Advertisement

An Introduction to the Diversity, Ecology, and Conservation of Saproxylic Insects

  • Michael D. Ulyshen
  • Jan Šobotník
Chapter
Part of the Zoological Monographs book series (ZM, volume 1)

Abstract

Much like flowering plants set the stage for an explosion of herbivore and pollinator diversity, the origin of dead wood in early Devonian forests (~400 mya) was followed by an incredible diversification of life, giving rise to some of the most successful morphological adaptations and symbioses on Earth. Approximately one third of all forest insect species worldwide depend directly or indirectly on dying or dead wood (i.e., saproxylic), with major functional groups including wood feeders, fungus feeders, saprophages, and predators. Although beetles and flies dominate saproxylic insect communities worldwide, other orders are represented by a wide variety of species as well, and the composition of these assemblages varies biogeographically. Most notably, termites (Blattodea) and the subsocial beetle family Passalidae are both largely restricted to the tropics where they play a major role in the decomposition process. The large body of European research linking declines of saproxylic insect diversity to reductions in the amount of dead wood and old trees across the landscape serves as a cautionary tale for researchers and land managers working in other parts of the world. The conservation of saproxylic insects everywhere can be promoted by efforts to provide an adequate amount and variety of dead wood and old trees across space and time. The preservation of old-growth forests is also critically important as they support relict populations of the most sensitive species. There is a strong need for research outside the boreal and temperate zones to develop a more global appreciation for the diversity and ecology of saproxylic insects and to inform management strategies for conserving these organisms in subtropical and tropical forests.

Notes

Acknowledgments

We thank Martin Gossner and Mike Ferro for providing images used in some of the figures and Jessica Mou for providing comments on the manuscript.

References

  1. Aanen DK, Eggleton P (2005) Fungus-growing termites originated in African rain forest. Curr Biol 15:851–855PubMedCrossRefPubMedCentralGoogle Scholar
  2. Abe T (1987) Evolution of life types in termites. In: Kawano S, Connell JH, Hidaka T (eds) Evolution, coadaptation, and biotic communities. University of Tokyo Press, Tokyo, pp 128–148Google Scholar
  3. Abe T, Bignell DE, Higashi M (eds) (2000) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic, DordrechtGoogle Scholar
  4. Abell KJ, Duan JJ, Bauer L, Lelito JP, Van Driesche RG (2012) The effect of bark thickness on host partitioning between Tetrastichus planipennisi (Hymen: Eulophidae) and Atanycolus spp. (Hymen: Braconidae), two parasitoids of emerald ash borer (Coleop: Buprestidae). Biol Control 63:320–325CrossRefGoogle Scholar
  5. Abensperg-Traun M (2000) In defence of small habitat islands: Termites (Isoptera) in the Western Australian central wheatbelt, and the importance of dispersal power in species occurrence. Pac Conserv Biol 6:31–39CrossRefGoogle Scholar
  6. Alexander KNA (2008) Tree biology and saproxylic Coleoptera: issues of definitions and conservation language. Rev Ecol Terre Vie 10:9–13Google Scholar
  7. Apolinário FE, Martius C (2004) Ecological role of termites (Insecta, Isoptera) in tree trunks in central Amazonian rain forests. Forest Ecol Manag 194:23–28CrossRefGoogle Scholar
  8. Ausmus BS (1977) Regulation of wood decomposition rates by arthropod and annelid populations. Ecol Bull 25:180–192Google Scholar
  9. Bayer EA, Chanzy H, Lamed R, Shoham Y (1998) Cellulose, cellulases and cellulosomes. Curr Opin Struct Biol 8:548–557PubMedCrossRefPubMedCentralGoogle Scholar
  10. Becker G (1965) Versuche über den einfluss von braunfaulepilzen auf wahl und ausnutzung der holznährung durch termiten. Mater Org 1:95–156Google Scholar
  11. Beebe W (1925) Jungle days. G.P. Putnam’s Sons, New YorkCrossRefGoogle Scholar
  12. Beech E, Rivers M, Oldfield S, Smith PP (2017) GlobalTreeSearch: the first complete global database of tree species and country distributions. J Sustain Forest 36:454–489CrossRefGoogle Scholar
  13. Bell CD, Soltis DE, Soltis PS (2010) The age and diversification of the angiosperms re-revisited. Am J Bot 97:1296–1303PubMedCrossRefPubMedCentralGoogle Scholar
  14. Berisford CW (2011) Parasitoids of the southern pine beetle. In: Coulson RN, Klepzig KD (eds) Southern pine beetle II. Southern Research Station, GTR SRS-140, Asheville, NC, pp 129–139Google Scholar
  15. Berkov A (2018) Seasonality and stratification: neotropical saproxylic beetles respond to a heat and moisture continuum with conservatism and plasticity. In: Ulyshen MD (ed) Saproxylic insects: diversity, ecology and conservation. Springer, Heidelberg, pp 547–578Google Scholar
  16. Bertone MA, Wiegmann BM (2009) True flies (Diptera). In: Hedges SB, Kumar S (eds) The timetree of life. Oxford University Press, Oxford, pp 270–277Google Scholar
  17. Bignell DE (2016) The role of symbionts in the evolution of termites and their rise to ecological dominance in the tropics. In: Hurst CJ (ed) The mechanistic benefits of microbial symbionts. Springer, Heidelberg, pp 121–172Google Scholar
  18. Bignell DE (2018) Wood-feeding termites. In: Ulyshen MD (ed) Saproxylic insects: diversity, ecology and conservation. Springer, Heidelberg, pp 339–373Google Scholar
  19. Bignell DE, Eggleton P (2000) Termites in ecosystems. In: Abe T, Bignell D, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic, Dordrecht, pp 363–387CrossRefGoogle Scholar
  20. Bignell DE, Roisen Y, Lo N (eds) (2011) Biology of termites: a modern synthesis. Springer, DordrechtGoogle Scholar
  21. Birkemoe T, Jacobsen RM, Sverdrup-Thygeson A, Biedermann PHW (2018) Insect-fungus interactions in dead wood systems. In: Ulyshen MD (ed) Saproxylic insects: diversity, ecology and conservation. Springer, Heidelberg, pp 377–427Google Scholar
  22. Blackman MW, Stage HH (1924) On the succession of insects living in the bark and wood of dying, dead and decaying hickory. Technical Publication No. 17 New York State College of Forestry, pp 3–269Google Scholar
  23. Bogusch P, Horák J (2018) Saproxylic bees and wasps. In: Ulyshen MD (ed) Saproxylic insects: diversity, ecology and conservation. Springer, Heidelberg, pp 217–235Google Scholar
  24. Bouget C, Brustel H, Nageleisen LM (2005) Nomenclature of wood-inhabiting groups in forest entomology: synthesis and semantic adjustments. C R Biol 328:936–948PubMedCrossRefPubMedCentralGoogle Scholar
  25. Bourguignon T, ŠobotnÍk JAN, Lepoint G, Martin J-M, Hardy OJ, Dejean A, Roisin Y (2011) Feeding ecology and phylogenetic structure of a complex neotropical termite assemblage, revealed by nitrogen stable isotope ratios. Ecol Entomol 36:261–269CrossRefGoogle Scholar
