Saproxylic Insects in Tree Hollows

  • Estefanía MicóEmail author
Part of the Zoological Monographs book series (ZM, volume 1)


Tree hollows are fascinating microcosms that host a rich saproxylic insect assemblage. One of the most peculiar characteristics of this habitat is that both biotic and abiotic factors affect the evolution of the cavity making each unique and able to host a specialized fauna. Tree hollows are patchy habitats that provide a stable abiotic environment and long-lasting resources to a complex assembly of species from different trophic guilds (xylophagous, xylomycetophagous, saproxylophagous, saprophagous, predators, etc.), where species interactions seem to be an important piece of the puzzle of tree hollow diversity. Fourteen orders of insects and more than 800 species have been reported from tree hollows (primarily from Europe), with Coleoptera being the most diverse, followed by Diptera. However, knowledge of tree hollow insects and their requirements is still very asymmetric both geographically and taxonomically.

Forest reduction and fragmentation, climatic change, forestry and the abandonment of cultural practices are causing a decrease in tree hollow availability in natural and seminatural habitats, threatening the survival of the species that depend exclusively on them. Conservation and retention of hollowed trees has crucial importance for forest diversity maintenance worldwide; thus, actions should be urgently adopted.


  1. Alexander KNA (2008) Tree biology and saproxylic Coleoptera: issues of definitions and conservation language. Rev Écol (Terre Vie) 63:1–5Google Scholar
  2. Andersson R, Östlund L (2004) Spatial patterns, density changes and implications on biodiversity for old trees in the boreal landscape of northern Sweden. Biol Conserv 118(4):443–453CrossRefGoogle Scholar
  3. Apolinário FE, Martius C (2004) Ecological role of termites (Insecta, Isoptera) in tree trunks in central Amazonian rain forests. For Ecol Manag 194:23–28CrossRefGoogle Scholar
  4. Atay E, Jansson N, Gürkan T (2012) Saproxylic beetles on old hollow oaks (Quercus spp.) in a small isolated area in southern Turkey (Insecta: Coleoptera). Zool Middle East 57:105–114CrossRefGoogle Scholar
  5. Audisio P, Brustel H, Carpaneto GM, Coletti G, Mancini E, Piattella E, Trizzino M, Dutto M, Antonini G, De Biase A (2007) Updating the taxonomy and distribution of the European Osmoderma, and strategies for their conservation (Coleoptera, Scarabaeidae, Cetoniinae). Fragm Entomol 39:273–290CrossRefGoogle Scholar
  6. Audisio P, Brustel H, Carpaneto GM, Coletti G, Mancini E, Trizzino M, Antonini G, De Biase A (2009) Data on molecular taxonomy and genetic diversification of the European Hermit beetles, a species complex of endangered insects (Coleoptera: Scarabaeidae, Cetoniinae, Osmoderma). J Zool Syst Evol Res 47(1):88–95CrossRefGoogle Scholar
  7. Bergman KO, Jansson N, Claesson K, Palmer MW, Milberg P (2012) How much and at what scale? Multiscale analyses as decision support for conservation of saproxylic oak beetles. For Ecol Manag 265:133–141CrossRefGoogle Scholar
  8. Bezborodov VG (2015) The genus Osmoderma (Coleoptera, Scarabaeidae, Trichiinae) in Siberia and the Russian Far East. Entomol Rev 95(8):1088–1098CrossRefGoogle Scholar
