Advertisement

Wood-Feeding Termites

  • David E. Bignell
Chapter
Part of the Zoological Monographs book series (ZM, volume 1)

Abstract

Termites originated from wood-feeding cockroaches and are dominant members of the saproxylic insect community in many tropical and subtropical biomes. Their ecological role comprises comminution (shredding) of dead organic material, bioturbation (mixing of organic and mineral material in soil horizons) and lignocellulose digestion (contributing to the decomposition arm of the global carbon cycle). The key adaptations of termites are their symbioses , mainly internal, with protists, archaea, bacteria and (in a special case) fungi. Thus the evolution of modern termites from the detritus-feeding common ancestor of termites and wood-feeding cockroaches can be reconstructed as a stepwise process to secure the transfer of increasingly specialised intestinal symbionts from parent to offspring. This selection resulted in the extant eusociality of all termites, characterised by generational overlap, proctodaeal feeding, altricial development, paedomorphosis and co-evolution with microorganisms. An account is given of their typical abundance, biomass, trophic diversification and impacts on soil health and the terrestrial carbon cycle. Termite behaviour associated with finding and consuming woody resources is also considered. An overview of the symbioses between termites and microbes is presented, focused on recent work revealing the relative contributions of host and microbiota to the digestion of lignocellulose. A separate account of the fungus-growing subfamily Macrotermitinae is added, as their impact on organic decomposition in Africa and Asia is substantial.

References

  1. Abe T (1987) Evolution of life types in termites. In: Kawano S, Connell JH, Hidaka T (eds) Evolution and coadaptation in biotic communities. University of Tokyo Press, Tokyo, pp 125–148Google Scholar
  2. Anklin-Mühlemann R, Bignell DE, Veivers PC et al (1995) Morphological, microbiological and biochemical studies of the gut flora in the fungus-growing termite Macrotermes subhyalinus. J Insect Physiol 41:929–940CrossRefGoogle Scholar
  3. Beccaloni GW (2012) Blattodea species file. Catalogue of life: 2012 annual checklist. http://www.catalogueoflife.org/annual-checklist/2012/details/database/id/51. Accessed 27 Nov 2017
  4. Berge L, Bignell DE, Rahman H et al (2008) Quantification of termite attack on lying dead wood by a line intersection method in the Kabili-Sepilok Forest Reserve, Sabah, Malaysia. Insect Conserv Diver 1:85–94CrossRefGoogle Scholar
  5. Bignell DE (1977) An experimental study of cellulose and hemicellulose degradation in the alimentary canal of the American cockroach. Can J Zool 55:579–589CrossRefGoogle Scholar
  6. Bignell DE (1994) Soil-feeding and gut morphology in higher termites. In: Hunt JH, Nalepa CA (eds) Nourishment and evolution in insect societies. Westview, Boulder, pp 131–159Google Scholar
  7. Bignell DE (2000) Introduction to symbiosis. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic, Dordrecht, pp 189–208CrossRefGoogle Scholar
  8. Bignell DE (2006) Termites as soil engineers and soil processors. In: König H, Varma A (eds) Intestinal microorganisms of termites and other invertebrates. Springer, Berlin, pp 183–220CrossRefGoogle Scholar
  9. Bignell DE (2010) Termites. In: Reay D, Smith P, van Amstel A (eds) Methane and climate change. Earthscan, London, pp 62–73Google Scholar
  10. Bignell DE (2011) Morphology, physiology, biochemistry and functional design of the termite gut: an evolutionary Wonderland. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 375–412CrossRefGoogle Scholar
  11. Bignell DE (2016) The role of symbionts in the evolution of termites and their rise to ecological dominance in the tropics. In: Hurst CJ (ed) The mechanistic benefits of microbial symbionts, Advances in Environmental Microbiology 2. Springer, Dordrecht, pp 121–172CrossRefGoogle Scholar
  12. Bignell DE, Eggleton P (2000) Termites in ecosystems. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic, Dordrecht, pp 363–387CrossRefGoogle Scholar
  13. Bignell DE, Jones DT (2014) A taxonomic index, with names of descriptive authorities of termite genera and species: an accompaniment to Biology of termites: a modern synthesis (Bignell DE, Roisin Y, Lo N, Editors. 2011. Springer, Dordrecht. 576pp). J Insect Sci 14:81PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bignell DE, Oskarsson H, Anderson J et al (1983) Structure, microbial associations and functions of the so-called “mixed segment” of the gut in two soil-feeding termites Procubitermes aburiensis Sjöstedt and Cubitermes severus Silvestri (Termitidae, Termitinae). J Zool 201:445–480CrossRefGoogle Scholar
  15. Bignell DE, Anderson JM, Crosse R (1991) Isolation of facultatively aerobic actinomycetes from the gut, parent soil and mound materials of the termites Procubitermes aburiensis and Cubitermes severus. FEMS Microbiol Ecol 85:151–160Google Scholar
  16. Bignell DE, Eggleton P, Nunes L et al (1997) Termites as mediators of carbon fluxes in tropical forest: budgets for carbon dioxide and methane emissions. In: Watt AD, Stork NE, Hunter MD (eds) Forests and insects. Chapman and Hall, London, pp 109–134Google Scholar
  17. Bignell DE, Tondoh J, Dibog L et al (2005) Belowground diversity assessment: developing a key functional group approach in best-bet alternatives to slash-and-burn. In: Palm CA, Vosti SA, Sanchez PA (eds) Slash-and-burn agriculture: the search for alternatives. Columbia University Press, New York, pp 119–142Google Scholar
  18. Bonachela JA, Pringle RM, Sheffer E et al (2015) Termite mounds can increase the robustness of dryland ecosystems to climatic change. Science 347:651–655PubMedCrossRefPubMedCentralGoogle Scholar
