta—a progress report. New Sci Sci J 49(736):178–182Google Scholar
  232. Philpott SM, Foster PF (2005) Nest-site limitation in coffee agroecosystems: artificial nets maintain diversity of arboreal ants. Ecol Appl 15(4):1478–1485CrossRefGoogle Scholar
  233. Pletsch DJ (1946) The alpine rock crawler, Grylloblatta campodeiformis Walker in Montana. P Mont Acad Sci 5–6:17–20Google Scholar
  234. Pogue MG (2012) The Aventiinae, Boletobiinae, Eublemminae, Pangraptinae, Phytometrinae, and Scolecocampinae (Lepidoptera: Noctuoidea: Erebidae) of Great Smoky Mountains National Park, U.S.A. Zootaxa 3153:1–31Google Scholar
  235. Polhemus DA, Polhemus JT (1988) Family Gelastocoridae Kirkaldy, 1897: the toad bugs. In: Henry TJ, Froeschner RC (eds) Catalog of the Heteroptera, or true bugs, of Canada and the Continental United States. E. J. Brill, New York, NY, pp 136–139Google Scholar
  236. Pollet C (2010) Bark: an intimate look at the world’s trees. Frances Lincoln Limited, LondonGoogle Scholar
  237. Pollock DA, Normark BB (2002) The life cycle of Micromalthus debilis LeConte (1878) (Coleoptera: Archostemata: Micromalthidae): historical review and evolutionary perspective. J Zool Syst Evol Res 40:105–112CrossRefGoogle Scholar
  238. Powell GS, Shukle JT, Richmond DS, Holland JD (2016) Saproxylic beetle biodiversity in golf course habitats. Crop Forage Turfgrass Manage 2:1–8. Scholar
  239. Prete FR, Wells H, Wells PH, Hurd LE (eds) (1999) The praying mantids. The Johns Hopkins University Press, LondonGoogle Scholar
  240. PTES (2017) People’s trust for endangered species: fact file stag beetles. Accessed 18 July 2017
  241. Pyle C, Brown MM (1998) A rapid system of decay classification for hardwood logs of the eastern deciduous forest floor. J Torrey Bot Soc 125(3):237–245CrossRefGoogle Scholar
  242. Pyle C, Brown MM (1999) Heterogeneity of wood decay classes within hardwood logs. Forest Ecol Manag 114:253–259CrossRefGoogle Scholar
  243. Ranius T, Aguado LO, Antonsson K, Audisio P, Ballerio A, Carpaneto GM, Chobot K, Gjurašin B, Hanssen O, Huijbregts H, Lakatos F, Martin O, Neculiseanu Z, Nikitsky NB, Paill W, Pirnat A, Rizun V, Ruicănescu A, Stegner J, Süda I, Szwałko P, Tamutis V, Telnov D, Tsinkevich V, Versteirt V, Vignon V, Vögeli M, Zach P (2005) Osmoderma eremita (Coleoptera, Scarabaeidae, Cetoniinae) in Europe. Anim Biodiv Conserv 28:1–44Google Scholar
  244. Ranius T, Niklasson M, Berg N (2009) Development of tree hollows in pedunculated oak (Quercus robur). Forest Ecol Manag 257:303–310CrossRefGoogle Scholar
  245. Reddell JR (1983) A checklist and bibliography of the Japygoidea (Insecta: Diplura) or North America, Central America, and West Indies. Pearce-Sellards Ser 37:1–41Google Scholar
  246. Redford KH (1987) Ants and termites as food. Patterns of mammalian myrmecophagy. In: Genoways HH (ed) Current mammalogy, vol 1. Springer, Boston, MA, pp 349–399CrossRefGoogle Scholar
  247. Reemer M (2005) Saproxylic hoverflies benefit by modern forest management (Diptera: Syrphidae). J Insect Conserv 9:49–59CrossRefGoogle Scholar
  248. Renvall P (1995) Community structure and dynamics of wood-rotting Basidiomycetes on decomposing conifer trunks in northern Finland. Karstenia 35:1–51CrossRefGoogle Scholar