  9. Bhusal P, Czeszczewik D, Walankiewicz W, Churski M, Baral R, Lamichhane BR, Mikusiński G (2015) Availability of tree cavities in a sal forest of Nepal. iForest 9:217–225.–008CrossRefGoogle Scholar
  10. Binon M, Gicquel JM, Secchi F (1998) Les coléoptères d’une cavité de chêne, en forêt domaniale d’orléans. L. Entomologiste 54:65–67Google Scholar
  11. Bonneil P, Bouget C, Brustel H, Vallet A (2009) Insect sampling methods 33–66. In: Nageleisen LM, Bouget C (eds) Forest insect studies: methods and techniques. Key considerations for standardisation. An overview of the reflections of the Entomological Forest Inventories working group (Inv.Ent.For.). Les Dossiers Forestiers no. 19, Office National des Forêts, pp 33–66Google Scholar
  12. Bouget C, Brustel H, Zagatti P (2008a) The French information system on saproxylic beetle ecology (FRISBEE): an ecological and taxonomical database to help with the assessment of forest conservation status. Rev Écol (Terre Vie) 10:33–36Google Scholar
  13. Bouget C, Brustel H, Brin A, Noblecourt T (2008b) Sampling Saproxylic beetles with window flight traps: methodological insights. Rev Ecol 63:13–24Google Scholar
  14. Bouget C, Larrieu L, Brin A (2014) Key features for saproxylic beetle diversity derived from a rapid assessment in temperate forest. Ecol Indic 36:656–664CrossRefGoogle Scholar
  15. Boyle WA, Ganong CN, Clark DB, Hast MA (2008) Density, distribution, and attributes of tree cavities in an old–growth tropical rain forest. Biotropica 40(2):241–245.–7429.2007.00357.xCrossRefGoogle Scholar
  16. Buse J, Ranius T, Assmann T (2008) An endangered longhorn beetle associated with old oaks and its possible role as an ecosystem engineer. Conserv Biol 22:329–337CrossRefPubMedGoogle Scholar
  17. Buse J, Assmann T, Friedman ALL, Rittner O, Pavlicek T (2013) Wood-inhabiting beetles (Coleoptera) associated with oaks in a global biodiversity hotspot: a case study and checklist for Israel. Insect Conserv Divers. Scholar
  18. Bußler H, Müller J (2009) Vacuum cleaning for conservationists: a new method for inventory of Osmoderma eremita (Scop., 1763) (Coleoptera: Scarabaeidae) and other inhabitants of hollow trees in Natura 2000 areas. J Insect Conserv 13:355–359.–008–9171–4CrossRefGoogle Scholar
  19. Carlsson S, Bergman KO, Jansson N, Ranius T, Milberg P (2016) Boxing for biodiversity: evaluation of an artificially created decaying wood hábitat. Biodivers Conserv 25:393–405.–016–1057–2CrossRefGoogle Scholar
  20. Carpaneto GM, Mazziotta A, Coletti G, Luiselli L, Audisio P (2010) Conflict between insect conservation and public safety: the case study of a saproxylic beetle (Osmoderma eremita) in urban parks. J Insect Conserv 14:555–565CrossRefGoogle Scholar
  21. Chapman AJ, Kinghorn JM (1955) Window flight traps for insects. Can Entomol 37:46–47CrossRefGoogle Scholar
  22. Chiari S, Marini L, Audisio P, Ranius T (2012) Habitat of an endangered saproxylic beetle, Osmoderma eremita, in Mediterranean woodlands. Ecoscience 19:299–307CrossRefGoogle Scholar
  23. Cockle KL, Martin K, Wesolowski T (2011) Woodpeckers, decay, and the future of cavity–nesting vertebrate communities worldwide. Front Ecol Environ 9(7):377–382. Scholar