  19. Bourguignon T, Šobotník J, Lepoint G et al (2011) Feeding ecology and phylogenetic structure of a complex neotropical termite assemblage, revealed by nitrogen stable isotope ratios. Ecol Entomol 36:261–269CrossRefGoogle Scholar
  20. Bourguignon T, Lo N, Cameron SL et al (2015) The evolutionary history of termites as inferred from 66 mitochondrial genomes. Mol Biol Evol 32:406–421PubMedPubMedCentralCrossRefGoogle Scholar
  21. Breznak JA (1982) Intestinal microbiology of termites and other xylophagous insects. Annu Rev Microbiol 36:323–343PubMedCrossRefPubMedCentralGoogle Scholar
  22. Breznak JA, Brune A (1994) Role of microorganisms in the digestion of lignocellulose by termites. Annu Rev Entomol 39:453–487CrossRefGoogle Scholar
  23. Brugerolle G, Radek R (2006) Symbiotic protozoa of termites. In: König H, Varma A (eds) Intestinal microorganisms of termites and other invertebrates. Springer, Berlin, pp 243–269CrossRefGoogle Scholar
  24. Brune A (2006) Symbiotic associations between termites and prokaryotes. In: Dworkin M, Falkow S, Rosenberg E et al (eds) The prokaryotes, vol 7. Springer, New York, pp 439–474CrossRefGoogle Scholar
  25. Brune A (2011) Microbial symbioses in the digestive tract of lower termites. In: Rosenberg E, Gophna U (eds) Beneficial microorganisms in multicellular life forms. Springer, Berlin, pp 3–25Google Scholar
  26. Brune A (2012) Endomicrobia: intracellular symbionts of termite gut flagellates. J Endocytobio Cell Res 23:11–15Google Scholar
  27. Brune A, Dietrich C (2015) The gut microbiota of termites: digesting the diversity in the light of ecology and evolution. Annu Rev Microbiol 69:145–166PubMedCrossRefPubMedCentralGoogle Scholar
  28. Brune A, Ohkuma M (2011) Role of the termite gut microbiota in symbiotic digestion. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 439–475Google Scholar
  29. Brune A, Stingl U (2005) Prokaryotic symbionts of termite gut flagellates: phylogenetic and metabolic implications of a tripartite symbiosis. In: Overmann J (ed) Molecular basis of symbiosis. Springer, Berlin, pp 39–60Google Scholar
  30. Brune A, Emerson D, Breznak JA (1995) The termite gut microflora as an oxygen sink: microelectrode determination of oxygen and pH gradients in guts of lower and higher termites. Appl Environ Microbiol 61:2681–2687PubMedPubMedCentralGoogle Scholar
  31. Brune A, Frenzel P, Cypionka H (2000) Life at the oxic-anoxic interface: microbial activities and adaptations. FEMS Microbiol Rev 24:691–710PubMedCrossRefPubMedCentralGoogle Scholar
  32. Brussaard L, Aanen DK, Briones MJI et al (2012) Biogeography and phylogenetic community structure of soil invertebrate engineers: global to local patterns, implications for ecosystem functioning and services and global environmental change impacts. In: Wall DH et al (eds) Soil ecology and ecosystem services. Oxford University Press, Oxford, pp 201–232CrossRefGoogle Scholar
  33. Butler JHA, Buckerfield JC (1979) Digestion of lignin by termites. Soil Biol Biochem 11:507–513CrossRefGoogle Scholar
  34. Cameron SL, Lo N, Bourguignon T et al (2012) A mitochondrial genome phylogeny of termites (Blattodea: Termitoidae): robust support for interfamilial relationships and molecular synapomorphies define major clades. Mol Phylogenet Evol 65:163–173PubMedCrossRefPubMedCentralGoogle Scholar
  35. Chouvenc T, Su N-Y, Robert A (2009) Inhibition of Metarhizium anisopliae in the alimentary tract of the eastern subterranean termite Reticulitermes flavipes. J Invertebr Pathol 101:130–136PubMedCrossRefPubMedCentralGoogle Scholar
  36. Chouvenc T, Efstathion CA, Elliott ML et al (2013) Extended disease resistance emerging from the faecal nest of a subterranean termite. Proc R Soc B 280:20131885PubMedPubMedCentralCrossRefGoogle Scholar
  37. Ciais PC, Sabine G, Bala L et al (2013) Carbon and other biogeochemical cycles. In: Stocker TF, Qin D, Plattner G-K et al (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 465–570Google Scholar
  38. Clay NA, Little N, Riggins JJ (2017) Inoculation of ophiostomatoid fungi in loblolly pine trees increases the presence of subterranean termites in fungal lesions. Arthropod Plant Interact 11:213–219CrossRefGoogle Scholar
  39. Cleveland LR, Hall SR, Sanders EP et al (1934) The wood-feeding roach Cryptocercus, its protozoa, and the symbiosis between protozoa and roach. Mem Am Acad Arts Sci 17:185–342Google Scholar
  40. Collins NM (1983) Termite populations and their role in litter removal in Malaysian rain forests. In: Sutton SL, Whitmore TC, Chadwick AC (eds) Tropical rain forest: ecology and management. Blackwell Science, Oxford, pp 311–325Google Scholar
  41. Cookson LJ (1987) 14C-lignin degradation by three Australian termite species. Wood Sci Technol 21:11–25Google Scholar
  42. Costa-Leonardo AM, Haifig I (2010) Pheromones and exocrine glands in Isoptera. Vitam Horm 83:521–549PubMedCrossRefPubMedCentralGoogle Scholar
  43. Cov MR, Salem TZ, Denton JS et al (2010) Phenol-oxidizing laccases from the termite gut. Insect Biochem Mol Biol 40:723–732CrossRefGoogle Scholar
  44. Cypret JA, Judd TM (2015) The role of salivary enzymes in the detection of polysaccharides in the termite Reticulitermes flavipes Kollar (Isoptera: Rhnotermitidae). Sociobiology 62:593–597CrossRefGoogle Scholar
  45. Dahlsjö CAL, Parr CL, Mahli Y et al (2014) First comparison of quantitative estimates of termite biomass and abundance reveals strong intercontinental differences. J Trop Ecol 30:143–152CrossRefGoogle Scholar
  46. Dambros CS, Morais JW, Vasconcellos A et al (2016) Association of ant predators and edaphic conditions with termite diversity in an Amazonian Rain Forest. Biotropica 48:237–245CrossRefGoogle Scholar
  47. Dangerfield JM, McCarthy TS, Ellery WN (1998) The mound-building termite Macrotermes michaelseni as an ecosystem engineer. J Trop Ecol 14:507–520CrossRefGoogle Scholar