  249. Ricarte A, Jover T, Marcos-García MA, Micó E, Brustel H (2009) Saproxylic beetles (Coleoptera) and hoverflies (Diptera: Syrphidae) from a Mediterranean forest: towards a better understanding of their biology for species conservation. J Nat Hist 43(9–10):583–607CrossRefGoogle Scholar
  250. Rose CL, Marcot BG, Mellen TK, Ohmann JL, Waddell KL, Lindley DL, Schreiber B (2001) Decaying wood in Pacific Northwest forests: concepts and tools for habitat management. In: Johnson DH, O’Neil TA (Managing directors) Wildlife-habitat relationships in Oregon and Washington. Oregon State University Press, Corvallis, OR, pp 580–623Google Scholar
  251. Ross ES (1944) A revision of the Embioptera, or web-spinners, of the New World. P US Natl Mus 94(3175):401–504 + 2 platesCrossRefGoogle Scholar
  252. Ross ES (1970) Biosystematics of the Embioptera. Annu Rev Entomol 15:157–172CrossRefGoogle Scholar
  253. Ross ES (1984a) A synopsis of the Embiidina of the United States. P Entomol Soc Wash 86(1):82–93Google Scholar
  254. Ross ES (1984b) Classification of the Embiidina of Mexico with descriptions of new taxa. Occas Pap Calif Acad Sci 140:1–50Google Scholar
  255. Rotheray EL (2013) Differences in ecomorphology and microhabitat use of four saproxylic larvae (Diptera, Syrphidae) in Scots pine stump rot holes. Ecol Entomol 38:219–229CrossRefGoogle Scholar
  256. Rotheray GE, Hancock G, Hewitt S, Horsfield D, MacGowan I, Robertson D, Watt K (2001) The biodiversity and conservation of saproxylic Diptera in Scotland. J Insect Conserv 5:77–85CrossRefGoogle Scholar
  257. Rouvinen S, Kuuluvainen T, Karjalainen L (2002) Coarse woody debris in old Pinus sylvestris dominated forests along a geographic and human impact gradient in boreal Fennoscandia. Can J Forest Res 32(12):2184–2200CrossRefGoogle Scholar
  258. Sánchez A, Micó E, Galante E, Juárez M (2017) Chemical transformation of Quercus wood by Cetonia larvae (Coleoptera: Cetoniidae): an improvement of carbon and nitrogen available in saproxylic environments. Eur J Soil Biol 78:57–65CrossRefGoogle Scholar
  259. Sanders CJ (1964) The biology of carpenter ants in New Brunswick. Can Entomol 96:894–909CrossRefGoogle Scholar
  260. Savely HE Jr (1939) Ecological relations of certain animals in dead pine and oak logs. Ecol Monogr 9:321–385CrossRefGoogle Scholar
  261. Schlaghamersky J (2000) The saproxylic beetles (Coleoptera) and ants (Formicidae) of central European hardwood floodplain forests. Folia Fac Sci Nat Un Biol 103:1–168 + 36 (appendices)Google Scholar
  262. Schlegel BC, Donoso PJ (2008) Effects of forest type and stand structure on coarse woody debris in old-growth rainforests in the Valdivian Andes, south-central Chile. Forest Ecol Manag 255:1906–1914CrossRefGoogle Scholar
  263. Schimitschek E (1953) Forstentomologische Studien im Urwald Rotwald. Teil I. Z Angew Entomol 34:178–215CrossRefGoogle Scholar
  264. Scrivener AM, Slaytor M, Rose HA (1989) Symbiont-independent digestion of cellulose and starch in Panesthia cribrata Saussure, an Australian wood-eating cockroach. J Insect Physiol 35(12):935–941CrossRefGoogle Scholar
  265. Sebek P, Altman J, Platek M, Cizek L (2013) Is active management the key to the conservation of saproxylic biodiversity? Pollarding promotes the formation of tree hollows. PLoS ONE 8(3):1–6, e60456. doi: Scholar