  26. Bourguignon T, Lo N, Cameron SL, Šobotník J, Hayashi Y, Shigenobu S, Watanabe D, Roisin Y, Miura T, Evans TA (2015) The evolutionary history of termites as inferred from 66 mitochondrial genomes. Mol Biol Evol 32:406–421PubMedCrossRefPubMedCentralGoogle Scholar
  27. Bourguignon T, Dahlsjö CAL, Jacquemin J, Gang L, Wijedasa LS, Evans TA (2017a) Ant and termite communities in isolated and continuous forest fragments in Singapore. Insect Soc 64:505–514CrossRefGoogle Scholar
  28. Bourguignon T, Lo N, Šobotník J, Ho SYW, Iqbal N, Coissac E, Lee M, Jendryka MM, Sillam-Dussès D, Křížková B, Roisin Y, Evans TA (2017b) Mitochondrial phylogenomics resolves the global spread of higher termites, ecosystem engineers of the tropics. Mol Biol Evol 34:589–597PubMedPubMedCentralGoogle Scholar
  29. Breznak JA (1982) Intestinal microbiota of termites and other xylophagous insects. Annu Rev Micriob 36:323–343CrossRefGoogle Scholar
  30. Breznak JA, Brill WJ, Mertins JW, Coppel HC (1973) Nitrogen fixation in termites. Nature 244:577–580PubMedCrossRefPubMedCentralGoogle Scholar
  31. Brin A, Bouget C (2018) Biotic interactions between saproxylic insect species. In: Ulyshen MD (ed) Saproxylic insects: diversity, ecology and conservation. Springer, Heidelberg, pp 471–514Google Scholar
  32. Brin A, Valladares L, Ladet S, Bouget C (2016) Effects of forest continuity on flying saproxylic beetle assemblages in small woodlots embedded in agricultural landscapes. Biodivers Conserv 25:587–602CrossRefGoogle Scholar
  33. Brullé GA (1832) Expédition scientifique de Morée. Section des sciences physiques zoologie. Deuxième section – des animaux articulés, vol 3, part 1. Levrault, ParisGoogle Scholar
  34. Brune A, Ohkuma M (2011) Role of the termite gut microbiota in symbiotic digestion. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, New York, pp 439–475Google Scholar
  35. Bunnell FL, Houde I (2010) Down wood and biodiversity - Implications to forest practices. Environ Rev 18:397–421CrossRefGoogle Scholar
  36. Buse J (2012) "Ghosts of the past": flightless saproxylic weevils (Coleoptera: Curculionidae) are relict species in ancient woodlands. J Insect Conserv 16:93–102CrossRefGoogle Scholar
  37. Buxton RD (1981) Termites and the turnover of dead wood in an arid tropical environment. Oecologia 51:379–384PubMedCrossRefGoogle Scholar
  38. Byrne KA, Lehnert SA, Johnson SE, Moore SS (1999) Isolation of a cDNA encoding a putative cellulase in the red claw crayfish Cherax quadricarinatus. Gene 239:317–324PubMedCrossRefGoogle Scholar
  39. Carmona MR, Armesto JJ, Aravena JC, Pérez CA (2002) Coarse woody debris biomass in successional and primary temperate forests in Chiloé Island, Chile. Forest Ecol Manag 164:265–275CrossRefGoogle Scholar
  40. Cheesman AW, Cernusak LA, Zanne AE (In press) Relative roles of termites and saprotrophic microbes as drivers of wood decay: a wood block test. Austral Ecol.  https://doi.org/10.1111/aec.12561
  41. Cichan MA, Taylor TN (1982) Wood-borings in Premnoxylon: plant-animal interactions in the carboniferous. Palaeogeogr Palaeocl 39:123–127CrossRefGoogle Scholar
  42. Cichan MA, Taylor TN (1990) Evolution of cambium in geologic time – a reappraisal. In: Iqbal M (ed) The vascular cambium. Research Studies Press, Taunton, Somerset, England, pp 213–228Google Scholar
  43. Cleveland LR (1923) Symbiosis between termites and their intestinal protozoa. Proc Natl Acad Sci U S A 9:424–428PubMedPubMedCentralCrossRefGoogle Scholar
  44. Cleveland LR, Hall SK, Sanders EP, Collier J (1934) The wood feeding roach Cryptocercus, its protozoa, and the symbiosis between protozoa and roach. Mem Am Acad Arts Sci 17:185–382Google Scholar
  45. Collins NM (1981) The role of termites in the decomposition of wood and leaf litter in the southern Guinea savanna of Nigeria. Oecologia 51:389–399PubMedCrossRefPubMedCentralGoogle Scholar
  46. Cornelius ML, Daigle DJ, Connick WJ Jr, Parker A, Wunch K (2002) Responses of Coptotermes formosanus and Reticulitermes flavipes (Isoptera: Rhinotermitidae) to three types of wood rot fungi cultured on different substrates. J Econ Entomol 95:121–128PubMedCrossRefPubMedCentralGoogle Scholar
  47. Cornwell WK, Cornelissen JHC, Allison SD, Bauhus J, Eggleton P, Preston CM, Scarff FA, Weedon JT, Wirth C, Zanne AE (2009) Plant traits and wood fates across the globe: rotted, burned, or consumed? Glob Chang Biol 15:2431–2449CrossRefGoogle Scholar
  48. Cummins KW (1974) Structure and function of stream ecosystems. Bioscience 24:631–641CrossRefGoogle Scholar
  49. Davies RG, Eggleton P, Jones DT, Gathorne-Hardy FJ, Hernández LM (2003) Evolution of termite functional diversity: analysis and synthesis of local ecological and regional influences on local species richness. J Biogeogr 30:847–877CrossRefGoogle Scholar
  50. Davis WT, Leng CW (1912) Insects on a recently felled tree. J New York Entomol S 20:119–121Google Scholar
  51. Dean RC (1978) Mechanisms of wood digestion in the shipworm Bankia gouldi Bartsch: Enzyme degradation of celluloses, hemicelluloses, and wood cell walls. Biol Bull 155:297–316CrossRefGoogle Scholar
  52. Dehal P, Satou Y, Campbell RK, Chapman J, Degnan B, De Tomaso A, Davidson B, Di Gregorio A, Gelpke M, Goodstein DM, Harafuji N, Hastings KEM, Ho I, Hotta K, Huang W, Kawashima T, Lemaire P, Martinez D, Meinertzhagen IA, Necula S, Nonaka M, Putnam N, Rash S, Saiga H, Satake M, Terry A, Yamada L, Wang H-G, Awazu S, Azumi K, Boore J, Branno M, Chin-bow S, DeSantis R, Doyle S, Francino P, Keys DN, Haga S, Hayashi H, Hino K, Imai KS, Inaba K, Kano S, Kobayashi K, Kobayashi M, Lee B-I, Makabe KW, Manohar C, Matassi G, Medina M, Mochizuki Y, Mount S, Morishita T, Miura S, Nakayama A, Nishizaka S, Nomoto H, Ohta F, Oishi K, Rigoutsos I, Sano M, Sasaki A, Sasakura Y, Shoguchi E, Shin-i T, Spagnuolo A, Stainier D, Suzuki MM, Tassy O, Takatori N, Tokuoka M, Yagi K, Yoshizaki F, Wada S, Zhang C, Hyatt PD, Larimer F, Detter C, Doggett N, Glavina T, Hawkins T, Richardson P, Lucas S, Kohara Y, Levine M, Satoh N, Rokhsar DS (2002) The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science 298:2157–2167PubMedCrossRefPubMedCentralGoogle Scholar
  53. Derksen W (1941) Die succession der pterygoten insekten im abgestorbenen buchenholz. Z Morph Ökol Tiere 37:683–734CrossRefGoogle Scholar
  54. Dillon RJ, Dillon VM (2004) The gut bacteria of insects: nonpathogenic interactions. Annu Rev Entomol 49:71–92PubMedCrossRefPubMedCentralGoogle Scholar
  55. Donovan SE, Eggleton P, Bignell DE (2001) Gut content analysis and a new feeding group classification of termites. Ecol Entomol 26:356–366CrossRefGoogle Scholar