  48. Darlington J (1994) Nutrition and evolution in fungus-growing termites. In: Hunt JH, Nalepa CA (eds) Nourishment and evolution in insect societies. Westview, Boulder, pp 105–130Google Scholar
  49. Darlington JPEC (2012) Termites (Isoptera) as secondary occupants in mounds of Macrotermes michaelseni in Kenya. Insect Soc 59:159–165CrossRefGoogle Scholar
  50. Davies RG, Eggleton P, Dibog L et al (1999) Successional response of a tropical termite assemblage to experimental habitat perturbation. J Appl Ecol 36:946–962CrossRefGoogle Scholar
  51. Davies RG, Eggleton P, Dubbin WE et al (2003) Evolution of termite functional diversity: analysis and synthesis of local ecological and regional influences on local species richness. J Biogeogr 30:847–877CrossRefGoogle Scholar
  52. Davies AB, Parr CL, van Rensburg BJ (2010) Termites and fire: current understanding and future research directions for improved savannah conservation. Austral Ecol 35:482–486CrossRefGoogle Scholar
  53. Davies AB, Eggleton P, van Rensburg BJ et al (2012) The pyrodiversity-biodiversity hypothesis: a test with savannah termite assemblages. J Appl Ecol 49:422–430CrossRefGoogle Scholar
  54. Davies AB, Eggleton P, van Rensburg BJ et al (2013) Assessing the relative efficiency of termite sampling methods along a rainfall gradient in African savannas. Biotropica 45:474–479CrossRefGoogle Scholar
  55. Davies AB, Eggleton P, van Rensburg BJ et al (2015) Seasonal activity patterns of African savannah termites vary across a rainfall gradient. Insect Soc 62:157–165CrossRefGoogle Scholar
  56. Davies AB, van Rensburg BJ, Robertson MP et al (2016) Seasonal variation in the relative dominance of herbivore guilds in an African savannah. Ecology 97:1618–1624PubMedCrossRefPubMedCentralGoogle Scholar
  57. Dietrich C, Köhler T, Brune A (2014) The cockroach origin of the termite gut microbiota: patterns in bacterial community structure reflect major evolutionary events. Appl Environ Microbiol 80:2261–2269PubMedPubMedCentralCrossRefGoogle Scholar
  58. Donovan SE, Jones DT, Sands WA et al (2000) The morphological phylogenetics of termites (Isoptera). Biol J Linn Soc 70:467–513CrossRefGoogle Scholar
  59. Donovan SE, Eggleton P, Bignell DE (2001) Gut content analysis and a new feeding group classification of termites. Ecol Entomol 26:356–366CrossRefGoogle Scholar
  60. Donovan SE, Eggleton P, Martin A (2002) Species composition of termites of the Nyika plateau forests, northern Malawi, over an altitudinal gradient. Afr J Ecol 40:379–385CrossRefGoogle Scholar
  61. Donovan SE, Purdy KJ, Kane MD et al (2004) Comparison of Euryarchaea strains in the guts and food-soil of the soil-feeding termite Cubitermes fungifaber across different soil types. Appl Environ Microbiol 70:3884–3892PubMedPubMedCentralCrossRefGoogle Scholar
  62. Dosso K, Yéo K, Konaté S et al (2012) Importance of protected areas for biodiversity conservation in central Côte d’Ivoire: comparison of termite assemblages between two neighboring areas under differing levels of disturbance. J Insect Sci 12:131PubMedPubMedCentralCrossRefGoogle Scholar
  63. Duarte S, Duarte M, Borges PAV et al (2016) Dietary-driven variation effects on the symbiotic flagellate protest communities of the subterranean termite Reticulitermes grassei Clément. J Appl Entomol 141:300–307CrossRefGoogle Scholar
  64. Eggleton P (2011) An introduction to termites: biology, taxonomy, and functional morphology. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 1–26Google Scholar
  65. Eggleton P, Tayasu I (2001) Feeding groups, lifetypes, and the global ecology of termites. Ecol Res 16:941–960CrossRefGoogle Scholar
  66. Eggleton P, Beccaloni G, Inward D (2007) Response to Lo et al. Biol Lett 3:564–565PubMedCentralCrossRefGoogle Scholar
  67. Engel MS, Grimaldi DA, Krishna K (2009) Termites (Isoptera): their phylogeny, classification, and rise to ecological dominance. Am Mus Novit 3650:1–27CrossRefGoogle Scholar
  68. Erpenbach A, Wittig R (2016) Termites and savannas – an overview on history and scientific progress with particular respect to West Africa and to the genus Macrotermes. Flora et Vegetatio Sudano-Sambesica 19:35–51Google Scholar
  69. Esenther GR, Kirk TK (1974) Catabolism of aspen sapwood in Reticulitermes flavipes. Ann Entomol Soc Am 67:989–991CrossRefGoogle Scholar
  70. Evans TA (2011) Invasive termites. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 519–562Google Scholar
  71. Evans TA, Lai JCS, Toledano E et al (2005) Termites assess wood size by using vibrational signals. Proc Natl Acad Sci USA 102:3732–3737PubMedPubMedCentralCrossRefGoogle Scholar
  72. Evans TA, Inta R, Lai JCS et al (2007) Foraging vibration signals attract foragers and identify food size in the drywood termites, Cryptotermes secundus. Insect Soc 54:374–382CrossRefGoogle Scholar
  73. Evans TA, Inta R, Lai JCS et al (2009) Termites eavesdrop to avoid competitors. Proc R Soc Lond B 276:4035–4041CrossRefGoogle Scholar
  74. Evans TA, Dawes TZ, Ward PR et al (2011) Ants and termites increase crop yield in a dry climate. Nat Commun 2:262PubMedPubMedCentralCrossRefGoogle Scholar
  75. Evans TA, Forschler BT, Grace JK (2013) Biology of invasive termites: a worldwide review. Annu Rev Entomol 58:456–474CrossRefGoogle Scholar
  76. Geib SM, Filley TR, Hatcher PG et al (2008) Lignin degradation in wood-feeding insects. Proc Natl Acad Sci USA 105:12932–12937PubMedPubMedCentralCrossRefGoogle Scholar
  77. Gillison AN, Jones DT, Susilo F-X et al (2003) Vegetation indicates diversity of macroinvertebrates: a case study with termites sampled across a land-use intensification gradient in lowland Sumatra. Org Divers Ecol 3:111–126CrossRefGoogle Scholar
  78. Grace KJ, Campora CE (2005) Food location and discrimination by subterranean termites (isopteran: Rhinotermitidae). In: Lee CY, Robinson WH (eds) Proceedings of the fifth international conference on urban pests. Executive committee of the international conference on urban pests, SingaporeGoogle Scholar
