Importance of Primary Forests for the Conservation of Saproxylic Insects

  • Thibault LachatEmail author
  • Joerg Müller
Part of the Zoological Monographs book series (ZM, volume 1)


Primary forests represent the ultimate intact habitat for saproxylic insects. However, their extent has been considerably reduced over the past centuries, and those remaining are very heterogeneously distributed. Primary forests are still locally abundant in tropical and boreal zones but are rare in temperate zones. Consequently, many saproxylic insects that were adapted to typical characteristics of primary forests, such as large amounts of dead wood or overmature and senescent trees, might have become extinct regionally due to habitat loss. The remaining primary forests therefore function as refuges for those saproxylic species that cannot survive in managed forests because of their high ecological requirements. Here we identify six characteristics of primary forests important for saproxylic insects that differentiate these forests greatly from managed forests, namely, absence of habitat fragmentation, continuity, natural disturbance regimes, dead-wood amount and quality, tree species composition and habitat trees. These six characteristics highlight the importance of primary forests for the conservation of saproxylic insects in all three main climatic domains (tropical, boreal and temperate). As primary forests are rare in northern temperate zones and are being dramatically lost in boreal and tropical zones, we propose that they should be strictly conserved independently of their climatic zone. Furthermore, we recommend that studies in primary forests intensify to provide reference data for integrating primary forest characteristics into managed forests to improve the conservation of saproxylic species.



We thank Sarah Hildebrand for her precious help on boreal forests and Karen Brune for editing the manuscript. We also gratefully acknowledge the reviewers of this chapter.


  1. Amanzadeh B, Sagheb-Talebi K, Foumani B, Fadaie F, Camarero J, Linares J (2013) Spatial distribution and volume of dead wood in unmanaged Caspian beech (Fagus orientalis) forests from northern Iran. Forests 4:751–765CrossRefGoogle Scholar
  2. Attignon SE, Lachat T, Sinsin B, Nagel P, Peveling R (2005) Termite assemblages in a west-African semi-deciduous forest and teak plantations. Agric Ecosyst Environ 110:318–326CrossRefGoogle Scholar
  3. Bandeira AG, Vasconcellos A (2002) A quantitative survey of termites in a gradient of disturbed highland forestin northeastern Brazil (Isoptera). Sociobiology 39:429–439Google Scholar
  4. Bandeira AG, Vasconcellos A, Silva M, Constantino R (2003) Effects of habitat disturbance on the termite fauna in a highland humid forest in the Caatinga domain, Brazil. Sociobiology:117–127Google Scholar
  5. Bengtsson J, Nilsson SG, Franc A, Menozzi P (2000) Biodiversity, disturbances, ecosystem function and management of European forests. For Ecol Manag 132:39–50CrossRefGoogle Scholar
  6. Bouget C, Brin A, Tellez D, Archaux F (2015) Intraspecific variations in dispersal ability of saproxylic beetles in fragmented forest patches. Oecologia 177:911–920PubMedPubMedCentralCrossRefGoogle Scholar
  7. Boulanger Y, Sirois L, Hébert C (2010) Distribution of saproxylic beetles in a recently burnt landscape of the northern boreal forest of Québec. For Ecol Manag 260:1114–1123CrossRefGoogle Scholar
  8. Bourguignon T, Dahlsjö CAL, Jacquemin J, Gang L, Wijedasa LS, Evans TA (2017) Ant and termite communities in isolated and continuous forest fragments in Singapore. Insect Soc 64:505–514CrossRefGoogle Scholar
  9. Brin A, Brustel H, Jactel H (2009) Species variables or environmental variables as indicators of forest biodiversity: a case study using saproxylic beetles in maritime pine plantations. Ann For Sci 66:306CrossRefGoogle Scholar