  56. Duan JJ, Bauer LS, Abell KJ, Ulyshen MD, Van Driesche RG (2015) Population dynamics of an invasive forest insect and associated natural enemies in the aftermath of invasion: implications for biological control. J Appl Ecol 52:1246–1254CrossRefGoogle Scholar
  57. Eggleton P, Bignell DE, Hauser S, Dibog L, Norgrove L, Madong B (2002) Termite diversity across an anthropogenic disturbance gradient in the humid forest zone of West Africa. Agric Ecosyst Environ 90:189–202CrossRefGoogle Scholar
  58. Eidmann HH (1943) Successionen westafrikanischer Holzinsekten. Mitteilungen der Goring-Akademie der Deutschen Forstwissenschaft, Frankfort am Main 3:240–271Google Scholar
  59. Elton CS (1966) The pattern of animal communities. Methuen and Co., LondonGoogle Scholar
  60. Emerson AE, Krishna K (1975) The termite family Serritermitidae (Isoptera). Am Mus Novit 2570:1–31Google Scholar
  61. Epps MJ, Arnold AE (2010) Diversity, abundance and community network structure in sporocarp-associated beetle communities of the central Appalachian Mountains. Mycologia 102:785–802PubMedCrossRefPubMedCentralGoogle Scholar
  62. Evans TA, Forschler BT, Grace JK (2013) Biology of invasive termites: a worldwide review. Annu Rev Entomol 58:455–474PubMedCrossRefPubMedCentralGoogle Scholar
  63. Feldhaar H, Schauer B (2018) Dispersal of saproxylic insects. In: Ulyshen MD (ed) Saproxylic insects: diversity, ecology and conservation. Springer, Heidelberg, pp 515–546Google Scholar
  64. Feng Z, Wang J, Rößler R, Ślipiński A, Labandeira C (2017) Late Permian wood-borings reveal an intricate network of ecological relationships. Nat Commun 8:556PubMedPubMedCentralCrossRefGoogle Scholar
  65. Ferro ML (2018) It’s the end of the wood as we know it: insects in veteris (highly-decomposed) wood. In: Ulyshen MD (ed) Saproxylic insects: diversity, ecology and conservation. Springer, Heidelberg, pp 729–795Google Scholar
  66. Fielding NJ, Evans HF (1997) Biological control of Dendroctonus micans (Scolytidae) in Great Britain. Biocontrol News Inform 18:51N–60NGoogle Scholar
  67. Filipiak M (2018) Nutrient dynamics in decomposing dead wood in the context of wood eater requirements: the ecological stoichiometry of saproxylophagous insects. In: Ulyshen MD (ed) Saproxylic insects: diversity, ecology and conservation. Springer, Heidelberg, pp 429–469Google Scholar
  68. Floren A, Schmidl J (2008) Introduction: canopy arthropod research in Europe. In: Floren A, Schmidl J (eds) Canopy arthropod research in Europe. Bioform Entomology, Nuremberg, pp 13–20Google Scholar
  69. Floudas D, Binder M, Riley R, Barry K, Blanchette RA, Henrissat B, Martínez AT, Otillar R, Spatafora JW, Yadav JS, Aerts A, Benoit I, Boyd A, Carlson A, Copeland A, Coutinho PM, de Vries RP, Ferreira P, Findley K, Foster B, Gaskell J, Glotzer D, Górecki P, Heitman J, Hesse C, Hori C, Igarashi K, Jurgens JA, Kallen N, Kersten P, Kohler A, Kües U, Kumar TKA, Kuo A, LaButti K, Larrondo LF, Lindquist E, Ling A, Lombard V, Lucas S, Lundell T, Martin R, McLaughlin DJ, Morgenstern I, Morin E, Murat C, Nagy LG, Nolan M, Ohm RA, Patyshakuliyeva A, Rokas A, Ruiz-Dueñas FJ, Sabat G, Salamov A, Samejima M, Schmutz J, Slot JC, St. John F, Stenlid J, Sun H, Sun S, Syed K, Tsang A, Wiebenga A, Young D, Pisabarro A, Eastwood DC, Martin F, Cullen D, Grigoriev IV, Hibbett DS (2012) The paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336:1715–1719PubMedCrossRefPubMedCentralGoogle Scholar
  70. Franklin JF, Cromack K, Denison W, Mckee A, Maser C, Sedell J, Swanson F, Juday G (1981) Ecological characteristics of old-growth douglas-fir forests. USDA forerst service – general technical report PNW-118Google Scholar
  71. Freudenberg K, Nash AC (1968) Constitution and biosynthesis of lignin. Springer, New YorkCrossRefGoogle Scholar
  72. Frohlich MW, Chase MW (2007) After a dozen years of progress the origin of angiosperms is still a great mystery. Nature 450:1184–1189PubMedCrossRefPubMedCentralGoogle Scholar
  73. Garrick RC, Bouget C (2018) Molecular tools for assessing saproxylic insect diversity. In: Ulyshen MD (ed) Saproxylic insects: diversity, ecology and conservation. Springer, Heidelberg, pp 849–884Google Scholar
  74. Gerrienne P, Gensel PG, Strullu-Derrien C, Lardeux H, Steemans P, Prestianni C (2011) A simple type of wood in two Early Devonian plants. Science 333:837PubMedCrossRefPubMedCentralGoogle Scholar
  75. Gillespie MAK, Birkemoe T, Sverdrup-Thygeson A (2017) Interactions between body size, abundance, seasonality, and phenology in forest beetles. Ecol Evol 7:1091–1100PubMedPubMedCentralCrossRefGoogle Scholar
  76. Gimmel ML, Ferro ML (2018) General overview of saproxylic Coleoptera. In: Ulyshen MD (ed) Saproxylic insects: diversity, ecology and conservation. Springer, Heidelberg, pp 51–128Google Scholar
  77. Girard C, Jouanin L (1999) Molecular cloning of cDNAs encoding a range of digestive enzymes from a phytophagous beetle, Phaedon cochleariae. Insect Biochem Molec 29:1129–1142CrossRefGoogle Scholar
  78. Godfray HCJ (1994) Parasitoids: behavioral and evolutionary ecology. Princeton University Press, Princeton, NJGoogle Scholar
  79. Gossner MM, Damken C (2018) Diversity and ecology of saproxylic Hemiptera. In: Ulyshen MD (ed) Saproxylic insects: diversity, ecology and conservation. Springer, Heidelberg, pp 263–317Google Scholar
  80. Goßner M, Engel K, Jessel B (2008) Plant and arthropod communities in young oak stands: are they determined by site history? Biodivers Conserv 17:3165–3180CrossRefGoogle Scholar
  81. Gossner MM, Wende B, Levick S, Schall P, Floren A, Linsenmair KE, Steffan-Dewenter I, Schulze E-D, Weisser WW (2016) Deadwood enrichment in European forests – Which tree species should be used to promote saproxylic beetle diversity? Biol Conserv 201:92–102CrossRefGoogle Scholar
  82. Graf-Peters LV, Lopes-Andrade C, da Silveira RMB, Moura LA, Reck MA, FNd S (2011) Host fungi and feeding habits of Ciidae (Coleoptera) in a subtropical rainforest in Southern Brazil, with an overview of host fungi of neotropical Ciids. Fla Entomol 94:553–566CrossRefGoogle Scholar
  83. Graham SA (1925) The felled tree trunk as an ecological unit. Ecology 6:397–411CrossRefGoogle Scholar
  84. Grassé PP (1982) Termitologia, Tomme I: Anatomie, physiologie, reproduction des termites. Masson, ParisGoogle Scholar
  85. Grassé PP (1984) Termitologia, Tomme II. Foundation des sociétés-construction, Masson, ParisGoogle Scholar
  86. Grassé PP (1986) Termitologia, Tome III. Comportement, Socialité, Écologie, Évolution, Systematique, Masson, ParisGoogle Scholar
  87. Griffiths HM, Ashton LA, Walker AE, Hasan F, Evans TA, Eggleton P, Parr CL (2018) Ants are the major agents of resource removal from tropical rainforests. J Anim Ecol 87:293–300PubMedCrossRefPubMedCentralGoogle Scholar
  88. Grimaldi D, Engel M (2005) Evolution of the insects. Cambridge University Press, New YorkGoogle Scholar