  79. Grassé P-P (1959) La reconstruction du nid et les coordinations inter-individuelles chez Belicositermes natalensis et Cubitermes sp. La théorie de la Stigmergie: Essai d’interprétation du comportement des termites constructeurs. Insect Soc 6:41–81CrossRefGoogle Scholar
  80. Griffiths BS, Bracewell JM, Robertson GW et al (2013) Pyrolysis-mass spectrometry confirms enrichment of lignin in the faeces of a wood-feeding termite, Zootermopsis nevadensis and depletion of peptides in a soil-feeder, Cubitermes ugandensis. Soil Biol Biochem 57:957–959CrossRefGoogle Scholar
  81. Hanus R, Söbotnik J, Krasulová J et al (2012) Nonadecadieone, a new termite trail-following pheromone identified in Glossotermes oculatus (Serritermitidae). Chem Senses 37:55–63PubMedCrossRefPubMedCentralGoogle Scholar
  82. Harazano K, Yamashita M, Shinzato N et al (2007) Isolation and characterization of aromatics-degrading microorganisms from the gut of the lower termite Coptotermes formosanus. Biosci Biotechnol Biochem 67:889–892CrossRefGoogle Scholar
  83. He S, Ivanova N, Kirton E et al (2013) Comparative metagenomic and metatranscriptomic analysis of hindgut paunch microbiota in wood- and dung-feeding higher termites. PLoS One 8(4):e61126PubMedPubMedCentralCrossRefGoogle Scholar
  84. Himmi SK, Yoshimura T, Yanase Y et al (2014) X-ray tomographic analysis of the initial structure of the royal chamber and the nest-founding behavior of the drywood termite Incisitermes minor. J Wood Sci 60:453–460CrossRefGoogle Scholar
  85. Himmi SK, Yoshimura T, Yanase Y et al (2016a) Nest-gallery development and caste composition of isolated foraging group of the drywood termite (Isoptera: Kalotermitidae). Insects 7:38PubMedCentralCrossRefGoogle Scholar
  86. Himmi SK, Yoshimura T, Yanase Y et al (2016b) Wood anatomical selectivity of drywood termite in the nest gallery establishment revealed by X-ray tomography. Wood Sci Technol 50:631–643CrossRefGoogle Scholar
  87. Ho A, Erens H, Mujinya BB et al (2013) Termites facilitate methane oxidation and shape the methanotrophic community. Appl Environ Microbiol 79:7234–7240PubMedPubMedCentralCrossRefGoogle Scholar
  88. Hongoh Y (2011) Towards the functional analysis of uncultivable, symbiotic microorganisms in the termite gut. Cell Mol Life Sci 68:1311–1325PubMedCrossRefPubMedCentralGoogle Scholar
  89. Hongoh Y, Ekpornprasit L, Inoue T et al (2006) Intracolony variation of bacterial gut microbiota among castes and ages in the fungus-growing termite Macrotermes gilvus. Mol Ecol 15:505–516PubMedCrossRefPubMedCentralGoogle Scholar
  90. Hopkins DW, Chudek JA, Bignell DE et al (1998) Application of 13C NMR to investigate the transformations and biodegradation of organic materials by some soil- and litter-dwelling insects. Biodegradation 9:423–431PubMedCrossRefPubMedCentralGoogle Scholar
  91. Hyodo F, Inoue T, Azuma J-J et al (2000) Role of the mutualistic fungus in lignin degradation in the fungus-growing termite Macrotermes gilvus (Isoptera; Macrotermitinae). Soil Biol Biochem 32:653–658CrossRefGoogle Scholar
  92. Hyodo F, Tayasu I, Inoue T et al (2003) Differential role of symbiotic fungi in lignin degradation and food provision for fungus-growing termites (Macrotermitinae: Isoptera). Funct Ecol 17:186–193CrossRefGoogle Scholar
  93. Inoue T, Takematsu Y, Yamada A et al (2006) Diversity and abundance of termites along an altitudinal gradient in Khao Kitchagoot National Park, Thailand. J Trop Ecol 22:606–612CrossRefGoogle Scholar
  94. Inward D, Beccaloni G, Eggleton P (2007a) Death of an order: a comprehensive molecular phylogenetic study confirms that termites are eusocial cockroaches. Biol Lett 3:331–335PubMedPubMedCentralCrossRefGoogle Scholar
  95. Inward DJG, Vogler AP, Eggleton P (2007b) A comprehensive phylogenetic analysis of termites (Isoptera) illuminates key aspects of their evolutionary biology. Mol Phylogenet Evol 44:953–967PubMedCrossRefPubMedCentralGoogle Scholar
  96. Jeon W, Kang S-Y, Su N-Y et al (2010) A constraint condition for foraging strategy in subterranean termites. J Insect Sci 10:146PubMedPubMedCentralCrossRefGoogle Scholar
  97. Jones DT, Eggleton P (2011) Global biogeography of termites: a compilation of sources. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 477–498Google Scholar
  98. Jones DT, Susilo F-X, Bignell DE et al (2003) Termite assemblage collapse along a land-use intensification gradient in lowland central Sumatra, Indonesia. J Appl Ecol 40:380–391CrossRefGoogle Scholar
  99. Joseph GS, Seymour CL, Cumming GS et al (2013) Termite mounds as islands: woody plant assemblages relative to termitarium size and soil properties. J Veg Sci 24:702–711CrossRefGoogle Scholar
  100. Jost C, de-Camargo-Dietrich CRR, Costa-Leonardo AM (2012) A comparative tunneling network approach to assess interspecific competition effects in termites. Insect Soc 59:369–379CrossRefGoogle Scholar
  101. Jouquet P, Tessier D, Lepage M (2004) The soil structural stability of termite nests: role of clays in Macrotermes bellicosus (Isoptera, Macrotermitinae) mound soils. Eur J Soil Biol 40:23–29CrossRefGoogle Scholar
  102. Jouquet P, Barré P, Lepage M et al (2005) Impact of subterranean fungus-growing termites (Isoptera, Macrotermitinae) on chosen soil properties in a West African savanna. Biol Fertil Soils 41:365–370CrossRefGoogle Scholar
  103. Jouquet P, Traoré S, Choosai C et al (2011) Influence of termites on ecosystem functioning. Ecosystem services provided by termites. Eur J Soil Biol 47:215–222CrossRefGoogle Scholar
  104. Jouquet P, Janeau J-L, Pisano A et al (2012) Influence of earthworms and termites on runoff and erosion in a tropical steep slope fallow in Vietnam: a rainfall simulation experiment. Appl Soil Ecol 61:161–168CrossRefGoogle Scholar