  266. Seibold S, Bässler C, Baldrain P, Thorn S, Müller J, Gossner MM (2014) Wood resource and not fungi attract early-successional saproxylic species of Heteroptera—an experimental approach. Insect Conserv Diver 7:533–542CrossRefGoogle Scholar
  267. Seibold S, Bässler C, Brandl R, Fahrig L, Förster B, Heurich M, Hothorn T, Scheipl F, Thorn S, Müller J (2017) An experimental test of the habitat-amount hypothesis for saproxylic beetles in a forested region. Ecology 98:1613–1622. Scholar
  268. Shelford V (1913) Animal communities in temperate America as illustrated by the Chicago region. University of Chicago Press, Chicago, ILGoogle Scholar
  269. Shetlar DJ (1978) Biological observations on Zorotypus hubbardi Caudell (Zoraptera). Entomol News 89(9–10):217–223Google Scholar
  270. Shifley SR, Brookshire BL, Larsen DR, Herbeck LA (1997) Snags and down wood in Missouri old-growth and mature second-growth forests. North J Appl For 14(4):165–172Google Scholar
  271. Shigo AL (1974) A tree hurts, too. NE-INF-16-73. U.S. Department of Agriculture, Forest Service, Northeastern Forest Experiment Station, Upper Darby, PAGoogle Scholar
  272. Shigo AL (1979) Tree decay – an expanded concept. Information Bulletin No. 419. U.S. Dept. of Agriculture, Forest Service, Northeastern Forest Experiment Station, Broomall, PA.
  273. Shigo AL (1991) Modern arboriculture: a systems approach to the care of trees and their associates. Shigo and Trees Associates, Durham, NHGoogle Scholar
  274. Shigo AL, Marx HG (1977) Compartmentalization of decay in trees. U.S. Department of Agriculture, Forest Service. Information Bulletin 405, Washington, DCGoogle Scholar
  275. Shortle WC, Dudzik KR (2012) Wood decay in living and dead trees: a pictorial overview. General Technical Report NRS-97. U.S. Department of Agriculture, Forest Service, Northern Research Station, Newton Square, PA.
  276. Siitonen J, Penttilä R, Kotiranta H (2001) Coarse woody debris, polyporous fungi and saproxylic insects in an old-growth spruce forest in Vodlozero National Park, Russian Karelia. In: Jonsson BG, Kruys N (eds) Ecology of woody debris in boreal forests. Ecol Bull 49:231–242Google Scholar
  277. Silvestri F (1913) Descrizione di un nuovo ordine di insetti. Bollett Di Zoologia Gen E Agr 7:193–209Google Scholar
  278. Sinclair BJ (2013) Rediscovered at last: a new enigmatic genus of Axymyiidae (Diptera) from western North America. Zootaxa 3682(1):143–150PubMedCrossRefPubMedCentralGoogle Scholar
  279. Sippola A-L, Lehesvirta T, Renvall P (2001) Effects of selective logging on coarse woody debris and diversity of wood-decaying polypores in eastern Finland. In: Jonsson BG, Kruys N (eds) Ecology of woody debris in Boreal forests. Ecol Bull 49:243–254Google Scholar
  280. Skarżyński D, Piwnik A, Krzysztofiak A (2016) Saproxylic springtails (Collembola) of the Wigry National Park. Forest Research Papers 77(3):186–203CrossRefGoogle Scholar
  281. Smolis A, Kadej M (2014) A new saproxylic Paleonurini (Collembola, Neanuridae) species from North America with the first record of Galanura agnieskae Smolis, 2000 from the continent. Fla Entomol 97(4):1386–1394CrossRefGoogle Scholar
  282. Sollins P (1982) Input and decay of coarse woody debris in coniferous stands in western Oregon and Washington. Can J Forest Res 12:18–28CrossRefGoogle Scholar
  283. Sollins P, Cline SP, Verhoeven T, Sachs D, Spycher G (1987) Patterns of log decay in old-growth Douglas-fir forests. Can J Forest Res 17:1585–1595CrossRefGoogle Scholar