  89. Grove SJ (2002a) The influence of forest management history on the integrity of the saproxylic beetle fauna in an Australian lowland tropical rainforest. Biol Conserv 104:149–171CrossRefGoogle Scholar
  90. Grove SJ (2002b) Saproxylic insect ecology and the sustainable management of forests. Annu Rev Ecol Syst 33:1–23CrossRefGoogle Scholar
  91. Grove SJ (2002c) Tree basal area and dead wood as surrogate indicators of saproxylic insect faunal integrity: a case study from the Australian lowland tropics. Ecol Indic 1:171–188CrossRefGoogle Scholar
  92. Grove SJ (2007) Mudguts. Tasmanian Nat 129:2–7Google Scholar
  93. Grove SJ, Forster L (2011) A decade of change in the saproxylic beetle fauna of eucalypt logs in the Warra long-term log-decay experiment, Tasmania. 2. Log-size effects, succession, and the functional significance of rare species. Biodivers Conserv 20:2167–2188CrossRefGoogle Scholar
  94. Hagen HA (1855) Monographie der Termiten. Linnaea Entom 10(1–144):270–325Google Scholar
  95. Hagen HA (1858) Monographie der Termiten. Linnaea Entom 12:4–342Google Scholar
  96. Hagen HA (1860) Monographie der Termiten. Linnaea Entom 14:73–99Google Scholar
  97. Hanski I, Hammond P (1995) Biodiversity in boreal forests. Trends Ecol Evol 10:5–6CrossRefGoogle Scholar
  98. Harmon ME, Franklin JF, Swanson FJ, Sollins P, Gregory SV, Lattin JD, Anderson NH, Cline SP, Aumen NG, Sedell JR, Lienkaemper GW, Cromack JK, Cummins KW (1986) Ecology of coarse woody debris in temperate ecosystems. Adv Ecol Res 15:133–302CrossRefGoogle Scholar
  99. Haviland GD (1898) Observations on termites; with descriptions of new species. Zool J Linnean Soc 26:358–442CrossRefGoogle Scholar
  100. Hendee EC (1935) The role of fungi in the diet of the common damp-wood termite, Zootermopsis angusticollis. Hilgardia 9:499–525CrossRefGoogle Scholar
  101. Henin JM, Paiva MR (2004) Interactions between Orthotomicus erosus (Woll.) (Col., Scolytidae) and the Argentine ant Linepithema humile (Mayr) (Hym., Formicidae). J Pest Sci 77:113–117CrossRefGoogle Scholar
  102. Hickin NE (1963) The insect factor in wood decay: an account of wood-boring insects with particular reference to timber indoors. Hutchinson & Co., LondonGoogle Scholar
  103. Hickin NE (1971) Termites – a world problem. Hutchinson & Co., LondonGoogle Scholar
  104. Hilszczański J (2018) Ecology, diversity and conservation of saproxylic hymenopteran parasitoids. In: Ulyshen MD (ed) Saproxylic insects: diversity, ecology and conservation. Springer, Heidelberg, pp 193–216Google Scholar
  105. Hjältén J, Dynesius M, Hekkala A-M, Karlsson-Tiselius A, Löfroth T, Pettersson RM (2018) Saproxylic insects and fire. In: Ulyshen MD (ed) Saproxylic insects: diversity, ecology and conservation. Springer, Heidelberg, pp 669–691Google Scholar
  106. Holmgren N (1909) Termitenstudien. 1. Anatomische Untersuchungen. Kungliga Svenska Vetenskaps-Akademiens Handlingar 44:1–215Google Scholar
  107. Holmgren N (1911) Termitenstudien. 2. Systematik der Termiten. Die Familien Mastotermitidae, Protermitidae und Mesotermitidae. Kungliga Svenska Vetenskaps-Akademiens Handlingar 46:1–86Google Scholar
  108. Holmgren N (1912) Termitenstudien. 3. Systematik der Termiten. Die Familie Metatermitidae. Kungliga Svenska Vetenskaps-Akademiens Handlingar 48:1–166Google Scholar
  109. Holmquist AM (1926) Studies in arthropod hibernation I. Ecological survey of hibernating species from forest environments of the Chicago region. Ann Entomol Soc Am 19:395–428CrossRefGoogle Scholar
  110. Holmquist AM (1928) Notes on the biology of the muscid fly, Pyrellia serena Meigen, with special reference to its hibernation. Ann Entomol Soc Am 21:660–667CrossRefGoogle Scholar
  111. Holmquist AM (1931) Studies in arthropod hibernation III. Temperatures in forest hibernacula. Ecology 12:387–400CrossRefGoogle Scholar
  112. Hopping GR (1947) Notes on the seasonal development of Medetera aldrichii Wheeler (Diptera. Dolichopodidae) as a predator of the Douglas fir bark-beetle, Dendroctonus pseudotsugae Hopkins (1). Can Entomol 79:150–153CrossRefGoogle Scholar
  113. Horák J (2018) The role of urban environments for saproxylic insects. In: Ulyshen MD (ed) Saproxylic insects: diversity, ecology and conservation. Springer, Heidelberg, pp 835–846Google Scholar
  114. Hövemeyer K, Schauermann J (2003) Succession of Diptera on dead beech wood: a 10-year study. Pedobiologia 47:61–75CrossRefGoogle Scholar
  115. Howden HF, Vogt GB (1951) Insect communities of standing dead pine (Pinus virginiana Mill.) Ann Entomol Soc Am 44:581–595CrossRefGoogle Scholar
  116. Huang T-I (2018) Diversity and ecology of stag beetles (Lucanidae). In: Ulyshen MD (ed) Saproxylic insects: diversity, ecology and conservation. Springer, Heidelberg, pp 149–165Google Scholar
  117. Hulcr J, Atkinson TH, Cognato AI, Jordal BH, McKenna DD (2015) Morphology, taxonomy and phylogenetics of bark beetles. In: Vega FE, Hofstetter RW (eds) Bark beetles: biology and ecology of native and invasive species. Academic, London, pp 41–84CrossRefGoogle Scholar
  118. Hyodo F, Tayasu I, Inoue T, Azuma J-I, Kudo T, Abe T (2003) Differential role of symbiotic fungi in lignin degradation and food provision for fungus-growing termites (Macrotermitinae: Isoptera). Funct Ecol 17:186–193CrossRefGoogle Scholar
  119. Idol TW, Figler RA, Pope PE, Ponder F Jr (2001) Characterization of coarse woody debris across a 100 year chronosequence of upland oak-hickory forests. Forest Ecol Manag 149:153–161CrossRefGoogle Scholar
  120. Imms AD (1919) On the structure and biology of Archotermopsis, together with descriptions of new species of intestinal Protozoa, and general observations on the Isoptera. Philos T Roy Soc B 209:75–180CrossRefGoogle Scholar
  121. Inward D, Beccaloni G, Eggleton P (2007) Death of an order: a comprehensive molecular phylogenetic study confirms that termites are eusocial cockroaches. Biol Lett 3:331–335PubMedPubMedCentralCrossRefGoogle Scholar
  122. Irmler U, Arp H, Nötzold R (2010) Species richness of saproxylic beetles in woodlands is affected by dispersion ability of species, age and stand size. J Insect Conserv 14:227–235CrossRefGoogle Scholar
  123. Jabin M, Mohr D, Kappes H, Topp W (2004) Influence of deadwood on density of soil macro-arthropods in a managed oak-beech forest. Forest Ecol Manag 194:61–69CrossRefGoogle Scholar
  124. Jackson HB, Baum KA, Cronin JT (2012) From logs to landscapes: determining the scale of ecological processes affecting the incidence of a saproxylic beetle. Ecol Entomol 37:233–243CrossRefGoogle Scholar
  125. Jaworski T (2018) Diversity of saproxylic Lepidoptera. In: Ulyshen MD (ed) Saproxylic insects: diversity, ecology and conservation. Springer, Heidelberg, pp 319–338Google Scholar