  105. Jouquet P, Guilleux N, Chintakunta S et al (2015) The influence of termites on soil sheeting properties varies depending on the materials on which they feed. Eur J Soil Biol 69:74–78CrossRefGoogle Scholar
  106. Kambhampati S, Eggleton P (2000) Taxonomy and phylogeny of termites. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic, Dordrecht, pp 1–23Google Scholar
  107. Karl ZJ, Scharf ME (2015) Effects of five diverse lignocellulose diets on digestive enzyme biochemistry in the termite Reticulitermes flavipes. Arch Insect Biochem Physiol 90:89–103PubMedCrossRefPubMedCentralGoogle Scholar
  108. Katsumata KS, Jin Z, Hori K et al (2007) Structural changes in lignin of tropical woods during digestion by termite, Cryptotermes brevis. J Wood Sci 53:419–426CrossRefGoogle Scholar
  109. Ke J, Singh D, Yang X et al (2011) Thermal characterization of softwood lignin modification by termites Coptotermes formosanus (Shiraki). Biomass Bioenergy 35:3617–3626CrossRefGoogle Scholar
  110. Köhler T, Stingl U, Meuser K et al (2008) Novel lineages of Planctomycetes densely colonize the alkaline gut of soil-feeding termites (Cubitermes spp.) Environ Microbiol 10:1260–1270PubMedCrossRefPubMedCentralGoogle Scholar
  111. Köhler T, Dietrich C, Scheffrahn R et al (2012) High resolution analysis of gut environment and bacterial microbiota reveals functional compartmentation of the gut in wood-feeding higher termites (Nasutitermes spp). Appl Environ Microbiol 78:4691–4701PubMedPubMedCentralCrossRefGoogle Scholar
  112. Konaté S, Le Roux X, Verdier B et al (2003) Effect of underground fungus-growing termites on carbon dioxide emission at the point- and landscape-scales in an African savanna. Funct Ecol 17:305–314CrossRefGoogle Scholar
  113. König H, Fröhlich J, Hertel H (2006) Diversity and lignocellulolytic activities of cultured microorganisms. In: König H, Varma A (eds) Intestinal microorganisms of termites and other invertebrates. Springer, Berlin, pp 271–301CrossRefGoogle Scholar
  114. Korb J (2007) Termites. Curr Biol 17:R995–R999PubMedCrossRefPubMedCentralGoogle Scholar
  115. Korb J (2008) Termites, hemimetabalous white ants? Front Zool 5:15PubMedPubMedCentralCrossRefGoogle Scholar
  116. Korb J (2011) Termite mound architecture, from function to construction. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 349–373Google Scholar
  117. Korb J, Aanen DK (2003) The evolution of uniparental transmission of fungal symbionts in fungus-growing termites (Macrotermitinae). Behav Ecol Sociobiol 53:65–71Google Scholar
  118. Korb J, Buschmann M, Schafberg S et al (2012) Brood care and social evolution in termites. Proc R Soc B 279:2662–2671PubMedPubMedCentralCrossRefGoogle Scholar
  119. Kudo Y (2009) Termite-microbe symbiotic system and its efficient degradation of lignocellulose. Biosci Biotechnol Biochem 73:2561–2567PubMedCrossRefPubMedCentralGoogle Scholar
  120. Lavelle P, Spain AV (2001) Soil ecology. Kluwer Academic, Dordrecht, 654pCrossRefGoogle Scholar
  121. Lee S-H, Su N-Y (2010) Simulation study on the tunnel networks of subterranean termites and the foraging behavior. J Asia Pac Entomol 13:83–90CrossRefGoogle Scholar
  122. Lefebvre T, Miambi E, Pando A et al (2009) Gut-specific actinobacterial community structure and diversity associated with the wood-feeding termite species, Nasutitermes corniger (Motschulsky) described by nested PCR-DGGE analysis. Insect Soc 56:269–276CrossRefGoogle Scholar
  123. Legendre F, Whiting MF, Bordereau C et al (2008) The phylogeny of termites (Dictyoptera: Isoptera) based on mitochondrial and nuclear markers: implications for the evolution of the worker and pseudergate castes, and foraging behaviors. Mol Phylogenet Evol 48:615–627PubMedCrossRefPubMedCentralGoogle Scholar
  124. Lepage M, Darlington JPEC (2000) Population dynamics of termites. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic, Dordrecht, pp 333–361CrossRefGoogle Scholar
  125. Lepage M, Abbadie L, Mariotti A (1993) Food habits of sympatric species (Isoptera, Macrotermitinae) as determined by stable isotope analysis in a Guinean savanna (Lamto, Cöte d’Ivoire). J Trop Ecol 9:303–311CrossRefGoogle Scholar
  126. Li L, Fröhlich J, König H (2006) Cellulose digestion in the termite gut. In: König H, Varma A (eds) Intestinal microorganisms of termites and other invertebrates. Springer, Berlin, pp 221–241CrossRefGoogle Scholar
  127. Li H, Dietrich C, Zhu N et al (2016) Age polyethism drives community structure of the bacterial gut microbiota in the fungus-cultivating termite Odontotermes formosanus. Environ Microbiol 18:1440–1451PubMedCrossRefPubMedCentralGoogle Scholar
  128. Li H, Yelle DJ, Li C et al (2017) Lignocellulose pretreatment in a fungus-cultivating termite. Proc Natl Acad Sci USA 114:4709–4714PubMedPubMedCentralCrossRefGoogle Scholar
  129. Lima JT, Costa-Leonardo AM (2012) Tunneling behavior of the Asian subterranean termite in heterogeneous soil: presence of cues on the foraging area. Anim Behav 8:1269–1278CrossRefGoogle Scholar
  130. Lo N, Bandi C, Watanabe H et al (2003) Evidence for co-cladogenesis between diverse dictyopteran lineages and their intracellular endosymbionts. Mol Biol Evol 20:907–913PubMedCrossRefPubMedCentralGoogle Scholar
  131. Lo N, Engel MS, Cameron S et al (2007) Save Isoptera: a comment on Inward et al. Biol Lett 3:562–563PubMedPubMedCentralCrossRefGoogle Scholar
  132. Mackenzie LM, Muigai AT, Osir EO et al (2007) Bacterial diversity in the intestinal tract of the fungus-cultivating termite Macrotermes michaelseni (Sjöstedt). Afr J Biotechnol 6:658–667Google Scholar
  133. Maekawa K, Lo N, Rose HA et al (2003) The evolution of soil-burrowing cockroaches (Blattaria: Blaberidae) from wood-burrowing ancestors following an invasion of the latter from Asia into Australia. Proc R Soc Lond B 270:1301–1307CrossRefGoogle Scholar
  134. Makonde HM, Boga HL, Osiemo Z (2013) 16S-rRNA-based analysis of bacterial diversity in the gut of fungus-cultivating termites (Microtermes and Odontotermes species). Anton Leeuw Int J G 104:869–883CrossRefGoogle Scholar