  24. Colas G (1974) Guide de l’entomologiste. L’entomologiste sur le terrain; préparation et conservation des insectes et des collections. Boubée N. & Cie, ParisGoogle Scholar
  25. Colombo R, Braud Y, Danflous S (2013) Contribution à la connaissance de Dendroleon pantherinus (Fabricius 1787) (Neuroptera: Myrmeleontidae). Revue de l’Association Roussillonnaise d’Entomologie XXII(2):47–53Google Scholar
  26. Dajoz R (1966) Ecologie et biologie des coléoptères xylophages de la hêtraie. Vie et Milieu 17:525–736Google Scholar
  27. Dajoz R (1998) Les insectes et la fôret: rôle et diversité des insectes dans le milieu forestier. Tec & Doc, ParisGoogle Scholar
  28. Daugherty MP, Juliano SA (2003) Leaf scraping beetle feces are a food resource for tree hole mosquito larvae. Am Midl Nat 150(1):181–184CrossRefGoogle Scholar
  29. Donald PF, Sanderson FJ, Burfield IJ, Bommel FPJ (2006) Further evidence of continent-wide impacts of agricultural intensification on European farmland birds, 1990–2000. Agric Ecosyst Environ 116:189–196CrossRefGoogle Scholar
  30. Douwes P, Abenius J, Cederberg B, Wahlstedt U, Hall K, Starkenberg M, Reisborg C, Östman T (2012) Nationalnyckeln till Sveriges flora och fauna. Steklar: Myror-getingar. Hymenoptera: Formicidae-Vespidae. ArtDatabanken, SLU, UppsalaGoogle Scholar
  31. Eliasson P, Nilsson SG (2002) ‘You should hate young oaks and young noblemen’. The environmental history of oaks in eighteenth– and nineteenth–century Sweden. Environ Hist 7:659–677CrossRefGoogle Scholar
  32. Eltz T, Brühl CA, Imiyabir Z, Linsenmair KE (2003) Nesting and nest trees of stingless bees (Apidae: Meliponini) in lowland dipterocarp forest in Sabah, Malaysia, with implications for forest management. For Ecol Manag 172:201–313CrossRefGoogle Scholar
  33. Fan Z, Shifley SR, Thompson FR III, Larsen DR (2004) Simulated cavity tree dynamics under alternative timber harvest regimes. For Ecol Manag 193:399–412CrossRefGoogle Scholar
  34. Fincke OM (1992) Interspecific competition for tree holes: consequences for mating systems and coexistence in Neotropical damselflies. Am Nat 139:80–101CrossRefGoogle Scholar
  35. Fincke OM (1994) Population regulation of a tropical damselfly in the larval stage by food limitation, cannibalism, intraguild predation and habitat drying. Oecologia 100:118–127CrossRefPubMedGoogle Scholar
  36. Fincke OM (1999) Organization of predator assemblages in Neotropical tree holes: effects of abiotic factors and priority. Ecol Entomol 24:13–23CrossRefGoogle Scholar
  37. García–López A, Galante E, Micó E (2016) Saproxylic beetle assemblage selection as determining factor of species distributional patterns: implications for conservation. J Insect Sci 45:1–7Google Scholar
  38. Gibbons P, Lindenmayer D (2002) Tree hollows and wildlife conservation in Australia. CSIRO, CollingwoodGoogle Scholar
  39. Gibbs JP, Hunter ML, Melvin SM (1993) Snag availability and communities of cavity–nesting birds in tropical versus temperate forests. Biotropica 25:236–241CrossRefGoogle Scholar
  40. Goodburn JM, Lorimer CG (1998) Cavity trees and coarse woody debris in old-growth and managed northern hardwood forests in Wisconsin and Michigan. Can J For Res 28(3):427–438. Scholar