  126. Jeffries TW (1987) Physical, chemical and biochemical considerations in the biological degradation of wood. In: Kennedy JF, Phillips GO, William PA (eds) Wood and cellulosics: industrial utilisation, biotechnology, structure and properties. Ellis Horwood Ltd., Chichester, England, pp 213–230Google Scholar
  127. Jones HL, Worrall JJ (1995) Fungal biomass in decayed wood. Mycologia 87:459–466CrossRefGoogle Scholar
  128. Jones DT, Susilo FX, Bignell DE, Hardiwinoto S, Gillison AN, Eggleton P (2003) Termite assemblage collapse along a land-use intensification gradient in lowland central Sumatra, Indonesia. J Appl Ecol 40:380–391CrossRefGoogle Scholar
  129. Jonsell M, Nordlander G (2004) Host selection patterns in insects breeding in bracket fungi. Ecol Entomol 29:697–705CrossRefGoogle Scholar
  130. Jonsell M, Nordlander G, Ehnström B (2001) Substrate associations of insects breeding in fruiting bodies of wood-decaying fungi. Ecol Bull 49:173–194Google Scholar
  131. Käärik AA (1974) Decomposition of wood. In: Dickinson CH, Pugh GJF (eds) Biology of plant litter decomposition, vol 1. Academic, London, pp 129–174CrossRefGoogle Scholar
  132. Kellogg DW, Taylor EL (2004) Evidence of oribatid mite detritivory in Antarctica during the late Paleozoic and Mesozoic. J Paleontol 78:1146–1153CrossRefGoogle Scholar
  133. Kim YS, Singh AP (2000) Micromorphological characteristics of wood biodegradation in wet environments: a review. IAWA J 21:135–155CrossRefGoogle Scholar
  134. King JR, Warren RJ, Bradford JB (2013) Social insects dominate eastern US temperate hardwood forest macroinvertebrate communities in warmer regions. PLoS One 8:e75843PubMedPubMedCentralCrossRefGoogle Scholar
  135. King JR, Warren RJ II, Maynard DS, Bradford MA (2018) Ants: ecology and impacts in dead wood. In: Ulyshen MD (ed) Saproxylic insects: diversity, ecology and conservation. Springer, Heidelberg, pp 237–262Google Scholar
  136. Kofoid CA (1934) Termites and termite control. University of California Press, Berkeley, CAGoogle Scholar
  137. Kofoid CA, Light SF, Horner AC, Randall M, Herms WB, Bowe EE (1934) Termites and termite control. University of California Press, BerkeleyGoogle Scholar
  138. Krishna K, Weesner FM (eds) (1969) Biology of termites, vol I. Academic, New YorkGoogle Scholar
  139. Krishna K, Weesner FM (eds) (1970) Biology of termites, vol II. Academic, New YorkGoogle Scholar
  140. Krishna K, Grimaldi D, Engel MS (2013) Treatise on the Isoptera of the world. B Am Mus Nat Hist 377:1–2704CrossRefGoogle Scholar
  141. Krivosheina MG (2006) Taxonomic composition of dendrobiontic Diptera and the main trends of their adaptive radiation. Entomol Rev 86:557–567CrossRefGoogle Scholar
  142. Krogerus R (1927) Beobachtungen uber die succession einiger insektenbiocoenosen in fichtenstumpfen. Notulae Entomologicae 7:121–126Google Scholar
  143. Kukor JJ, Martin MM (1986) Cellulose digestion in Monochamus marmorator Kby. (Coleoptera: Cerambycidae): role of acquired fungal enzymes. J Chem Ecol 12:1057–1070PubMedCrossRefPubMedCentralGoogle Scholar
  144. Labandeira CC, Phillips TL, Norton RA (1997) Oribatid mites and the decomposition of plant tissues in Paleozoic coal-swamp forests. Palaios 12:319–353CrossRefGoogle Scholar
  145. Labandeira CC, LePage BA, Johnson AH (2001) A Dendroctonus bark engraving (Coleoptera: Scolytidae) from a middle Eocene Larix (Coniferales: Pinaceae): early or delayed colonization? Am J Bot 88:2026–2039PubMedCrossRefPubMedCentralGoogle Scholar
  146. Lachat T, Müller J (2018) Importance of primary forests for the conservation of saproxylic insects. In: Ulyshen MD (ed) Saproxylic insects: diversity, ecology and conservation. Springer, Heidelberg, pp 581–605Google Scholar
  147. Lachat T, Wermelinger B, Gossner MM, Bussler H, Isacsson G, Müller J (2012) Saproxylic beetles as indicator species for dead-wood amount and temperature in European beech forests. Ecol Indic 23:323–331CrossRefGoogle Scholar
  148. Lachat T, Chumak M, Chumak V, Jakoby O, Müller J, Tanadini M, Wermelinger B (2016) Influence of canopy gaps on saproxylic beetles in primeval beech forests: a case study from the Uholka-Shyrokyi Luh forest, Ukraine. Insect Conserv Diver 9:559–573CrossRefGoogle Scholar
  149. Latreille PA (1802) Histoire naturelle, générale et particulière des crustacés et des insectes, vol 3. Dufart, ParisGoogle Scholar
  150. Lavelle P, Bignell D, Lepage M, Wolters V, Roger P, Ineson P, Heal OW, Dhillion S (1997) Soil function in a changing world: the role of invertebrate ecosystem engineers. Eur J Soil Biol 33:159–193Google Scholar
  151. Lawson SA, Furuta K, Katagiri K (1996) The effect of host tree on the natural enemy complex of Ips typographus japonicus Niijima (Col., Scolytidae) in Hokkaido, Japan. J Appl Entomol 120:77–86CrossRefGoogle Scholar
  152. Lee S-I, Spence JR, Langor DW (2014) Succession of saproxylic beetles associated with decomposition of boreal white spruce logs. Agric For Entomol 16:391–405CrossRefGoogle Scholar
  153. Lee S-I, Spence JR, Langor DW (2018) Conservation of saproxylic insect diversity under variable retention harvesting In: Ulyshen MD (ed) Saproxylic insects: diversity, ecology and conservation. Springer, Heidelberg, pp 639–667Google Scholar
  154. Leidy J (1881) The parasites of the termites. J Acad Nat Sci Philadelphia III 8:425–447Google Scholar
  155. Leschine SB (1995) Cellulose degradation in anaerobic environments. Annu Rev Microbiol 49:399–426PubMedCrossRefPubMedCentralGoogle Scholar
  156. Lo N, Tokuda G, Watanabe H, Rose H, Slaytor M, Maekawa K, Bandi C, Noda H (2000) Evidence from multiple gene sequences indicates that termites evolved from wood-feeding cockroaches. Curr Biol 10:801–804PubMedCrossRefPubMedCentralGoogle Scholar
  157. Lo N, Watanabe H, Sugimura M (2003) Evidence for the presence of a cellulase gene in the last common ancestor of bilaterian animals. P Roy Soc Lond B Bio 270(Suppl 1):S69–S72CrossRefGoogle Scholar
  158. Lo N, Tokuda G, Watanabe H (2011) Evolution and function of endogenous termite cellulases. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, New York, pp 51–67Google Scholar
  159. Martikainen P, Siitonen J, Puntilla P, Kaila L, Rauh J (2000) Species richness of Coleoptera in mature managed and old-growth boreal forests in southern Finland. Biol Conserv 94:199–209CrossRefGoogle Scholar
  160. Maser C, Trappe JM (eds) (1984) The seen and unseen world of the fallen tree. USDA forest service – general technical reports PNW-164Google Scholar
  161. Maser C, Anderson RG, Cromack K, Williams JT, Martin RE (1979) Dead and downed material. In: Thomas JW (ed) Wildlife habitats in managed forests: the blue mountains of Oregon and Washington. USDA forest service, agriculture handbook no. 553, pp 78–95Google Scholar
  162. Maser C, Tarrant RF, Trappe JM, Franklin JF (eds) (1988) From the forest to the sea: a story of fallen trees. USDA forest service – general technical reports PNW-GTR-229Google Scholar