  10. Brunet J, Isacsson G (2009) Restoration of beech forest for saproxylic beetles—effects of habitat fragmentation and substrate density on species diversity and distribution. Biodivers Conserv 18:2387–2404CrossRefGoogle Scholar
  11. Bürgi M, Schuler A (2003) Driving forces of forest management?: an analysis of regeneration practices in the forests of the Swiss central plateau during the 19th and 20th century. For Ecol Manag 176:173–183CrossRefGoogle Scholar
  12. Buse J (2012) “Ghosts of the past”: flightless saproxylic weevils (Coleoptera: Curculionidae) are relict species in ancient woodlands. J Insect Conserv 16:93–102CrossRefGoogle Scholar
  13. Bush MB, McMichael CH, Piperno DR, Silman MR, Barlow J, Peres CA, Power M, Palace MW (2015) Anthropogenic influence on Amazonian forests in pre-history: an ecological perspective. J Biogeogr 42:2277–2288CrossRefGoogle Scholar
  14. Carbiener D (1996) Pour une gestion écologique des forêts européennes. Le Courrier de l’environnement 29Google Scholar
  15. Castillo ML, Lobo JM (2004) A comparison of Passalidae (Coleoptera, Lamellicornia) diversity and community structure between primary and secondary tropical forest in los Tuxtlas, Veracruz, Mexico. Biodivers Conserv 13:1257–1269CrossRefGoogle Scholar
  16. Chambers JQ, Higuchi N, Schimel JP, Ferreira LV, Melack JM (2000) Decomposition and carbon cycling of dead trees in tropical forests of the central Amazon. Oecologia 122:380–388PubMedCrossRefPubMedCentralGoogle Scholar
  17. Chazdon RL (2003) Tropical forest recovery: legacies of human impact and natural disturbances. Perspect Plant Ecol Evol Syst 6:51–71CrossRefGoogle Scholar
  18. Christensen M, Hahn K, Mountford EP, Ódor P, Standovár T, Rozenbergar D, Diaci J, Wijdeven S, Meyer P, Winter S, Vrska T (2005) Dead wood in European beech (Fagus sylvatica) forest reserves. For Ecol Manag 210:267–282CrossRefGoogle Scholar
  19. Dajoz R (2000) Insects and forests. The role and diversity of insects in the forest environment. Intercept, LondonGoogle Scholar
  20. Davies ZG, Tyler C, Stewart GB, Pullin AS (2008) Are current management recommendations for saproxylic invertebrates effective?: a systematic review. Biodivers Conserv 17:209–234CrossRefGoogle Scholar
  21. de Gasperis S, Passacantilli C, Redolfi De Zan L, Carpaneto GM (2016) Overwintering ability and habitat preference of Morimus asper: a two-year mark-recapture study with implications for conservation and forest management. J Insect Conserv 20:821–835CrossRefGoogle Scholar
  22. de Labra-Hernández MÁ, Renton K (2016) Importance of large, old primary forest trees in nest-site selection by the northern mealy Amazon (Amazona guatemalae). Trop Conserv Sci 9:194008291668036CrossRefGoogle Scholar
  23. Drobyshev I, Niklasson M, Angelstam P, Majewski P (2004) Testing for anthropogenic influence on fire regime for a 600-year period in the Jaksha area, Komi Republic, east European Russia. Can J For Res 34:2027–2036CrossRefGoogle Scholar
  24. Eckelt A, Müller J, Bense U, Brustel H, Bußler H, Chittaro Y, Cizek L, Frei A, Holzer E, Kadej M, Kahlen M, Köhler F, Möller G, Mühle H, Sanchez A, Schaffrath U, Schmidl J, Smolis A, Szallies A, Németh T, Wurst C, Thorn S, Haubo R, Christensen B, Seibold S (2018) Primeval forest relict beetles of Central Europe—a set of 168 umbrella species for the protection of primeval forest remnants. J Insect ConservGoogle Scholar
  25. Eggleton P, Homathevi R, Jeeva D, Jones DT, Davies RG, Maryati M (1997) The species richness and composition of termites (Isoptera) in primary and regenerating lowland dipterocarp forest in Sabah, east Malaysia. Ecotropica 3:119–128Google Scholar
  26. Ehrlich PR, Ehrlich AH, Holdren JP (1977) In: Ehrlich PR, Ehrlich AH, Holdren JP (eds) Ecoscience: population, resources, environment, 3rd edn. Freeman, San FranciscoGoogle Scholar