  41. Gouix N (2011) Gestion forestière et Biodiversité, les enjeux de conservation d’une espèce parapluie: Limoniscus violaceus (Coleoptera). PhD Thesis, UPMC Sorbonne UniversitésGoogle Scholar
  42. Gouix N, Brustel H (2012) Emergence trap, a new method to survey Limoniscus violaceus (Coleoptera: Elateridae) from hollow trees. Biodivers Conserv 21:421–436CrossRefGoogle Scholar
  43. Gouix N, Sebek P, Valladares L, Brustel H, Brin A (2015) Habitat requirements of the violet click beetle (Limoniscus violaceus), an endangered umbrella species of basal hollow trees. Insect Conserv Divers 8:418–427CrossRefGoogle Scholar
  44. Grove SJ, Stork NE (1999) The conservation of saproxylic insects in tropical forests: a research agenda. J Insect Conserv 3:67–74CrossRefGoogle Scholar
  45. Harlan NP, Paradise CJ (2006) Do habitat size and shape modify abiotic factors and communities in artificial treeholes? Community Ecol 7(2):211–222CrossRefGoogle Scholar
  46. Hoffmann CH (1939) The biology and taxonomy of the Nearctic species of Osmoderma (Coleoptera, Scarabaeidae). Ann Entomol Soc Am 32(3):510–525. Scholar
  47. Horak J (2017) Insect ecology and veteran trees. J Insect Conserv 21:1–5CrossRefGoogle Scholar
  48. Hunter JT (2015) Seasonality of climate drives the number of tree hollows in eastern Australia: implications of a changing climate. Int J Ecol 2015:190637. Scholar
  49. Jansson N (2009) Habitat requirements and preservation of the beetle assemblages associated with hollow oaks. Phd thesis, Linköping University, LinköpingGoogle Scholar
  50. Jansson N, Ranius T, Larsson A, Milberg P (2009) Boxes mimicking tree hollows can help conservation of saproxylic beetles. Biodivers Conserv 18:3891–3908CrossRefGoogle Scholar
  51. Jönsson N, Méndez M, Ranius T (2004) Nutrient richness of wood mould in tree hollows with the scarabaeid beetle Osmoderma eremita. Anim Biodivers Conserv 27(2):79–82Google Scholar
  52. Keilin D (1927) Fauna of a horse–chestnut tree (Aesculus hippocastanum). Dipterous larvae and their parasites. Parasitology 19:368–374CrossRefGoogle Scholar
  53. Kelner-Pillault S (1974) Étude écologique du peuplement entomologique des terreaux d’arbres creux (châtaigners et saules). Bull Ecol 5:123–156Google Scholar
  54. Khazan ES (2014) Tests of biological corridor efficacy for conservation of a Neotropical giant damselfly. Biol Conserv 177:117–125CrossRefGoogle Scholar
  55. Khazan ES, Bright EG, Beyer JE (2015) Land management impacts on tree hole invertebrate communities in a Neotropical rainforest. J Insect Conserv 19:681–690.–015–9791–4CrossRefGoogle Scholar
  56. Kirby KJ, Watkins C (eds) (1998) The ecological history of European forests. CAB International, OxonGoogle Scholar
  57. Kitching RL (1971) An ecological study of water–filled tree–holes and their position in the woodland ecosystem. J Anim Ecol 40:281–302CrossRefGoogle Scholar
  58. Kosinski Z (2006) Factors affecting the occurrence of middle spotted and great spotted woodpeckers in deciduous forests—a case study from Poland. Ann Zool Fenn 43:198–210Google Scholar
  59. Kraus D, Bütler R, Krumm F, Lachat T, Larrieu L, Mergner U, Paillet Y, Rydkvist T, Schuck A, Winter S (2016) Catalogue of tree microhabitats – reference field list. Integrate+Technical Paper, 16pGoogle Scholar