  163. McCarthy BC, Bailey RR (1994) Distribution and abundance of coarse woody debris in a managed forest landscape of the central Appalachians. Can J For Res 24:1317–1329CrossRefGoogle Scholar
  164. McComb WC, Lindenmayer D (1999) Dying, dead, and down trees. In: Hunter ML (ed) Maintaining biodiversity in forest ecosystems. Cambridge University Press, Cambridge, pp 335–372CrossRefGoogle Scholar
  165. Meerts P (2002) Mineral nutrient concentrations in sapwood and heartwood: a literature review. Ann For Sci 59:713–722CrossRefGoogle Scholar
  166. Meyer-Berthaud B, Scheckler SE, Wendt J (1999) Archaeopteris is the earliest known modern tree. Nature 398:700–701CrossRefGoogle Scholar
  167. Michaels K, Bornemissza G (1999) Effects of clearfell harvesting on lucanid beetles (Coleoptera: Lucanidae) in wet and dry sclerophyll forests in Tasmania. J Insect Conserv 3:85–95CrossRefGoogle Scholar
  168. Micó E (2018) Saproxylic insects in tree hollows. In: Ulyshen MD (ed) Saproxylic insects: diversity, ecology and conservation. Springer, Heidelberg, pp 693–727Google Scholar
  169. Mishima T, Wada N, Iwata R, Anzai H, Hosoya T, Araya K (2016) Super-protective child-rearing by Japanese bess beetles, Cylindrocaulus patalis: Adults provide their larvae with chewed and predigested wood. Insects 7:18CrossRefPubMedCentralGoogle Scholar
  170. Misof B, Liu S, Meusemann K, Peters RS, Donath A, Mayer C, Frandsen PB, Ware J, Flouri T, Beutel RG, Niehuis O, Petersen M, Izquierdo-Carrasco F, Wappler T, Rust J, Aberer AJ, Aspöck U, Aspöck H, Bartel D, Blanke A, Berger S, Böhm A, Buckley TR, Calcott B, Chen J, Friedrich F, Fukui M, Fujita M, Greve C, Grobe P, Gu S, Huang Y, Jermiin LS, Kawahara AY, Krogmann L, Kubiak M, Lanfear R, Letsch H, Li Y, Li Z, Li J, Lu H, Machida R, Mashimo Y, Kapli P, McKenna DD, Meng G, Nakagaki Y, Navarrete-Heredia JL, Ott M, Ou Y, Pass G, Podsiadlowski L, Pohl H, von Reumont BM, Schütte K, Sekiya K, Shimizu S, Slipinski A, Stamatakis A, Song W, Su X, Szucsich NU, Tan M, Tan X, Tang M, Tang J, Timelthaler G, Tomizuka S, Trautwein M, Tong X, Uchifune T, Walzl MG, Wiegmann BM, Wilbrandt J, Wipfler B, Wong TKF, Wu Q, Wu G, Xie Y, Yang S, Yang Q, Yeates DK, Yoshizawa K, Zhang Q, Zhang R, Zhang W, Zhang Y, Zhao J, Zhou C, Zhou L, Ziesmann T, Zou S, Li Y, Xu X, Zhang Y, Yang H, Wang J, Wang J, Kjer KM, Zhou X (2014) Phylogenomics resolves the timing and pattern of insect evolution. Science 346:763–767PubMedCrossRefPubMedCentralGoogle Scholar
  171. Morón MA (1985) Observaciones sobre la biologia de dos especies de Rutelinos saproxilofagos en la Sierra de Hidalgo, Mexico (Coleoptera: Melolonthidae: Rutelinae). Folia Entomol Mex 64:41–53Google Scholar
  172. Morón MA, Deloya C (2001) Observaciones sobre el ciclo de vida de Megasoma elephas elephas (Fabricius) (Coleoptera: Melolonthidae; Dynastinae). Folia Entomol Mex 40:233–244Google Scholar
  173. Muñoz-López NZ, Andrés-Hernández AR, Carrillo-Ruiz H, Rivas-Arancibia SP (2016) Coleoptera associated with decaying wood in a tropical deciduous forest. Neotrop Entomol 45:341–350PubMedCrossRefPubMedCentralGoogle Scholar
  174. Naugolnykh SV, Ponomarenko AG (2010) Possible traces of feeding by beetles in Coniferophyte wood from the Kazanian of the Kama River Basin. Paleontol J 44:468–474CrossRefGoogle Scholar
  175. Nilsson SG, Baranowski R (1997) Habitat predictability and the occurrence of wood beetles in old-growth beech forests. Ecography 20:491–498CrossRefGoogle Scholar
  176. Nobre T, Rouland-Lefèvre C, Aanen DK (2011) Comparative biology of fungus cultivation in termites and ants. In: Bignell D, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, New York, pp 193–210Google Scholar
  177. Noll L, Leonhardt S, Arnstadt T, Hoppe B, Poll C, Matzner E, Hofrichter M, Kellner H (2016) Fungal biomass and extracellular enzyme activities in coarse woody debris of 13 tree species in the early phase of decomposition. Forest Ecol Manag 378:181–192CrossRefGoogle Scholar
  178. Noyes H (1937) Man and the termite. Windmill Press, Kingswood, SurreyGoogle Scholar
  179. Ohkuma M, Iida T, Ohtoko K, Yuzawa H, Noda S, Viscogliosi E, Kudo T (2005) Molecular phylogeny of parabasalids inferred from small subunit rRNA sequences, with emphasis on the Hypermastigea. Mol Phylogenet Evol 35:646–655PubMedCrossRefPubMedCentralGoogle Scholar
  180. Økland B, Bakke A, Hågvar S, Kvamme T (1996) What factors influence the diversity of saproxylic beetles? A multiscaled study from a spruce forest in southern Norway. Biodivers Conserv 5:75–100CrossRefGoogle Scholar
  181. Panshin AJ, de Zeeuw C (1970) Textbook of wood technology, 3rd edn. McGraw-Hill, New YorkGoogle Scholar
  182. Perlin J (1989) A forest journey: the role of wood in the development of civilization. W.W. Norton and Company, New YorkGoogle Scholar
  183. Phillips OL, Hall P, Gentry AH, Sawyer SA, Vasquez R (1994) Dynamics and species richness of tropical rain forests. Proc Natl Acad Sci U S A 91:2805–2809PubMedPubMedCentralCrossRefGoogle Scholar
  184. Poulsen M, Hu H, Li C, Chen Z, Xu L, Otani S, Nygaard S, Nobre T, Klaubauf S, Schindler PM, Hauser F, Pan H, Yang Z, Sonnenberg ASM, de Beer ZW, Zhang Y, Wingfield MJ, Grimmelikhuijzen CJP, de Vries RP, Korb J, Aanen DK, Wang J, Boomsma JJ, Zhang G (2014) Complementary symbiont contributions to plant decomposition in a fungus-farming termite. Proc Natl Acad Sci U S A 111:14500–14505PubMedPubMedCentralCrossRefGoogle Scholar
  185. Pyle C, Brown MM (1999) Heterogeneity of wood decay classes within hardwood logs. Forest Ecol Manag 114:253–259CrossRefGoogle Scholar
  186. Ranius T, Hedin J (2001) The dispersal rate of a beetle, Osmoderma eremita, living in tree hollows. Oecologia 126:363–370PubMedCrossRefPubMedCentralGoogle Scholar
  187. Rayner ADM, Boddy L (1988) Fungal decomposition of wood: Its biology and ecology. Wiley, New YorkGoogle Scholar
  188. Richards OW (1926) Studies on the ecology of english heaths III. Animal communities of the felling and burn successions at Oxshott heath, Surrey. J Ecol 14:244–281CrossRefGoogle Scholar
  189. Romanova N (1985) Once there was a tree (originally published in Russian, in 1983, as “Chei eto pen?”). Dial Books, New York, NYGoogle Scholar
  190. Rust MK, Su N-Y (2012) Managing social insects of urban importance. Annu Rev Entomol 57:355–375PubMedCrossRefPubMedCentralGoogle Scholar
  191. Samuelsson J, Gustafsson L, Ingelög T (1994) Dying and dead trees—a review of their importance for biodiversity. Swedish Threatened Species Unit, UppsalaGoogle Scholar
  192. Savely HE (1939) Ecological relations of certain animals in dead pine and oak logs. Ecol Monogr 9:321–385CrossRefGoogle Scholar
  193. Scheckler SE (2001) Afforestation – the first forests. In: DEG B, Crowther P (eds) Palaeobiology II. Blackwell Science, Oxford, pp 67–71CrossRefGoogle Scholar