  284. Spänhoff B, Alecke C, Meyer EI (2001) Simple method for rating the decay stages of submerged woody debris. J N Am Benthol Soc 20(3):385–394CrossRefGoogle Scholar
  285. Speight MCD (1989) Saproxylic invertebrates and their conservation. Nature and environment series, Strasbourg, No. 42:1–82Google Scholar
  286. Speight MCD (2011) Species accounts of European Syrphidae (Diptera), Glasgow 2011. Syrph the net, the database of European Syrphidae (Diptera) 65:1–285Google Scholar
  287. Spetich MA, Shifley SR, Parker GR (1999) Regional distribution and dynamics of coarse woody debris in midwestern old-growth forests. Forest Sci 45(2):302–313Google Scholar
  288. Spetich MA, Liechty HO, Stanturf JA, Marion DA, Luckow K, Meier CE, Guldin JM (2002) Coarse woody debris of a prerestoration shortleaf pine-bluestem forest. In: Outcalt KW (ed) Proceedings of the Eleventh Biennial Southern Silvicultural Research Conference. General Technical Report SRS-48, pp 615–619Google Scholar
  289. Spies TA, Franklin JF, Thomas TB (1988) Coarse woody debris in Douglas-fir forests of western Oregon and Washington. Ecology 69(6):1689–1702CrossRefGoogle Scholar
  290. Sprecher E (2003) The status of Lucanus cervus in Switzerland. In: Bowen CP (ed) Proceedings of the Second Pan-European Conference on Saproxylic Beetles, Royal Holloway, University of London, June 2002. People’s Trust for Endangered Species, London, pp 1–3Google Scholar
  291. St Clair RM (1994) Some larval Leptoceridae (Trichoptera) from south-eastern Australia. Rec Aust Mus 46(2):171–226CrossRefGoogle Scholar
  292. Stannard LJ (1968) The thrips, or Thysanoptera, of Illinois. Illinois Nat Hist Surv Bull 29(4):215–552Google Scholar
  293. Stanton AO, Dias DA, O’Hanlon JC (2015) Egg dispersal in the Phasmatodea: convergence in chemical signaling strategies between plants and animals. J Chem Ecol 41:689–695PubMedCrossRefPubMedCentralGoogle Scholar
  294. Stewart KW, Stark BP (2008) Plecoptera. In: Merritt RW, Cummins KW, Berg MB (eds) An introduction to the aquatic insects of North America, 4th edn. Kendall/Hunt Publishing, Dubuque, IA, pp 311–384Google Scholar
  295. Steyskal GC (1944) Notes on Nallachius americanus (McL.) (Dillaridae, Neuroptera). Psyche 51:183–184CrossRefGoogle Scholar
  296. Stokland JN (2012a) Evolution of saproxylic organisms. In: Stokland JN, Siitonen J, Jonsson BG (eds) Biodiversity in dead wood. Cambridge University Press, New York, NY, pp 218–247CrossRefGoogle Scholar
  297. Stokland JN (2012b) The saproxylic food web. In: Stokland JN, Siitonen J, Jonsson BG (eds) Biodiversity in dead wood. Cambridge University Press, New York, NY, pp 29–57CrossRefGoogle Scholar
  298. Stokland JN (2012c) Wood decomposition. In: Stokland JN, Siitonen J, Jonsson BG (eds) Biodiversity in dead wood. Cambridge University Press, New York, NY, pp 10–28CrossRefGoogle Scholar
  299. Stokland JN, Siitonen J (2012a) Mortality factors and decay succession. In: Stokland JN, Siitonen J, Jonsson BG (eds) Biodiversity in dead wood. Cambridge University Press, New York, NY, pp 110–149CrossRefGoogle Scholar
  300. Stokland JN, Siitonen J (2012b) Species diversity of saproxylic organisms. In: Stokland JN, Siitonen J, Jonsson BG (eds) Biodiversity in dead wood. Cambridge University Press, New York, NY, pp 248–274CrossRefGoogle Scholar