  27. Ewers RM, Boyle MJW, Gleave RA, Plowman NS, Benedick S, Bernard H, Bishop TR, Bakhtiar EY, Chey VK, Chung AYC, Davies RG, Edwards DP, Eggleton P, Fayle TM, Hardwick SR, Homathevi R, Kitching RL, Khoo MS, Luke SH, March JJ, Nilus R, Pfeifer M, Rao SV, Sharp AC, Snaddon JL, Stork NE, Struebig MJ, Wearn OR, Yusah KM, Turner EC (2015) Logging cuts the functional importance of invertebrates in tropical rainforest. Nat Commun 6:6836PubMedPubMedCentralCrossRefGoogle Scholar
  28. FAO (2016) Global Forest resources assessment 2015: how are the world’s forests changing? 2nd edn. FAO, RomeGoogle Scholar
  29. Ferro ML, Gimmel ML, Harms KH, Carlton CE (2012) Comparison of Coleoptera emergent from various decay classes of downed coarse woody debris in great Smoky Mountains National Park, USA. Insecta Mundi 0260:1–8Google Scholar
  30. Foley JA, Asner GP, Costa MH, Coe MT, DeFries R, Gibbs HK, Howard EA, Olson S, Patz J, Ramankutty N, Snyder P (2007) Amazonia revealed: forest degradation and loss of ecosystem goods and services in the Amazon Basin. Front Ecol Environ 5:25–32CrossRefGoogle Scholar
  31. Fox BJ, Fox MD (2003) Flammable Australia: the fire regimes and biodiversity of a continent (eds by Bradstock RA, Williams JE, and Gill MA. Cambridge and New York: Cambridge University Press). Q Rev Biol 78:247CrossRefGoogle Scholar
  32. Gauthier S, Bernier P, Kuuluvainen T, Shvidenko AZ, Schepaschenko DG (2015) Boreal forest health and global change. Science 349:819–822PubMedCrossRefPubMedCentralGoogle Scholar
  33. Gerwing JJ (2002) Degradation of forests through logging and fire in the eastern Brazilian Amazon. For Ecol Manag 157:131–141CrossRefGoogle Scholar
  34. Ghazoul J, Hill J (1999) Impacts of selective logging on tropical forest invertebrates. The cutting edge: conserving wildlife in managed tropical forests. Columbia University Press, New YorkGoogle Scholar
  35. Gibbons P, Lindenmayer DB (2002) Tree hollows and wildlife conservation in Australia. CSIRO Publishing, MelbourneGoogle Scholar
  36. Goßner M, Ammer U (2006) The effects of Douglas-fir on tree-specific arthropod communities in mixed species stands with European beech and Norway spruce. Eur J For Res 125:221–235CrossRefGoogle Scholar
  37. Gossner MM, Lachat T, Brunet J, Isacsson G, Bouget C, Brustel H, Brandl R, Weisser WW, Mueller J (2013) Current near-to-nature forest management effects on functional trait composition of saproxylic beetles in beech forests. Conserv Biol 27:605–614PubMedCrossRefPubMedCentralGoogle Scholar
  38. Gouix N, Brustel H (2012) Emergence trap, a new method to survey Limoniscus violaceus (Coleoptera: Elateridae) from hollow trees. Biodivers Conserv 21:421–436CrossRefGoogle Scholar
  39. Grove SJ (2001) Extent and composition of dead wood in Australian lowland tropical rainforest with different management histories. For Ecol Manag 154:35–53CrossRefGoogle Scholar
  40. Grove SJ (2002a) Saproxylic insect ecology and the sustainable management of forests. Annu Rev Ecol Syst 33:1–23CrossRefGoogle Scholar
  41. Grove SJ (2002b) The influence of forest management history on the integrity of the saproxylic beetle fauna in an Australian lowland tropical rainforest. Biol Conserv 104:149–171CrossRefGoogle Scholar
  42. Grove SJ, Stork NE (1999) The conservation of saproxylic insects in tropical forests: a research agenda. J Insect Conserv 3:67–74CrossRefGoogle Scholar
  43. Hall JS, Harris DJ, Medjibe V, Ashton PS (2003) The effects of selective logging on forest structure and tree species composition in a central African forest: implications for management of conservation areas. For Ecol Manag 183:249–264CrossRefGoogle Scholar
  44. Hannah L, Carr JL, Lankerani A (1995) Human disturbance and natural habitat: a biome level analysis of a global data set. Biodivers Conserv 4:128–155CrossRefGoogle Scholar