  135. Makonde HM, Mwirichia R, Osiemo Z et al (2015) 454 Pyrosequencing-based assessment of bacterial diversity and community structure in termite guts, mounds and surrounding soils. SpringerPlus 4:471PubMedPubMedCentralCrossRefGoogle Scholar
  136. Mando A, Miedema R (1997) Termite-induced change in soil structure after mulching degraded (crusted) soil in the Sahel. Appl Soil Ecol 6:241–249CrossRefGoogle Scholar
  137. Martin MM (1987) Invertebrate-microbial interactions. Ingested fungal enzymes in arthropod biology. Comstock Publishing Associates, Ithaca, 187pGoogle Scholar
  138. Mathew GM, Ju Y-M, Lai C-Y et al (2012) Microbial community analysis in the termite gut and fungus comb of Odontotermes formosanus: the implication of Bacillus as mutualists. Microb Ecol 79:540–517Google Scholar
  139. Matsui T, Tanaka J, Namihira T et al (2012) Antibiotics production by an actinomycete isolated from the termite gut. J Basic Microbiol 52:731–735PubMedCrossRefPubMedCentralGoogle Scholar
  140. Mikaelyan A, Strassert FH, Tokuda G et al (2014) The fibre-associated cellulolytic bacterial community in the hindgut of wood-feeding higher termites (Nasutitermes spp.) Environ Microbiol 16:2711–2722CrossRefGoogle Scholar
  141. Mikaelyan A, Dietrich C, Köhler T et al (2015) Diet is the primary determinant of bacterial community structure in the guts of higher termites. Mol Ecol 24:5284–5295PubMedCrossRefPubMedCentralGoogle Scholar
  142. Mikaelyan A, Thompson C, Hofer MJ et al (2016) Deterministic assembly of complex bacterial communities in guts of germ-free cockroaches. Appl Environ Microbiol 82:4CrossRefGoogle Scholar
  143. Mikaelyan A, Meuser K, Brune A (2017) Microenvironmental heterogeneity of gut compartments drives bacterial community structure in wood- and humus-feeding higher termites. FEMS Microbiol Ecol 93:fiw210PubMedCrossRefPubMedCentralGoogle Scholar
  144. Miyata R, Noda N, Tamaki J et al (2007) Influence of feed components on symbiotic bacterial community structure in the gut of the wood-feeding higher termite Nasutitermes takasagoensis. Biosci Biotechnol Biochem 71:1244–1251PubMedCrossRefPubMedCentralGoogle Scholar
  145. Moe SR, Mobaek R, Narmo AK (2009) Mound building termites contribute to savanna vegetation heterogeneity. Plant Ecol 202:31–40CrossRefGoogle Scholar
  146. Mueller UG, Dash D, Rabeling C et al (2008) Coevolution between attine ants and actinomycete bacteria: a reevaluation. Evolution 62:2894–2912PubMedCrossRefPubMedCentralGoogle Scholar
  147. Nalepa CA (2010) Altricial development in subsocial cockroach ancestors: foundation for phenotypic plasticity in extant termites. Evol Dev 12:95–105PubMedCrossRefPubMedCentralGoogle Scholar
  148. Nalepa CA (2011) Altricial development in wood-feeding cockroaches: the key antecedent of termite eusociality. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 69–95Google Scholar
  149. Nalepa CA (2017) What kills the hindgut flagellates of lower termites during the host molting cycle? Microorganisms 5:82.  https://doi.org/10.3390/microorganisms5040082CrossRefPubMedCentralGoogle Scholar
  150. Nalepa CA, Bandi C (2000) Characterizing the ancestors: paedomorphosis and termite evolution. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic, Dordrecht, pp 53–75CrossRefGoogle Scholar
  151. Nalepa C, Bignell DE, Bandi C (2001) Detritivory, coprophagy and the evolution of digestive mutualisms in Dictyoptera. Insect Soc 48:194–201CrossRefGoogle Scholar
  152. Ngugi DK, Tsanuo MK, Boga HI (2007) Benzoic acid-degrading bacteria from the intestinal tract of Macrotermes michaelseni Sjöstedt. J Basic Microbiol 47:87–92CrossRefGoogle Scholar
  153. Nobre T, Aanen DK (2012) Fungiculture or termite husbandry? The ruminant hypothesis. Insects 3:307–323PubMedPubMedCentralCrossRefGoogle Scholar
  154. Nobre T, Nunes L, Bignell DE (2007a) Tunnel geometry of the subterranean termite Reticulitermes grassei (Isoptera: Rhinotermitidae) in response to sand bulk density and the presence of food. Insect Sci 14:511–518CrossRefGoogle Scholar
  155. Nobre T, Nunes L, Bignell DE (2007b) Estimation of foraging territories of Reticulitermes grassei through mark-release-capture. Entomol Exp Appl 123:119–128CrossRefGoogle Scholar
  156. Nobre T, Nunes L, Bignell DE (2008) Survey of subterranean termites (Isoptera: Rhinotermitidae) in a managed silvicultural plantation in Portugal, using a line intersection method (LIS). Bull Entomol Res 99:11–21PubMedCrossRefPubMedCentralGoogle Scholar
  157. Nobre T, Rouland-Lefèvre C, Aanen DK (2011) Comparative biology of fungus cultivation in termites and ants. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 193–210Google Scholar
  158. Noda S, Inoue T, Hongoh Y et al (2006) Identification and characterization of ectosymbionts of distinct lineages in Bacteroidales attached to flagellated protists in the gut of termites and a wood-feeding cockroach. Environ Microbiol 8:11–20PubMedCrossRefPubMedCentralGoogle Scholar
  159. Nunes L, Bignell DE, Lo N et al (1997) On the respiratory quotient (RQ) of termites (Insecta: Isoptera). J Insect Physiol 43:749–758PubMedCrossRefPubMedCentralGoogle Scholar
  160. Nunes CA, Quintino AV, Constantino R et al (2017) Patterns of taxonomic and functional diversity of termites along a tropical elevation gradient. Biotropica 49:186–194CrossRefGoogle Scholar
  161. O’Connor TG (2013) Termite mounds as browsing hotspots: an exception to the rule. J Veg Sci 24:211–213CrossRefGoogle Scholar
  162. Oberst S, Lai JCS, Evans TA (2016) Termites utilize clay to build structural supports and so increase foraging resources. Sci Rep 6:20990PubMedPubMedCentralCrossRefGoogle Scholar
  163. Ohkuma M (2003) Termite symbiotic systems: efficient biorecycling of lignocellulose. Appl Microbiol Biotechnol 61:1–9PubMedCrossRefPubMedCentralGoogle Scholar