  60. Landvik M, Niemelä P, Roslin T (2015) Opportunistic habitat use by Osmoderma barnabita (Coleoptera: Scarabaeidae), a saproxylic beetle dependent on tree cavities. Insect Conserv Divers 9:38–48. Scholar
  61. Leppik E, Jueriado I, Liira J (2011) Changes in stand structure due to the cessation of traditional land use in wooded meadows impoverish epiphytic lichen communities. Lichenologist 43:257–274CrossRefGoogle Scholar
  62. Lindenmayer DB, Laurance WF, Franklin JF (2012) Global decline in large old trees. Science 338:1305. Scholar
  63. Losos EC, Leigh EG Jr (2004) Tropical forest diversity and dynamism. University of Chicago Press, Chicago, ILGoogle Scholar
  64. Manning AD, Gibbons P, Fischer J, Oliver D, Lindenmayer DB (2013) Hollow futures? Tree decline, lag effects and hollow–dependent species. Anim Conserv 16:395–403CrossRefGoogle Scholar
  65. Marcos-García MA, Micó E, Quinto J, Briones R, Galante E (2011) Lo que las oquedades esconden. Cuad Biodivers 34:3–7. Scholar
  66. Maziarz M, Broughton RK, Wesolowski T (2017) Microclimate in tree cavities and nest–boxes: implications for hole–nesting birds. For Ecol Manag 389:306–313CrossRefGoogle Scholar
  67. Medvedev SI (1960) “Genus Osmoderma Serv.,” in The Fauna of the USSR. Coleoptera. Scarab Beetles (Scarabaeidae). Subfam. Euchirinae, Dynastinae, Glaphyrinae, Trichiinae. Acad. Sci. USSR, Moscow, Leningrad 10(4):376–389 [in Russian]Google Scholar
  68. Micó E, Marcos-García A, Quinto J, Ramírez A, Ríos S, Padilla A, Galante E (2010) Los árboles añosos de las dehesas ibéricas, un importante reservorio de insectos saproxylícos amenazados. Elytron 24:1–9Google Scholar
  69. Micó E, Juárez M, Sánchez A, Galante E (2011) Action of the saproxylic scarab larva Cetonia aurataeformis (Coleoptera: Scarabaeoidea: Cetoniidae) on woody substrates. J Nat Hist 45:41–42CrossRefGoogle Scholar
  70. Micó E, García-López A, Sánchez A, Juárez M, Galante E (2015) What can physical, biotic and chemical features of a tree hollow tell us about their associated diversity? J Insect Conserv 19:141–153CrossRefGoogle Scholar
  71. Milberg P, Bergman K-O, Johansson H, Jansson N (2014) Low host-tree preferences among saproxylic beetles: a comparison of four deciduous species. Insect Conserv Divers 7:508–522CrossRefGoogle Scholar
  72. Müller J, Jarzabek-Müller A, Bussler H, Gossner MM (2013) Hollow beech trees identified as keystone structures for saproxylic beetles by analyses of functional and phylogenetic diversity. Anim Conserv 17:154–162CrossRefGoogle Scholar
  73. N’Dri AB, Gignoux J, Konaté S, Dembélé A, Aïdara D (2011) Origin of trunk damage in West African savanna trees: the interaction of fire and termites. J Trop Ecol 27:269–278CrossRefGoogle Scholar
  74. Nageleisen LM, Bouget C (eds) (2009) Forest insect studies: methods and techniques. Key considerations for standardisation. An overview of the reflections of the “Entomological Forest Inventories” working group (Inv.Ent.For.). Les Dossiers Forestiers no. 19, Office National des ForêtsGoogle Scholar
  75. Newton I (1998) Population limitation in birds. Academic Press, San DiegoGoogle Scholar
  76. Nieto A, Alexander KNA (2010) European red list of saproxylic beetles. Publications Office of the European Union, LuxembourgGoogle Scholar