  45. Hanski I, Hammond P (1995) Biodiversity in boreal forests. Trends Ecol Evol 10:5–6CrossRefGoogle Scholar
  46. Harmon ME, Whigham DF, Sexton J, Olmsted I (1995) Decomposition and mass of woody detritus in the dry tropical forests of the Northeastern Yucatan peninsula, Mexico. Biotropica 27:305CrossRefGoogle Scholar
  47. Herrault P-A, Larrieu L, Cordier S, Gimmi U, Lachat T, Ouin A, Sarthou J-P, Sheeren D (2016) Combined effects of area, connectivity, history and structural heterogeneity of woodlands on the species richness of hoverflies (Diptera: Syrphidae). Landsc Ecol 31:877–893CrossRefGoogle Scholar
  48. Herrmann S, Conder M, Brang P (2012) Totholzvolumen und -qualität in ausgewählten Schweizer Naturwaldreservaten. Schweiz Z Forstwes 163:222–231CrossRefGoogle Scholar
  49. Hughes JD (2011) Ancient deforestation revisited. J Hist Biol 44:43–57PubMedCrossRefPubMedCentralGoogle Scholar
  50. Hughes AC (2017) Understanding the drivers of southeast Asian biodiversity loss. Ecosphere 8:e01624CrossRefGoogle Scholar
  51. Imai N, Seino T, S-i A, Takyu M, Titin J, Kitayama K (2012) Effects of selective logging on tree species diversity and composition of Bornean tropical rain forests at different spatial scales. Plant Ecol 213:1413–1424CrossRefGoogle Scholar
  52. Jones DT, Susilo FX, Bignell DE, Hardiwinoto S, Gillison AN, Eggleton P (2003) Termite assemblage collapse along a land-use intensification gradient in lowland central Sumatra, Indonesia. J Appl Ecol 40:380–391CrossRefGoogle Scholar
  53. Jonsell M, Weslien J, Ehnström B (1998) Substrate requirements of red-listed saproxylic invertebrates in Sweden. Biodivers Conserv 7:749–764CrossRefGoogle Scholar
  54. Kattan GH, Murcia C, Galindo-Cardona A (2010) An evaluation of Bess beetles (Passalidae) and their resource base in a restored Andean forest. Trop Conserv Sci 3:334–343CrossRefGoogle Scholar
  55. Keller M, Palace M, Asner GP, Pereira R, Silva JNM (2004) Coarse woody debris in undisturbed and logged forests in the eastern Brazilian Amazon. Glob Chang Biol 10:784–795CrossRefGoogle Scholar
  56. Kirby KJ, Watkins C (2015) Europe’s changing woods and forests: from wildwood to managed landscapes. CABI, WallingfordCrossRefGoogle Scholar
  57. Koch AJ, Munks SA, Driscoll D, Kirkpatrick JB (2008) Does hollow occurrence vary with forest type?: a case study in wet and dry Eucalyptus Obliqua forest. For Ecol Manag 255:3938–3951CrossRefGoogle Scholar
  58. Köhler F (2000) Totholzkäfer in Naturwaldzellen des nördlichen Rheinlands: Vergleichende Studien zur Totholzkäferfauna Deutschlands und deutschen Naturwaldforschung: Naturwaldzellen Teil VII. Schriftenreihe der Landesanstalt für Ökologie, Bodenordnung und Forsten, Landesamt für Agrarordnung, Nordrhein-Westfalen, Bd. 18. Landesanstalt für Ökologie, Bodenordnung und Forsten [etc.], RecklinghausenGoogle Scholar
  59. Komonen A, Müller J (2018) Dispersal ecology of deadwood organisms and connectivity conservation. Conservation BiologyGoogle Scholar
  60. Körner C (2017) A matter of tree longevity. Science 355:130–131PubMedCrossRefPubMedCentralGoogle Scholar
  61. Korpel S (1997) Totholz in Naturwäldern und Konsequenzen für Naturschutz und Forstwirtschaft. Beitr Forstwirtsch u Landschökol 31:151–155Google Scholar
  62. Kraus D, Krumm F (eds) (2013) Integrative approaches as an opportunity for the conservation of forest biodiversity. European Forest Institute, p 284Google Scholar
  63. Kucbel S, Saniga M, Jaloviar P, Vencurik J (2012) Stand structure and temporal variability in old-growth beech-dominated forests of the northwestern Carpathians: a 40-years perspective. For Ecol Manag 264:125–133CrossRefGoogle Scholar