  301. Stokland JN, Siitonen J, Jonsson BG (eds) (2012) Biodiversity in dead wood. Cambridge University Press, New York, NYGoogle Scholar
  302. Stone CD (1972) Should trees have standing? William Kaufman, Los Altos, CAGoogle Scholar
  303. Storaunet KO, Rolstad J (2002) Time since death and fall of Norway spruce logs in old-growth and selectively cut boreal forest. Can J Forest Res 32:1801–1812CrossRefGoogle Scholar
  304. Sturtevant BR, Bissonette JA, Long JN, Roberts DW (1997) Coarse woody debris as a function of age, stand structure, and distribution in Boreal Newfoundland. Ecol Appl 7(2):702–712CrossRefGoogle Scholar
  305. Svacha P, Lawrence JF (2014) 2.4. Cerambycidae Latreille, 1802. In: Leschen RAB, Beutel RG (eds) Handbook of zoology, vol 4/40: Coleoptera, beetles, vol 3. Morphology and systematics (Phytophaga). W DeGruyter, Berlin, pp 77–177Google Scholar
  306. Sverdrup-Thygeson A, Skarpaas O, Ødegaard F (2010) Hollow oaks and beetle conservation: the significance of the surroundings. Biodivers Conserv 19:837–852CrossRefGoogle Scholar
  307. Swenson JE, Jansson A, Riig R, Sandegren F (1999) Bears and ants: myrmecophagy by brown bears in central Scandinavian. Can J Zool 77:551–561CrossRefGoogle Scholar
  308. Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. University of California Press, Los Angeles, CAGoogle Scholar
  309. Szujecki A (1987) Ecology of forest insects. Series Entomologica 26. Springer Netherlands, WarszawaCrossRefGoogle Scholar
  310. Tanahashi M, Togashi K (2009) Interference competition and cannibalism by Dorcus rectus (Motschulsky) (Coleóptera: Lucanidae) larvae in the laboratory and field. Coleopt Bull 63(3):301–310CrossRefGoogle Scholar
  311. Teskey HJ (1976) Diptera larvae associated with trees in North America. Mem Entomol Soc Can 108(S100):1–53CrossRefGoogle Scholar
  312. Thomas JW (ed) (1979) Wildlife habitats in managed forests—the Blue Mountains of Oregon and Washington. U.S. Department of Agriculture, Forest Service. Agriculture Handbook No. 553:1–512Google Scholar
  313. Thomas JW, Anderson RG, Maser C, Bull EL (1979) Snags. In: Thomas JW (ed) Wildlife habitats in managed forests—the Blue Mountains of Oregon and Washington. U.S. Department of Agriculture, Forest Service. Agriculture Handbook No. 553:60–77Google Scholar
  314. Thorne BL, Grimaldi DA, Krishna K (2000) Early fossil history of the termites. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Springer, Netherlands, pp 77–93CrossRefGoogle Scholar
  315. Todd EL (1959) The Gelastocoridae of Melanesia (Hemiptera). Nova Guinea, n. ser., 10(1):61–95Google Scholar
  316. Torgersen TR, Bull EL (1995) Down logs as habitat for forest-dwelling ants—the primary prey of pileated woodpeckers in northeastern Oregon. Northwest Sci 69(4):294–303Google Scholar
  317. Triplehorn CA, Johnson NF (eds) (2005) Borror and Delong’s introduction to the study of insects, 7th edn. Brooks/Cole Publishing, Florence, KYGoogle Scholar
  318. Triska FJ, Cromack K Jr (1980) The role of woody debris in forests and streams. In: Waring RH (ed) Forests: fresh perspectives from ecosystem analysis. Oregon State University Press, Corvallis, OR, pp 171–190Google Scholar
  319. Tyrrell LE, Crow TR (1994a) Dynamics of dead wood in old-growth hemlock-hardwood forests of northern Wisconsin and northern Michigan. Can J Forest Res 24:1672–1683CrossRefGoogle Scholar