  77. Nilsson SG (1984) The evolution of nest–selection among hole–nesting birds: the importance of nest predation and competition. Ornis Scand 15:167–175CrossRefGoogle Scholar
  78. Nilsson SG (1997) Forests in the temperate–boreal transition: natural and manmade features. Ecol Bull 46:61–71Google Scholar
  79. Økland B (1996) A comparison of three methods of trapping saproxylic beetles. Eur J Entomol 93:195–209Google Scholar
  80. Palm T (1959) Die Holz– und Rindenkäfer der süd– und mittelschwedischen Laubbäume. Opusc Entomol Suppl XVI, LundGoogle Scholar
  81. Park O, Auerbach S (1954) Study of the tree–hole complex with emphasis on quantitative aspects of the fauna. Ecology 35(2):208–222CrossRefGoogle Scholar
  82. Park O, Auerbach S, Corley G (1950) The tree–hole hábitat with emphasis on the pselaphid beetle fauna. Bull Chicago Acad Sci 9:19–56Google Scholar
  83. Pattanavibool A (1993) Influences of forest management practices on cavity resources in mixed deciduous forest in Thailand. Master Thesis, Oregon State UniversityGoogle Scholar
  84. Perry DH, Lenz M, Watson JAL (1985) Relationships between fire, fungal rots and termite damage in Australian forest trees. Aust Forestry 48:46–53CrossRefGoogle Scholar
  85. Pilskog HE, Birkemoe T, Framstad E, Sverdrup–Thygeson A (2016) Effect of habitat size, quality, and isolation on functional groups of beetles in hollow oaks. J Insect Sci 16(1):26. Scholar
  86. Quinto J, Marcos-García MA, Díaz-Castelazo C, Rico-Gray V, Brustel H, Galante E, Micó E (2012) Breaking down complex saproxylic communities: understanding sub–networks structure and implications to network robustness. PLoS One 7(9):e45062. Scholar
  87. Quinto J, Marcos–García MA, Brustel H, Galante E, Micó E (2013) Effectiveness of three sampling methods to survey saproxylic beetle assemblages in Mediterranean woodland. J Insect Conserv 17:765–776.–013–9559–7CrossRefGoogle Scholar
  88. Quinto J, Micó E, Galante E, Martinez-Falcón A, Marcos-García MA (2014) Influence of tree hollow characteristics on the diversity of saproxylic insect guilds in Iberian Mediterranean woodlands. Insect Conserv Divers 18(5):981–992.–014–9705–xCrossRefGoogle Scholar
  89. Ramírez-Hernández A, Micó E, Marcos-García MA, Brustel H, Galante E (2014) The “dehesa”, a key ecosystem in maintaining the diversity of Mediterranean saproxylic insects (Coleoptera and Diptera: Syrphidae). Biodivers Conserv 23:2069–2086CrossRefGoogle Scholar
  90. Ranius T (2002) Influence of stand size and quality of tree hollows on saproxylic beetles in Sweden. Biol Conserv 103:85–91CrossRefGoogle Scholar
  91. Ranius T (2007) Extinction risks in metapopulations of a beetle inhabiting hollow trees predicted from time series. Ecography 30:716–726CrossRefGoogle Scholar
  92. Ranius T, Hedin J (2001) The dispersal rate of a beetle, Osmoderma eremita, living in tree hollows. Oecologia 126:363–370CrossRefPubMedGoogle Scholar
  93. Ranius T, Jansson N (2000) The influence of forest regrowth, original canopy cover and tree size on saproxylic beetles associated with old oaks. Biol Conserv 95:85–94CrossRefGoogle Scholar
  94. Ranius T, Jansson N (2002) A comparison of three methods to survey saproxylic beetles in hollow oaks. Biodivers Conserv 11(10):1759–1771.