  164. Ohkuma M (2008) Symbioses of flagellates and prokaryotes in the gut of lower termites. Trends Microbiol 16:345–352PubMedCrossRefPubMedCentralGoogle Scholar
  165. Ohkuma M, Brune A (2011) Diversity, structure, and evolution of the termite gut microbial community. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 413–438Google Scholar
  166. Otani S, Mikaelyan A, Nobre T et al (2014) Identifying the core microbial community in the gut of fungus-growing termites. Mol Ecol 23:4631–4644PubMedCrossRefPubMedCentralGoogle Scholar
  167. Palin O, Eggleton P, Mahli Y et al (2011) Termite diversity along an Amazon-Andes elevation gradient, Peru. Biotropica 43:100–107CrossRefGoogle Scholar
  168. Pellens R, D’Haese C, Belles X et al (2007) The evolutionary transition from subsocial to eusocial behaviour in Dictyoptera: phylogenetic evidence for modification of the “shift-in-dependent-care” hypothesis with a new subsocial cockroach. Mol Phylogenet Evol 43:616–626PubMedCrossRefPubMedCentralGoogle Scholar
  169. Peterson BF, Scharf M (2016) Lower termite associations with microbes: synergy, protection, and interplay. Front Microbiol 7:1–7CrossRefGoogle Scholar
  170. Peterson BF, Stewart HL, Scharf ME (2015) Quantification of symbiotic contributions to lower termite lignocellulose digestion using antimicrobial treatments. Insect Biochem Mol Biol 59:80–88PubMedCrossRefPubMedCentralGoogle Scholar
  171. Pinto-Thomas AA, Anderson MA, Suen G et al (2009) Symbiotic nitrogen fixation in the fungus gardens of leaf-cutter ants. Science 326:1120–1123CrossRefGoogle Scholar
  172. Potrikus CJ, Breznak JA (1981) Gut bacteria recycle uric acid nitrogen in termites: a strategy for nutrient conservation. Proc Natl Acad Sci USA 78:4601–4460PubMedPubMedCentralCrossRefGoogle Scholar
  173. Poulsen M, Hu H, Cai L et al (2014) Complementary symbiont contributions to plant decomposition in a fungus-farming termite. Proc Natl Acad Sci USA 111:14500–14505PubMedPubMedCentralCrossRefGoogle Scholar
  174. Radek R (1999) Flagellates, bacteria and fungi associated with termites: diversity and function in nutrition – a review. Ecotropica 5:183–196Google Scholar
  175. Rahman NA, Parks DH, Willner DL (2015) A molecular survey of Australian and North American termite genera indicates that vertical inheritance is the primary force shaping termite gut microbiomes. Microbiome 3:5PubMedPubMedCentralCrossRefGoogle Scholar
  176. Raychoudhary R, Sen R, Cal Y et al (2013) Comparative metatranscriptomic signatures of wood and paper feeding in the gut of the termite Reticulitermes flavipes (Isoptera: Rhionotermitidae). Insect Mol Biol 22:155–171CrossRefGoogle Scholar
  177. Reinhard J, Hertel H, Kaib M (1997) Systematic search for food in the subterranean termite Reticulitermes santonensis De Feytaud (Isoptera, Rhinotermitidae). Insect Soc 44:147–158CrossRefGoogle Scholar
  178. Riggins JJ, Little NS, Eckhardt LH (2014) Correlation between infection by ophiostomatoid fungi and the presence of subterranean termites in loblolly pine (Pinus taeda L.) roots. Agric For Entomol 16:260–264CrossRefGoogle Scholar
  179. Rosengaus R, Mead K, Du Comb WS et al (2013) Nest sanitation through defecation: antifungal properties of wood cockroach feces. Naturwissenschaften 100:1050–1059CrossRefGoogle Scholar
  180. Rosengaus R, Schultheis KF, Yalonetskaya A et al (2014) Symbiont-derived β-1,3-glucanases in a social insect: mutualism beyond nutrition. Front Microbiol 5:607PubMedPubMedCentralCrossRefGoogle Scholar
  181. Rossmassler K, Dietrich C, Thompson C et al (2015) Metagenomic analysis of the microbiota in the highly compartmented hindgus of six wood- and soil-feeding higher termites. Microbiome 3:56PubMedPubMedCentralCrossRefGoogle Scholar
  182. Rouland-Lefèvre C (2000) Symbiosis with fungi. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic, Dordrecht, pp 289–306CrossRefGoogle Scholar
  183. Rouland-Lefèvre C (2011) Termites as pests of agriculture. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 499–517Google Scholar
  184. Rouland-Lefèvre C, Bignell DE (2001) Cultivation of symbiotic fungi by termites of the subfamily Macrotermitinae. In: Seckbach J (ed) Symbiosis: mechanisms and model systems. Kluwer Academic, Dordrecht, pp 731–756Google Scholar
  185. Rückamp D, Martius C, Bragança MAL et al (2011) Lignin patterns in soil and termite nests of the Brazilian Cerrado. Appl Soil Ecol 48:45–52CrossRefGoogle Scholar
  186. Rust MK, Su NY (2012) Managing social insects of urban importance. Annu Rev Entomol 57:355–375PubMedPubMedCentralCrossRefGoogle Scholar
  187. Sabree ZL, Kambhampati S, Moran NA (2009) Nitrogen cycling and nutrient provisioning by Blattabacterium, the cockroach endosymbiont. Proc Natl Acad Sci USA 106:19521–19526PubMedPubMedCentralCrossRefGoogle Scholar
  188. Sands WA (1969) The association of termites and fungi. In: Krishna K, Weesner FM (eds) Biology of termites, vol I. Academic, New York, pp 495–524CrossRefGoogle Scholar
  189. Scharf ME, Tartar A (2008) Termite digestomes as sources for novel lignocellulases. Biofuels Bioprod Biorefin 2:540–552CrossRefGoogle Scholar
  190. Scharf ME, Karl ZJ, Sethi A et al (2011) Defining host-symbiont collaboration in termite lignocellulose digestion. Commun Integr Biol 4:761–763PubMedPubMedCentralCrossRefGoogle Scholar
  191. Schuurman G (2005) Decomposition rates and termite assemblage composition in semiarid Africa. Ecology 86:1236–1249CrossRefGoogle Scholar
  192. Scott AC, Taylor TN (1983) Plant/animal interactions during the Upper Carboniferous. Bot Rev 49:259–307CrossRefGoogle Scholar
  193. Sethi A, Slack JM, Kovaleva ES et al (2012) Lignin-associated metagene expression in a lignocellulose-digesting termite. Insect Biochem Mol Biol 43:91–101PubMedCrossRefPubMedCentralGoogle Scholar