  320. Tyrrell LE, Crow TR (1994b) Structural characteristics of old-growth hemlock-hardwood forests in relation to age. Ecology 75(2):370–386CrossRefGoogle Scholar
  321. Ulyshen MD (2011) Arthropod vertical stratification in temperate deciduous forests: implications for conservation-oriented management. Forest Ecol Manag 261:1479–1489CrossRefGoogle Scholar
  322. Ulyshen MD (2012) Forest canopies and saproxylic beetles: important habitats for an imperiled fauna. In: Daniels JA (ed) Advances in environmental research 6. Nova Science Publishers, pp 529–538Google Scholar
  323. Ulyshen MD (2016) Wood decomposition as influenced by invertebrates. Biol Rev 91:70–85PubMedPubMedCentralCrossRefGoogle Scholar
  324. Ulyshen MD (2018) Saproxylic Diptera. In: Ulyshen MD (ed) Saproxylic insects: diversity, ecology and conservation. Springer, Heidelberg, pp 167–192Google Scholar
  325. Ulyshen MD, Hanula JL (2010) Patterns of saproxylic beetle succession in loblolly pine. Agr Forest Entomol 12:187–194CrossRefGoogle Scholar
  326. Ulyshen MD, Hanula JL, Blinn RL, Kritsky G (2012) Saproxylic Hemiptera habitat associations. Southeast Nat 11(1):135–140CrossRefGoogle Scholar
  327. Ulyshen MD, Zachos LG, Stireman JO III, Sheehan TN, Garrick RC (2017) Insights in the ecology, genetics and distribution of Lucanus elaphus Fabricius (Coleoptera: Lucanidae), North America’s giant stag beetle. Insect Conserv Diver 10:331–340CrossRefGoogle Scholar
  328. USDA (1999) Soil survey staff. Soil taxonomy: a basic system of soil classification for making and interpreting soil surveys, 2nd edn. United States Department of Agriculture-Natural Resource Conservation Service. Agricultural handbook number 436. Washington, DC. Accessed 18 July 2017
  329. Victorsson J, Jonsell M (2016) Overlooked subterranean saproxylic beetle diversity in clear-cut stumps and its implications for stump extraction. Forest Ecol Manag 371:59–66CrossRefGoogle Scholar
  330. Vilhar U, Rantaša B (2016) Zbirka Gozd Eksperimentov: Priročnik za Učenje in Igro v Gozdu. Silva Slovenica, Ljubljana, 110 pp. doi:
  331. Wallwork JA (1976) The distribution and diversity of soil fauna. Academic Press, New York, NYGoogle Scholar
  332. Waltz RD, Burian SK (2008) Ephemeroptera. In: Merritt RW, Cummins KW, Berg MB (eds) An introduction to the aquatic insects of North America, 4th edn. Kendall/Hunt Publishing, Dubuque, IA, pp 181–236Google Scholar
  333. Wang Z-Q, Li Y, Che Y-L, Wang J-J (2015) The wood-feeding Cryptocercus (Blattodea: Cryptocercidae), with description of two new species based on female genitalia. Fla Entomol 98(1):260–271CrossRefGoogle Scholar
  334. Watkins C, Griffin N (1993) The liability of owners and occupiers of land with large, old trees in England and Wales. In: Kirby KJ, Drake CM (eds) Dead wood matters: the ecology and conservation of saproxylic invertebrates in Britain. English Nature Science No. 7. Peterborough, Cambridgeshire, pp 81–88Google Scholar
  335. Wessels T (1997) Reading the forested landscape: a natural history of New England. The Countryman Press, Woodstock, VTGoogle Scholar
  336. Wetterer JK, Hugel S (2014) First North American records of the Old World ant cricket Myrmecophilus americanus (Orthoptera, Myrmecophilidae). Fla Entomol 97(1):126–129CrossRefGoogle Scholar