  64. Kurz WA, Stinson G, Rampley GJ, Dymond CC, Neilson ET (2008) Risk of natural disturbances makes future contribution of Canada’s forests to the global carbon cycle highly uncertain. Proc Natl Acad Sci U S A 105:1551–1555PubMedPubMedCentralCrossRefGoogle Scholar
  65. Lachat T, Nagel P, Cakpo Y, Attignon S, Goergen G, Sinsin B, Peveling R (2006) Dead wood and saproxylic beetle assemblages in a semi-deciduous forest in southern Benin. For Ecol Manag 225:27–38CrossRefGoogle Scholar
  66. Lachat T, Peveling R, Atignon S, Goergen G, Sinsin B, Nagel P (2007) Saproxylic beetle assemblages on native and exotic snags in a west African tropical forest. Afr Entomol 15:13–24CrossRefGoogle Scholar
  67. Lachat T, Chumak M, Chumak V, Jakoby O, Mueller J, Tanadini M, Wermelinger B (2016) Influence of canopy gaps on saproxylic beetles in primeval beech forests: a case study from the Uholka-Shyrokyi Luh forest, Ukraine. Insect Conserv Divers 9:559–573CrossRefGoogle Scholar
  68. Langor DW, Hammond HJ, Spence JR, Jacobs J, Cobb TP (2008) Saproxylic insect assemblages in Canadian forests: diversity, ecology, and conservation. Can Entomol 140:453–474CrossRefGoogle Scholar
  69. Larrieu L, Cabanettes A, Gonin P, Lachat T, Paillet Y, Winter S, Bouget C, Deconchat M (2014) Deadwood and tree microhabitat dynamics in unharvested temperate mountain mixed forests: a life-cycle approach to biodiversity monitoring. For Ecol Manag 334:163–173CrossRefGoogle Scholar
  70. Larrieu L, Paillet Y, Winter S, Bütler R, Kraus D, Krumm F, Lachat T, Michel AK, Regnery B, Vandekerkhove K (2018) Tree related microhabitats in temperate and Mediterranean European forests: a hierarchical typology for inventory standardization. Ecol Indic 84:194–207CrossRefGoogle Scholar
  71. Laurance WF, Bierregaard R (eds) (1997) Tropical forest remnants: ecology, management, and conservation of fragmented communities. University of Chicago, ChicagoGoogle Scholar
  72. Lindenmayer DB, Blanchard W, McBurney L, Blair D, Banks S, Likens GE, Franklin JF, Laurance WF, Stein JAR, Gibbons P (2012) Interacting factors driving a major loss of large trees with cavities in a forest ecosystem. PLoS One 7:e41864PubMedPubMedCentralCrossRefGoogle Scholar
  73. Luyssaert S, Schulze E-D, Börner A, Knohl A, Hessenmöller D, Law BE, Ciais P, Grace J (2008) Old-growth forests as global carbon sinks. Nature 455:213–215PubMedCrossRefPubMedCentralGoogle Scholar
  74. Mackey B, DellaSala DA, Kormos C, Lindenmayer D, Kumpel N, Zimmerman B, Hugh S, Young V, Foley S, Arsenis K, Watson JE (2015) Policy options for the world’s primary forests in multilateral environmental agreements. Conserv Lett 8:139–147CrossRefGoogle Scholar
  75. Maeto K, Sato S, Miyata H (2002) Species diversity of longicorn beetles in humid warm temperate forests: the impact of forest management practices on old-growth forest species in southwestern Japan. Biodivers Conserv 11:1919–1937CrossRefGoogle Scholar
  76. Martikainen P (2001) Conservation of threatened saproxylic beetles: significance of retained aspen Populus tremula on clearcut areas. Ecol Bull 49:205–2018Google Scholar
  77. Martikainen P, Siitonen J, Punttila P, Kaila L, Rauh J (2000) Species richness of Coleoptera in mature managed and old-growth boreal forests in southern Finland. Biol Conserv 94:199–209CrossRefGoogle Scholar
  78. McGrath MJ, Luyssaert S, Meyfroidt P, Kaplan JO, Bürgi M, Chen Y, Erb K, Gimmi U, McInerney D, Naudts K, Otto J, Pasztor F, Ryder J, Schelhaas M-J, Valade A (2015) Reconstructing European forest management from 1600 to 2010. Biogeosciences 12:4291–4316CrossRefGoogle Scholar
  79. McPeek MA, Holt RD (1992) The evolution of dispersal in spatially and temporally varying environments. Am Nat 140:1010–1027CrossRefGoogle Scholar
  80. MCPFE (2007) State of Europe’s Forests 2007: jointly prepared by the Ministerial Conference on the protection of forests in Europe Liaison Unit Warsaw. UNECE and FAOGoogle Scholar