  194. Sethi A, Kovaleva ES, Slack JM et al (2013) A GHF7 cellulase from the protist symbiont community of Reticulitermes flavipes enables more efficient lignocellulose processing by host enzymes. Arch Insect Biochem Physiol 84:175–193PubMedCrossRefPubMedCentralGoogle Scholar
  195. Seymour CL, Joseph GS, Makumbe M et al (2016) Woody species composition in an African savanna: determined by centuries of termite activity but modulated by 50 years of ungulate herbivory. J Veg Sci 27:824–833CrossRefGoogle Scholar
  196. Sileshi GW, Arshad MA (2012) Application of distance-decay models for inferences about termite mound induced patterns in dryland ecosystems. J Arid Environ 77:138–148CrossRefGoogle Scholar
  197. Sim S, Ku SJ, Lee S-H (2012) Directional selection by termites at a branching node created by a ballpoint pen. J Asia Pac Entomol 15:447–450CrossRefGoogle Scholar
  198. Sleaford F, Bignell DE, Eggleton P (1996) A pilot analysis of gut contents in termites from the Mbalmayo Forest Reserve, Cameroon. Ecol Entomol 21:279–288CrossRefGoogle Scholar
  199. Šobotnik J, Dahlsjö CAL (2017) Isoptera. In: Reference module in life sciences. Elsevier. doi: https://doi.org/10.1016/B978-0-12-809633-8.02256-1CrossRefGoogle Scholar
  200. Stoklosa AM, Ulyshen MD, Fan Z et al (2016) Effects of mesh bag enclosure and termites on fine woody debris decomposition in a subtropical forest. Basic Appl Ecol 17:463–470CrossRefGoogle Scholar
  201. Sugimoto A, Bignell DE, MacDonald JA (2000) Global impact of termites on the carbon cycle and atmospheric trace gases. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic, Dordrecht, pp 409–435CrossRefGoogle Scholar
  202. Tai V, Keeling PJ (2013) Termite hindguts and the ecology of microbial communities in the sequencing age. J Eukaryot Microbiol 60:421–428PubMedCrossRefPubMedCentralGoogle Scholar
  203. Tai V, James E, Nalepa C et al (2015) The role of host phylogeny varies in shaping microbial diversity in the hindguts of lower termites. Appl Environ Microbiol 81:1059–1070PubMedPubMedCentralCrossRefGoogle Scholar
  204. Taprab Y, Johjima T, Maeda Y et al (2006) Symbiotic fungi produce laccases potentially involved in phenol degradation in fungus combs of fungus-growing termites in Thailand. Appl Environ Microbiol 71:7696–7704CrossRefGoogle Scholar
  205. Tegtmeier D, Thompson C, Schauer C et al (2016) Oxygen affects gut bacterial colonization and metabolic activities in a gnotobiotic cockroach model. Appl Environ Microbiol 82:4CrossRefGoogle Scholar
  206. Tholen A, Brune A (2000) Impact of oxygen on the metabolic fluxes and in situ rates of reductive acetogenesis in the hindgut of the wood-feeding termite Reticulitermes flavipes. Environ Microbiol 2:436–449PubMedCrossRefPubMedCentralGoogle Scholar
  207. Thongaram T, Kosono S, Ohkuma M et al (2003) Gut of higher termites as a niche or alkaliphiles as shown by culture-based and culture-independent studies. Microbes Environ 18:152–115CrossRefGoogle Scholar
  208. Tokuda G, Tsuboi Y, Kihara K et al (2014) Metabolomic profiling of 13C-labelled cellulose digestion in a lower termites: insights into gut symbiont function. Proc R Soc Lond B 281:20140990CrossRefGoogle Scholar
  209. Traniello JFA, Leuthold RH (2000) Behaviour and ecology of foraging in termites. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic, Dordrecht, pp 141–168CrossRefGoogle Scholar
  210. Ulyshen MD (2016) Wood decomposition as influenced by invertebrates. Biol Rev 91:70–85PubMedPubMedCentralCrossRefGoogle Scholar
  211. Ulyshen MD, Wagner TL (2013) Quantifying arthropod contributions to wood decay. Methods Ecol Evol 4:345–352CrossRefGoogle Scholar
  212. van der Giezen M (2009) Hydrogenosomes and mitosomes: conservation and evolution of functions. J Eukaryot Microbiol 56:221–231PubMedCrossRefPubMedCentralGoogle Scholar
  213. Velu G, Ramasamy K, Kumar K et al (2011) Green house gas emissions from termite ecosystem. Afr J Environ Sci Technol 5:56–64Google Scholar
  214. Verma M, Sharma S, Prasad R (2009) Biological alternatives for termite control: a review. Int Biodeter Biodegr 63:959–972CrossRefGoogle Scholar
  215. Warnecke F, Luginbühl P, Ivanova N et al (2007) Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450:560–565PubMedCrossRefPubMedCentralGoogle Scholar
  216. Watanabe H, Tokuda G (2010) Cellulolytic systems in insects. Annu Rev Entomol 55:609–632PubMedCrossRefPubMedCentralGoogle Scholar
  217. Watanabe Y, Shinzate N, Fukatsu T (2003) Isolation of actinomycetes from termites’ guts. Biosci Biotechnol Biochem 67:1797–1801PubMedCrossRefPubMedCentralGoogle Scholar
  218. Wood TG (1976) The role of termites (Isoptera) in decomposition processes. In: Anderson JM, MacFadyen A (eds) The role of terrestrial and aquatic organisms in decomposition processes. Blackwell Scientific, Oxford, pp 145–168Google Scholar
  219. Wood TG, Sands WA (1978) The role of termites in ecosystems. In: Brian MV (ed) Production ecology of ants and termites. Cambridge University Press, Cambridge, pp 245–292Google Scholar
  220. Wood TG, Thomas RJ (1989) The mutualistic association between Macrotermitinae and Termitomyces. In: Wilding N, Collins NM, Hammond P et al (eds) Insect-fungus interactions. Academic, London, pp 69–92CrossRefGoogle Scholar
  221. Yamada A, Inoue T, Wiwatwitaya D et al (2005) Carbon mineralization by termites in tropical forests, with emphasis on fungus combs. Ecol Res 20:453–460CrossRefGoogle Scholar
  222. Zhu Y, LI J, Liu H et al (2012) Phylogenetic analysis of the gut bacterial microflora of the fungus-growing termite Macrotermes barneyi. Afr J Microbiol Res 6:2071–2078Google Scholar

Copyright information

© This is a U.S. government work and its text is not subject to copyright protection in the United States; however, its text may be subject to foreign copyright protection.  2018

Authors and Affiliations

  1. 1.School of Biological and Chemical SciencesQueen Mary University of LondonLondonUK

Personalised recommendations