  337. Wheeler WM (1910) Ants: their structure, development and behavior. Columbia University Press, New York, NYGoogle Scholar
  338. Whitehead PF (1998) Compost bins and other artificially created biotopes as biological conservation agents for xylophilous Coleoptera. Entomol Gaze 49:257–260Google Scholar
  339. Wieczorek J, Bloom D, Guralnick R, Blum S, Döring M, Giovanni R, Robertson T, Vieglais D (2012) Darwin core: an evolving community-developed biodiversity data standard. PLoS ONE 7(1):1–8. e29715. Scholar
  340. Wiggins GB (1996) Larvae of the North American caddisfly genera (Trichoptera), 2nd edn. University of Toronto Press, LondonGoogle Scholar
  341. Wihlm MW, Courtney GW (2011) The distribution and life history of Axymyia furcata McAtee (Diptera: Axymyiidae), a wood inhabiting, semi-aquatic fly. P Entomol Soc Wash 113(3):385–398CrossRefGoogle Scholar
  342. Wihlm MW, Sam RB, Courtney GW (2012) Morphology of Axymyia furcata (Diptera: Axymyiidae), including scanning electron microscopy of all life stages. Can Entomol 144:273–290CrossRefGoogle Scholar
  343. Wilson EO (1959) Some ecological characteristics of ants in New Guinea rain forests. Ecology 40(3):437–447CrossRefGoogle Scholar
  344. Wohlleben P (2016) The hidden life of trees. Greystone Books, VancouverGoogle Scholar
  345. Woldendorp G, Keenan RJ, Ryan MF (2002a) Coarse woody debris in Australian forest ecosystems: a report for the National Greenhouse Strategy, Module 6.6 (Criteria and Indicators of Sustainable Forest Management), April 2002. Bureau of Rural Sciences, CanberraGoogle Scholar
  346. Woldendorp G, Spencer RD, Keenan RJ, Barry S (2002b) An analysis of sampling methods for coarse woody debris in Australian forest ecosystems. A report for the National Greenhouse Strategy, Module 6.6 (Criteria and Indicators of Sustainable Forest Management). Bureau of Rural SciencesGoogle Scholar
  347. Wygodzinsky P (1961) On a surviving representative of the Lepidotrichidae (Thysanura). Ann Entomol Soc Am 54(5):621–627CrossRefGoogle Scholar
  348. Wygodzinsky PW, Schmidt K (1991) Revision of the new world Enicocephalomorpha (Heteroptera). B Am Mus Nat Hist 200:1–265Google Scholar
  349. Yee M, Grove SJ, Richardson AMM, Mohammed CL (2006) Brown rot in inner heartwood: why large logs support characteristic saproxylic beetle assemblages of conservation concern. In: Grove SJ, Hanula JL (eds) Insect biodiversity and deadwood: Proceedings of a symposium for the 22nd International Congress of Entomology. U.S. Department of Agriculture Forest Service, Southern Research Station, Asheville, NC. General Technical Report SRS-93:42–56Google Scholar
  350. Zielonka T, Niklasson M (2001) Dynamics of dead wood and regeneration pattern in natural spruce forest in the Tatra Mountains, Poland. In: Jonsson BG, Kruys N (eds) Ecology of woody debris in boreal forests. Ecol Bull 49:159–163Google Scholar

Copyright information

© This is a U.S. government work and its text is not subject to copyright protection in the United States; however, its text may be subject to foreign copyright protection.  2018

Authors and Affiliations

  • Michael L. Ferro
    • 1
  1. 1.Department of Plant and Environmental SciencesClemson University Arthropod Collection, 277 Poole Agricultural Center, Clemson UniversityClemsonUSA

Personalised recommendations