  81. Messier C, Puettmaan K, Coates KD (2003) Managing forests as complex adaptive systems: building resilience to the challenge of global change. Routledge, New YorkGoogle Scholar
  82. Morales-Hidalgo D, Oswalt SN, Somanathan E (2015) Status and trends in global primary Forest, protected areas, and areas designated for conservation of biodiversity from the global forest resources assessment 2015. For Ecol Manag 352:68–77CrossRefGoogle Scholar
  83. Müller J, Bußler H, Bense U, Brustel H et al (2005) Urwald relict species—saproxylic beetles indicating structural qualities and habitat tradition. Waldoekologie Online 2:106–113Google Scholar
  84. Müller J, Jarzabek-Müller A, Bussler H, Gossner MM (2014) Hollow beech trees identified as keystone structures for saproxylic beetles by analyses of functional and phylogenetic diversity. Anim Conserv 17:154–162CrossRefGoogle Scholar
  85. Müller J, Simon T, Roland B, Khosro S-T, Barimani HV, Sebastian S, Ulyshen MD, Gossner MM (2016) Protecting the forests while allowing removal of damaged trees may imperil saproxylic insect biodiversity in the Hyrcanian beech forests of Iran. Conserv Lett 9:106–113CrossRefGoogle Scholar
  86. Nappi A, Drapeau P, Saint-Germain M, Angers VA (2010) Effect of fire severity on long-term occupancy of burned boreal conifer forests by saproxylic insects and wood-foraging birds. Int J Wildland Fire 19:500CrossRefGoogle Scholar
  87. Niklasson M, Drakenberg B (2001) A 600-year tree-ring fire history from Norra Kvills National Park, southern Sweden: implications for conservation strategies in the hemiboreal zone. Biol Conserv 101:63–71CrossRefGoogle Scholar
  88. Nilsson SG (1992) Forests in the temperate–boreal transition—natural and man-made features. Ecol Bull 46:61–71Google Scholar
  89. Paillet Y, Berges L, Hjalten J, Odor P, Avon C, Bernhardt-Romermann M, Bijlsma R-J, de Bruyn L, Fuhr M, Grandin U, Kanka R, Lundin L, Luque S, Magura T, Matesanz S, Meszaros I, Sebastia M-T, Schmidt W, Standovar T, Tothmeresz B, Uotila A, Valladares F, Vellak K, Virtanen R (2010) Biodiversity differences between managed and unmanaged forests: meta-analysis of species richness in Europe. Conserv Biol 24:101–112PubMedCrossRefPubMedCentralGoogle Scholar
  90. Peet RK, Christensen NL (1987) Competition and tree death. Bioscience 37:586–595CrossRefGoogle Scholar
  91. Persiani AM, Audisio P, Lunghini D, Maggi O, Granito VM, Biscaccianti AB, Chiavetta U, Marchetti M (2010) Linking taxonomical and functional biodiversity of saproxylic fungi and beetles in broad-leaved forests in southern Italy with varying management histories. Plant Biosyst 144:250–261CrossRefGoogle Scholar
  92. Pfeifer M, Lefebvre V, Turner E, Cusack J, Khoo M, Chey VK, Peni M, Ewers RM (2015) Deadwood biomass: an underestimated carbon stock in degraded tropical forests? Environ Res Lett 10:44019CrossRefGoogle Scholar
  93. Piperno DR, McMichael C, Bush MB (2015) Amazonia and the Anthropocene: what was the spatial extent and intensity of human landscape modification in the Amazon Basin at the end of prehistory? The Holocene 25:1588–1597CrossRefGoogle Scholar
  94. Potapov P, Hansen MC, Laestadius L, Turubanova S, Yaroshenko A, Thies C, Smith W, Zhuravleva I, Komarova A, Minnemeyer S, Esipova E (2017) The last frontiers of wilderness: tracking loss of intact forest landscapes from 2000 to 2013. Sci Adv 3:e1600821PubMedPubMedCentralCrossRefGoogle Scholar
  95. Ranius T (2002a) Influence of stand size and quality of tree hollows on saproxylic beetles in Sweden. Biol Conserv 103:85–91CrossRefGoogle Scholar
  96. Ranius T (2002b) Osmoderma eremita as an indicator of species richness of beetles in tree hollows. Biodivers Conserv 11:931–941CrossRefGoogle Scholar
  97. Ranius T, Hedin J (2001) The dispersal rate of a beetle, Osmoderma eremita, living in tree hollows. Oecologia 126:363–370PubMedPubMedCentralCrossRefGoogle Scholar