  95. Ranius T, Nilsson SG (1997) Habitat of Osmoderma eremita Scop. (Coleoptera: Scarabaeidae), a beetle living in hollow trees. J Insect Conserv 1:193–204CrossRefGoogle Scholar
  96. Ranius T, Wilander P (2000) Occurrence of Larca lata H.J. Hansen (Pseudoscorpionida: Garypidae) and Allochernes wideri C.L. Koch (Pseudoscorpionida: Chernetidae) in tree hollows in relation to habitat quality and density. J Insect Conserv 4:23–31CrossRefGoogle Scholar
  97. Ranius T, Aguado LO, Antonsson K et al (2005) Osmoderma eremita (Coleoptera, Scarabaeidae, Cetoniinae) in Europe. Anim Biodivers Conserv 28(1):1–44Google Scholar
  98. Ranius T, Niklasson M, Berg N (2009) Development of tree hollows in pedunculate oak (Quercus robur). For Ecol Manag 257:303–310CrossRefGoogle Scholar
  99. Ratcliffe B (1971) Descriptions of the Larva and Pupa of Osmoderma subplanata (Casey) and Cremastocheilus wheeleri LeConte (Coleoptera: Scarabaeidae). J Kansas Entomol Soc 50(3):363–370Google Scholar
  100. Ratcliffe B (1991) The Scarab beetles of Nebraska. Bull Univ Nebraska State Mus 12:330pGoogle Scholar
  101. Read HJ (ed) (1996) Pollard and Veteran Tree Management II – incorporating the Proceedings of the Meeting Hosted by the Corporation of London at Epping Forest in 1993. Richmond, Berkshire, 141pGoogle Scholar
  102. Redolfi De Zan L, Bellotti F, D’Amato D, Carpaneto GM (2014) Saproxylic beetles in three relict beech forests of central Italy: analysis of environmental parameters and implications for forest management. For Ecol Manag 328:229–244CrossRefGoogle Scholar
  103. Reemer M (2005) Saproxylic hoverflies benefit by modern forest management (Diptera: Syrphidae). J Insect Conserv 9:49–59.–004–6059–9CrossRefGoogle Scholar
  104. Remm J, Lohmus A (2011) Tree cavities in forests – the broad distribution pattern of a keystone structure for biodiversity. For Ecol Manag 262(4):579–585. Scholar
  105. Ricarte A, Marcos-García MA, Rotheray GE, Hancock EG (2007) The early stages and breeding sites of 10 Cerioidini Flies (Diptera: Syrphidae). Ann Entomol Soc Am 100(6):914–924CrossRefGoogle Scholar
  106. Rotheray GE, Zumbado M, Hancock G, Thompson C (2000) Remarkable aquatic predators in the genus Ocyptamus (Diptera, Syrphidae). Studia dipterologica 7:385–389Google Scholar
  107. Rotheray GE, Hancock G, Hewitt S, Horsfield D, MacGowan I, Robertson D, Watt K (2001) The biodiversity and conservation of saproxylic diptera in Scotland. J Insect Conserv 5:77–85CrossRefGoogle Scholar
  108. Ruxton GD (2014) Why are so many trees hollow? Biol Lett 10:20140555. Scholar
  109. Sánchez A, Micó E, Eduardo E, Juárez M (2017) Chemical transformation of Quercus wood by Cetonia larvae (Coleoptera: Cetoniidae): an improvement of carbon and nitrogen available in saproxylic environments. Eur J Soil Biol 78:57–65. Scholar
  110. Sánchez-Galván IR, Quinto J, Micó E, Galante E, Marcos-García MA (2014) Facilitation among Saproxylic insects inhabiting tree hollows in a Mediterranean forest: the case of cetonids (Coleoptera: Cetoniidae) and syrphids (Diptera: Syrphidae). Environ Entomol 43(2):336–343. Scholar
  111. Sánchez-Galván I, Marcos-García MA, Galante E, Azeria ET, Micó E (2018) Unraveling Saproxylic insect interactions in tree hollows from Iberian Mediterranean forest. Environ Entomol. 1–9.