  194. Schiegg K (2000a) Are there saproxylic beetle species characteristic of high dead wood connectivity? Ecography 23:579–587CrossRefGoogle Scholar
  195. Schiegg K (2000b) Effects of dead wood volume and connectivity on saproxylic insect species diversity. Ecoscience 7:290–298CrossRefGoogle Scholar
  196. Scholtz CH, Chown SL (1995) The evolution of habitat use and diet in the Scarabaeoidea: a phylogenetic approach. In: Pakaluk J, Slipinski SA (eds) Biology, phylogeny, and classification of coleoptera: papers celebrating the 80th birthday of Roy A. Crowson, vol 1. Muzeum i Instytut Zoologii PAN, Warszawa, pp 355–374Google Scholar
  197. Schroeder LM, Lindelöw Å (2002) Attacks on living spruce trees by the bark beetle Ips typographus (Col. Scolytidae) following a storm-felling: a comparison between stands with and without removal of wind-felled trees. Agric For Entomol 4:47–56CrossRefGoogle Scholar
  198. Schuster JC (1978) Biogeographical and ecological limits of New World Passalidae. Coleopt Bull 32:21–28Google Scholar
  199. Schuurman G (2005) Decomposition rates and termite assemblage composition in semiarid Africa. Ecology 86:1236–1249CrossRefGoogle Scholar
  200. Seibold S, Thorn S (2018) The importance of dead-wood amount for saproxylic insects and how it interacts with dead-wood diversity and other habitat factors. In: Ulyshen MD (ed) Saproxylic insects: diversity, ecology and conservation. Springer, Heidelberg, pp 607–637Google Scholar
  201. Seibold S, Bässler C, Baldrian P, Reinhard L, Thorn S, Ulyshen MD, Weiß I, Müller J (2016a) Dead-wood addition promotes non-saproxylic epigeal arthropods but effects are mediated by canopy openness. Biol Conserv 204:181–188CrossRefGoogle Scholar
  202. Seibold S, Bässler C, Brandl R, Büche B, Szallies A, Thorn S, Ulyshen MD, Müller J (2016b) Microclimate and habitat heterogeneity as the major drivers of beetle diversity in dead wood. J Appl Ecol 53:934–943CrossRefGoogle Scholar
  203. Shelford VE (1913) Animal communities in temperate America. University of Chicago Press, ChicagoCrossRefGoogle Scholar
  204. Shellman-Reeve JS (1997) The spectrum of eusociality in termites. In: Choe JC, Crespi BJ (eds) The evolution of social behavior in insects and arachnids. Cambridge University Press, Cambridge, pp 52–93CrossRefGoogle Scholar
  205. Shelton TG, Vogt JT, Appel AG, Oi FM (1999) Observations of Reticulitermes spp. in Solenopsis invicta mounds (Isoptera: Rhinotermitidae, Hymenoptera: Formicidae). Sociobiology 33:265–275Google Scholar
  206. Shigo AL (1984) Compartmentalization: a conceptual framework for understanding how trees grow and defend themselves. Annu Rev Phytopathol 22:189–214CrossRefGoogle Scholar
  207. Sigoillot J-C, Berrin J-G, Bey M, Lesage-Meessen L, Levasseur A, Lomascolo A, Record E, Uzan-Boukhris E (2012) Fungal strategies for lignin degradation. Adv Bot Res 61:263–308CrossRefGoogle Scholar
  208. Siitonen J (2001) Forest management, coarse woody debris and saproxylic organisms: Fennoscandian boreal forests as an example. Ecol Bull 49:11–41Google Scholar
  209. Siitonen J, Saaristo L (2000) Habitat requirements and conservation of Pytho kolwensis, a beetle species of old-growth boreal forest. Biol Conserv 94:211–220CrossRefGoogle Scholar
  210. Siitonen J, Martikainen P, Punttila P, Rauh J (2000) Coarse woody debris and stand characteristics in mature managed and old-growth boreal mesic forests in southern Finland. Forest Ecol Manag 128:211–225CrossRefGoogle Scholar
  211. Similä M, Kouki J, Martikainen P (2003) Saproxylic beetles in managed and seminatural Scots pine forests: quality of dead wood matters. Forest Ecol Manag 174:365–381CrossRefGoogle Scholar
  212. Singh D, Chen S (2008) The white-rot fungus Phanerochaete chrysosporium: conditions for the production of lignin-degrading enzymes. Appl Microbiol Biotechnol 81:399–417PubMedCrossRefPubMedCentralGoogle Scholar
  213. Sjöstedt Y (1926) Revision der Termiten Afrikas. 3. Monographie. Kungliga Svenska Vetenskaps-Akademiens Handlingar 3:1–419Google Scholar
  214. Sjostrom E (1993) Wood chemistry. Fundamentals and applications, 2nd edn. Academic, San DiegoGoogle Scholar
  215. Smant G, Stokkermans JPWG, Yan Y, De Boer JM, Baum TJ, Wang X, Hussey RS, Gommers FJ, Henrissat B, Davis EL, Helder J, Schots A, Bakker J (1998) Endogenous cellulases in animals: isolation of β-1,4-endoglucanase genes from two species of plant-parasitic cyst nematodes. Proc Natl Acad Sci U S A 95:4906–4911PubMedPubMedCentralCrossRefGoogle Scholar
  216. Smeathman H (1781) Some Account of the Termites, which are found in Africa and other hot climates. In a Letter from Mr. Henry Smeathman, of Clement’s Inn, to Sir Joseph Banks, Bart. P. R. S. Philos T Roy Soc B 71:139–192CrossRefGoogle Scholar
  217. Smythe RV, Carter FL, Baxter CC (1971) Influence of wood decay on feeding and survival of the eastern subterranean termite, Reticulitermes flavipes (Isoptera: Rhinotermitidae). Ann Entomol Soc Am 64:59–62CrossRefGoogle Scholar
  218. Snyder TE (1948) Our enemy the termite. Comstock Publishing, Ithaca, NYGoogle Scholar
  219. Snyder TE (1956) Annotated, subject-heading bibliography of termites, 1350 BC to AD 1954. Smithsonian InstitutionGoogle Scholar
  220. Spaulding P, Hansbrough JR (1944) Decay of logging slash in the northeast. USDA Technical Bulletin No. 876, Washington, DCGoogle Scholar
  221. Speight MCD (1989) Saproxylic invertebrates and their conservation. Council of Europe, StrasbourgGoogle Scholar
  222. Spicer R, Groover A (2010) Evolution and development of vascular cambia and secondary growth. New Phytol 186:577–592PubMedCrossRefPubMedCentralGoogle Scholar
  223. Spies TA, Franklin JF, Thomas TB (1988) Coarse woody debris in douglas-fir forests of western Oregon and Washington. Ecology 69:1689–1702CrossRefGoogle Scholar
  224. Stein WE, Mannolini F, Hernick LV, Landing E, Berry CM (2007) Giant cladoxylopsid trees resolve the enigma of the Earth’s earliest forest stumps at Gilboa. Nature 446:904–907PubMedCrossRefPubMedCentralGoogle Scholar
  225. Stenbacka F, Hjältén J, Hilszczanski J, Dynesius M (2010a) Saproxylic and non-saproxylic beetle assemblages in boreal spruce forests of different age and forestry intensity. Ecol Appl 20:2310–2321PubMedCrossRefPubMedCentralGoogle Scholar
  226. Stenbacka F, Hjältén J, Hilszczański J, Dynesius M (2010b) Saproxylic and non-saproxylic beetle assemblages in boreal spruce forests of different age and forestry intensity. Ecol Appl 20:2310–2321PubMedCrossRefPubMedCentralGoogle Scholar
  227. Stokland JN, Siitonen J, Jonsson BG (2012) Biodiversity in dead wood. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  228. Stubbs AE (1972) Wildlife conservation and dead wood. A supplement to the Journal of Devon Trust for Nature ConservationGoogle Scholar