  98. Ranius T, Niklasson M, Berg N (2009) Development of tree hollows in pedunculate oak (Quercus robur). For Ecol Manag 257:303–310CrossRefGoogle Scholar
  99. Ranius T, Johansson V, Schroeder M, Caruso A (2015) Relative importance of habitat characteristics at multiple spatial scales for wood-dependent beetles in boreal forest. Landsc Ecol 30:1931–1942CrossRefGoogle Scholar
  100. Reich PB, Frelich L (2002) Temperate deciduous forests. In: Mooney HA, Canadell JG (eds) Encyclopedia of global environmental change, Vol 2. The earth system: biological and ecological dimensions of global environmental change. Wiley, ChichesterGoogle Scholar
  101. Rolstad J, Y-l B, Storaunet KO (2017) Fire history in a western Fennoscandian boreal forest as influenced by human land use and climate. Ecol Monogr 87:219–245CrossRefGoogle Scholar
  102. Saiful I, Latiff A (2014) Effects of selective logging on tree species composition, richness and diversity in a hill Dipterocarp forest in Malaysia. J Trop For Sci 26:188–202Google Scholar
  103. Saint-Germain M, Drapeau P, Hibbert A, Leather SR, Ewers R (2013) Saproxylic beetle tolerance to habitat fragmentation induced by salvage logging in a boreal mixed-cover burn. Insect Conserv Divers 6:381–392CrossRefGoogle Scholar
  104. Saniga M, Schütz JP (2002) Relation of dead wood course within the development cycle of selected virgin forests in Slovakia. J For Sci 48:513–528Google Scholar
  105. Saunders DA, Hobbs RJ, Margules CR (1991) Biological consequences of ecosystem fragmentation: a review. Conserv Biol 5:18–32CrossRefGoogle Scholar
  106. Schiegg K (2000) Effects of dead wood volume and connectivity on saproxylic insect species diversity. Écoscience 7:290–298CrossRefGoogle Scholar
  107. Seibold S, Thorn S (2018) The importance of dead-wood amount for saproxylic insects and how it interacts with dead-wood diversity and other habitat factors. In: Ulyshen MD (ed) Saproxylic insects: diversity, ecology and conservation. Springer, Heidelberg, pp 607–637CrossRefGoogle Scholar
  108. Seibold S, Bassler C, Brandl R, Fahrig L, Forster B, Heurich M, Hothorn T, Scheipl F, Thorn S, Muller J (2017) An experimental test of the habitat-amount hypothesis for saproxylic beetles in a forested region. Ecology 98(6):1613–1622PubMedCrossRefPubMedCentralGoogle Scholar
  109. Seidl R, Schelhaas M-J, Rammer W, Verkerk PJ (2014) Increasing forest disturbances in Europe and their impact on carbon storage. Nat Clim Chang 4:806–810PubMedPubMedCentralCrossRefGoogle Scholar
  110. Siitonen J, Martikainen P (1994) Occurrence of rare and threatened insects living on decaying Populus Tremula: a comparison between Finnish and Russian Karelia. Scand J For Res 9:185–191CrossRefGoogle Scholar
  111. Siitonen J, Saaristo L (2000) Habitat requirements and conservation of Pytho kolwensis, a beetle species of old-growth boreal forest. Biol Conserv 94:211–220CrossRefGoogle Scholar
  112. Siitonen J, Martikainen P, Punttila P, Rauh J (2000) Coarse woody debris and stand characteristics in mature managed and old-growth boreal mesic forests in southern Finland. For Ecol Manag 128:211–225CrossRefGoogle Scholar
  113. Speight M (1989) Saproxylic invertebrates and their conservation. Council of Europe, StrasbourgGoogle Scholar
  114. Spies TA, Turner MG (1999) Dynamic forest mosaics. In: Hunter ML (ed) Maintaining biodiversity in forest ecosystems. Cambridge University Press, Cambridge, pp 95–160CrossRefGoogle Scholar
  115. Spies TA, Franklin JF, Thomas TB (1988) Coarse woody debris in Douglas-fir forests of western Oregon and Washington. Ecology 69:1689–1702CrossRefGoogle Scholar