  112. Schmidl J, Sulzer P, Kitching RL (2008) The insect assemblage in water filled tree–holes in a European temperate deciduous forest: community composition reflects structural, trophic and physicochemical factors. Hydrobiologia 598:285–303.–007–9163–5CrossRefGoogle Scholar
  113. Schoener TW (1989) Food webs from the small to the large. Ecology 70:1559–1589CrossRefGoogle Scholar
  114. Sebek P, Cizek L, Hauck D, Schlaghamersky J (2012) Saproxylic beetles in an isolated pollard willow stand and their association with Osmoderma barnabita (Coleoptera: Scarabaeidae). In: Jurc M (ed) Saproxylic beetles in Europe: monitoring, biology and conservation. Studia Forestalia Slovenica, Ljubljana, pp 67–72Google Scholar
  115. Sebek P, Altman J, Platek M, Cizek L (2013) Is active management the key to the conservation of saproxylic biodiversity? Pollarding promotes the formation of tree hollows. PLoS One 8:e60456CrossRefPubMedPubMedCentralGoogle Scholar
  116. Seguchi S, Sawahata T (2016) Osmoderma opicum in the warm-temperate evergreen forest on Mt. Kasugayama, Nara, Japan (in Japanese). 近畿大学農学部紀要 49:61–65Google Scholar
  117. Siitonen J (2012) Microhabitats. In: Stokland J, Siitonen J, Jonsson BG (eds) Biodiversity in dead wood. Cambridge University Press, Cambridge, pp 150–182CrossRefGoogle Scholar
  118. Siittonen J, Jonsson BG (2012) Other associations with dead woody material. In: Stokland J, Siitonen J, Jonsson BG (eds) Biodiversity in dead wood. Cambridge University Press, Cambridge, pp 58–81CrossRefGoogle Scholar
  119. Sirami C, Jay–Robert P, Brustel H, Valladares L, Le Guilloux S, Martin JL (2008) Saproxylic beetle assemblages of old holm–oak trees in the Mediterranean region: role of a keystone structure in a changing heterogeneous landscape. Rev Ecol (Terre Vie) 63:93–106Google Scholar
  120. Speight MCD (1989) Saproxylic invertebrates and their conservation. Council of Europe, StrasbourgGoogle Scholar
  121. Speight MCD (2016) Species accounts of European Syrphidae 2016. Syrph the Net, the database of European Syrphidae (Diptera), vol 93. Syrph the Net, DublinGoogle Scholar
  122. Srivastava DS, Lawton JH (1998) Why more productive sites have more species: an experimental test of theory using tree–hole communities. Am Nat 152(4):510529., PMID:18811361PubMedGoogle Scholar
  123. Stokland J, Siitonen J, Jonsson BG (eds) (2012) Biodiversity in dead wood. Cambridge University Press, CambridgeGoogle Scholar
  124. Stubbs AE (1982) Hoverflies as primary woodland indicators with reference to Warncliffe Wood. Sorby Rec 20:62–67Google Scholar
  125. Svedrup–Thygeson A, Skarpaas O, Ødegaard F (2010) Hollow oaks and beetle conservation: the significance of the surroundings. Biodivers Conserv 19:837–852.–009–9739–7CrossRefGoogle Scholar
  126. Taylor AR, Ranius T (2014) Tree hollows harbour a specialised oribatid mite fauna. J Insect Conserv 18:39–55.–014–9613–0CrossRefGoogle Scholar
  127. Vázquez L, Renton K (2015) High density of tree–cavities and snags in tropical dry forest of western Mexico raises questions for a latitudinal gradient. PLoS One 10(1):e0116745. Scholar
  128. Warakai D, Okena DS, Igag P, Opiang M, Mack AL (2013) Tree cavity–using wildlife and the potential of artificial nest boxes for wildlife management in New Guinea. Trop Conserv Sci 6(6):711–733CrossRefGoogle Scholar
  129. Werner PA, Prio LD (2007) Tree-piping termites and growth and survival of host trees in savanna woodland of north Australia. J Trop Ecol 23:611–622CrossRefGoogle Scholar
  130. Wormington K, Lamb L (1999) Tree hollow development in wet and dry sclerophyll eucalypt forest in south–east Queensland, Australia. Austr For 62(4):336–345. Scholar
  131. Wright DH (1983) Species–energy theory: an extension of species area theory. Oikos 41:496–506CrossRefGoogle Scholar

Copyright information

© This is a U.S. government work and its text is not subject to copyright protection in the United States; however, its text may be subject to foreign copyright protection.  2018

Authors and Affiliations

  1. 1.Centro Iberoamericano de la biodiversidad CIBIOUniversidad de AlicanteAlicanteSpain

Personalised recommendations