  116. Stokland JN, Siitonen J, Jonsson BG (2012) Biodiversity in dead wood. Ecology, biodiversity and conservation. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  117. Storaunet KO, Rolstad J, Toeneiet M, Y-l B (2013) Strong anthropogenic signals in historic forest fire regime: a detailed spatiotemporal case study from south-central Norway. Can J For Res 43:836–845CrossRefGoogle Scholar
  118. Tabaku V (1999) Struktur von Buchen-Urwäldern in Albanien im Vergleich mit deutschen Buchen-Naturwaldreservaten und -Wirtschaftswäldern. Cuvillier Verlag, GöttingenGoogle Scholar
  119. van der Hoek Y, Gaona GV, Martin K, Albright T (2017) The diversity, distribution and conservation status of the tree-cavity-nesting birds of the world. Divers Distrib 23:1120–1131CrossRefGoogle Scholar
  120. Vanha-Majamaa I, Lilja S, Ryömä R, Kotiaho JS, Laaka-Lindberg S, Lindberg H, Puttonen P, Tamminen P, Toivanen T, Kuuluvainen T (2007) Rehabilitating boreal forest structure and species composition in Finland through logging, dead wood creation and fire: the EVO experiment. For Ecol Manag 250:77–88CrossRefGoogle Scholar
  121. Vasconcellos A, Bandeira AG, Moura FMS, Araújo VFP, Gusmão MAB, Constantino R (2010) Termite assemblages in three habitats under different disturbance regimes in the semi-arid Caatinga of NE Brazil. J Arid Environ 74:298–302CrossRefGoogle Scholar
  122. Vidal C, Alberdi I, Redmond J, Vestman M, Lanz A, Schadauer K (2016) The role of European National Forest inventories for international forestry reporting. Ann For Sci 73:793–806CrossRefGoogle Scholar
  123. Wallenius TH, Pennanen J, Burton PJ (2011) Long-term decreasing trend in forest fires in northwestern Canada. Ecosphere 2:art53CrossRefGoogle Scholar
  124. Warakai D, Okena DS, Igag P, Opiang M, Mack AL (2013) Tree cavity-using wildlife and the potential of artificial nest boxes for wildlife management in new Guinea. Trop Conserv Sci 6:711–733CrossRefGoogle Scholar
  125. Whitehead P (1997) Beetle faunas of the European angiosperm Urwald: problems and complexities. Biologia 52:147–152Google Scholar
  126. Whitford KR, Williams MR (2001) Survival of jarrah (Eucalyptus marginata Sm.) and marri (Corymbia calophylla Lindl.) habitat trees retained after logging. For Ecol Manag 146:181–197CrossRefGoogle Scholar
  127. Williams M (2002) Deforesting the earth: from prehistory to global crisis. University of Chicago Press, ChicagoGoogle Scholar
  128. Woldendorp G, Keenan R, Barry S, Spencer R (2004) Analysis of sampling methods for coarse woody debris. For Ecol Manag 198:133–148CrossRefGoogle Scholar
  129. Wright SJ (2005) Tropical forests in a changing environment. Trends Ecol Evol 20:553–560PubMedCrossRefPubMedCentralGoogle Scholar
  130. Yamamoto S-I (2000) Forest gap dynamics and tree regeneration. J For Res 5:223–229CrossRefGoogle Scholar
  131. Ylisirniö A-L, Berglund H, Aakala T, Kuuluvainen T, Kuparinen A-M, Norokorpi Y, Hallikainen V, Mikkola K, Huhta E (2009) Spatial distribution of dead wood and the occurrence of five saproxylic fungi in old-growth timberline spruce forests in northern Finland. Scand J For Res 24:527–540CrossRefGoogle Scholar
  132. Zeran RM, Anderson RS, Wheeler TA (2006) Sap beetles (Coleoptera: Nitidulidae) in managed and old-growth forests in southeastern Ontario, Canada. Can Entomol 138:123–137CrossRefGoogle Scholar

Copyright information

© This is a U.S. government work and its text is not subject to copyright protection in the United States; however, its text may be subject to foreign copyright protection.  2018

Authors and Affiliations

  1. 1.Bern University of Applied Sciences BFH, School of Agricultural, Forest and Food Sciences HAFLZollikofenSwitzerland
  2. 2.Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
  3. 3.Nationalparkverwaltung Bayerischer WaldGrafenauGermany
  4. 4.Feldstation Fabrikschleichach, Lehrstuhl für Tierökologie und Tropenbiologie (Zoologie III), Biozentrum Universität WürzburgRauhenebrachGermany

Personalised recommendations