  229. Suzuki KI, Ojima T, Nishita K (2003) Purification and cDNA cloning of a cellulase from abalone Haliotis discus hannai. Eur J Biochem 270:771–778PubMedCrossRefPubMedCentralGoogle Scholar
  230. Sverdrup-Thygeson A, Gustafsson L, Kouki J (2014) Spatial and temporal scales relevant for conservation of dead-wood associated species: current status and perspectives. Biodivers Conserv 23:513–535CrossRefGoogle Scholar
  231. Tanahashi M, Matsushita N, Togashi K (2009) Are stag beetles fungivorous? J Insect Physiol 55:983–988PubMedPubMedCentralCrossRefGoogle Scholar
  232. Tayasu I, Abe T, Eggleton P, Bignell DE (1997) Nitrogen and carbon isotope ratios in termites: an indicator of trophic habit along the gradient from wood-feeding to soil-feeding. Ecol Entomol 22:343–351CrossRefGoogle Scholar
  233. Teskey HJ (1976) Diptera larvae associated with trees in North America. Mem Ent Soc Can 108:1–53CrossRefGoogle Scholar
  234. Thomas P (2000) Trees: their natural history. Cambridge University press, CambridgeCrossRefGoogle Scholar
  235. Thomas JW, Anderson RG, Maser C, Bull EL (1979) Snags. In: Thomas JW (ed) Wildlife habitats in managed forests: the blue mountains of Oregon and Washington. USDA forest service, agriculture handbook no. 553, pp 60–77Google Scholar
  236. Thompson BM, Bodart J, McEwen C, Gruner DS (2014) Adaptations for symbiont-mediated external digestion in Sirex noctilio (Hymenoptera: Siricidae). Ann Entomol Soc Am 107:453–460CrossRefGoogle Scholar
  237. Thorne BL, Breisch NL, Muscedere ML (2003) Evolution of eusociality and the soldier caste in termites: influence of intraspecific competition and accelerated inheritance. Proc Natl Acad Sci U S A 100:12808–12813PubMedPubMedCentralCrossRefGoogle Scholar
  238. Tomme P, Warren RAJ, Gilkes NR (1995) Cellulose hydrolysis by bacteria and fungi. In: Poole RK (ed) Advances in microbial physiology, vol 37. Academic, London, pp 1–81Google Scholar
  239. Torres JA (1994) Wood decomposition of Cyrilla racemiflora in a tropical montane forest. Biotropica 26:124–140CrossRefGoogle Scholar
  240. Toussaint EFA, Seidel M, Arriaga-Varela E, Hájek J, Král D, Sekerka L, Short AEZ, Fikáček M (2017) The peril of dating beetles. Syst Entomol 42:1–10CrossRefGoogle Scholar
  241. Townsend CHT (1886) Coleoptera found in dead trunks of Tilia americana L. in October. Can Entomol 18:65–68CrossRefGoogle Scholar
  242. Ulyshen MD (2015) Insect-mediated nitrogen dynamics in decomposing wood. Ecol Entomol 40:97–112CrossRefGoogle Scholar
  243. Ulyshen MD (2016) Wood decomposition as influenced by invertebrates. Biol Rev 91:70–85PubMedPubMedCentralCrossRefGoogle Scholar
  244. Ulyshen MD (2018a) Ecology and conservation of Passalidae. In: Ulyshen MD (ed) Saproxylic insects: diversity, ecology and conservation. Springer, Heidelberg, pp 129–147Google Scholar
  245. Ulyshen MD (2018b) Saproxylic Diptera. In: Ulyshen MD (ed) Saproxylic insects: diversity, ecology and conservation. Springer, Heidelberg, pp 167–192Google Scholar
  246. Ulyshen MD, Hanula JL (2010) Patterns of saproxylic beetle succession in loblolly pine. Agric For Entomol 12:187–194CrossRefGoogle Scholar
  247. Ulyshen MD, Wagner TL (2013) Quantifying arthropod contributions to wood decay. Methods Ecol Evol 4:345–352CrossRefGoogle Scholar
  248. Ulyshen MD, Wagner TL, Mulrooney JE (2014) Contrasting effects of insect exclusion on wood loss in a temperate forest. Ecosphere 5:article 47CrossRefGoogle Scholar
  249. Ulyshen MD, Müller J, Seibold S (2016) Bark coverage and insects influence wood decomposition: Direct and indirect effects. Appl Soil Ecol 105:25–30CrossRefGoogle Scholar
  250. Ulyshen MD, Shefferson R, Horn S, Taylor MK, Bush B, Brownie C, Seibold S, Strickland MS (2017) Below- and above-ground effects of dead wood and termites in plantation forests. Ecosphere 8:e01910CrossRefGoogle Scholar
  251. Ulyshen MD, Pawson S, Branco M, Horn S, Hoebeke ER, Gossner MM (2018) Utilization of non-native wood by saproxylic insects. In: Ulyshen MD (ed) Saproxylic insects: diversity, ecology and conservation. Springer, Heidelberg, pp 797–834Google Scholar
  252. Vanderwel MC, Malcolm JR, Smith SM, Islam N (2006) Insect community composition and trophic guild structure in decaying logs from eastern Canadian pine-dominated forests. Forest Ecol Manag 225:190–199CrossRefGoogle Scholar
  253. Wallace AR (1869) The Malay Archipelago. MacmillanGoogle Scholar
  254. Wallace HR (1953) The ecology of the insect fauna of pine stumps. J Anim Ecol 22:154–171CrossRefGoogle Scholar
  255. Wang B, Ma J, McKenna DD, Yan EV, Zhang H, Jarzembowski EA (2014) The earliest known longhorn beetle (Cerambycidae: Prioninae) and implications for the early evolution of Chrysomeloidea. J Syst Palaeontol 12:565–574CrossRefGoogle Scholar
  256. Wasmann E (1893) Einige neue Termiten aus Ceylon und Madagascar, mit Bemerkungen über der Gäste. Wiener Entomologische Zeitung 12:239–247Google Scholar
  257. Watanabe H, Noda H, Tokuda G, Lo N (1998) A cellulase gene of termite origin. Nature 394:330–331PubMedCrossRefPubMedCentralGoogle Scholar
  258. Weedon JT, Cornwell WK, Cornelissen JHC, Zanne AE, Wirth C, Coomes DA (2009) Global meta-analysis of wood decomposition rates: a role for trait variation among species? Ecol Lett 12:45–56PubMedPubMedCentralCrossRefGoogle Scholar
  259. Wegensteiner R, Wermelinger B, Herrmann M (2015) Natural enemies of bark beetles: predators, parasitoids, pathogens and nematodes. In: Vega FE, Hofstetter RW (eds) Bark beetles: biology and ecology of native and invasive species. Elsevier, San Diego, pp 247–304CrossRefGoogle Scholar
  260. Wende B, Gossner MM, Grass I, Arnstadt T, Hofrichter M, Floren A, Linsenmair KE, Weisser WW, Steffan-Dewenter I (2017) Trophic level, successional age and trait matching determine specialization of deadwood-based interaction networks of saproxylic beetles. Proc R Soc Lond B Biol 284:1854CrossRefGoogle Scholar
  261. Werner PA, Prior LD (2007) Tree-piping termites and growth and survival of host trees in savanna woodland of north Australia. J Trop Ecol 23:611–622CrossRefGoogle Scholar
  262. Willis KJ, McElwain JC (2002) The evolution of plants. Oxford University Press, OxfordGoogle Scholar
  263. Wilson K, White DJB (1986) The anatomy of wood: its diversity and variability. Stobart and Son Ltd, LondonGoogle Scholar
  264. Wood TG, Johnson RA, Ohiagu CE (1977) Populations of termites (Isoptera) in natural and agricultural ecosystems in Southern Guinea savanna near Mokwa, Nigeria. Geo Eco Trop 1:139–148Google Scholar
  265. Woodwell GM, Whittaker RH, Houghton RA (1975) Nutrient concentrations in plants in the Brookhaven oak-pine forest. Ecology 56:318–332CrossRefGoogle Scholar
  266. Xu B, Janson JC, Sellos D (2001) Cloning and sequencing of a molluscan endo-β-1,4-glucanase gene from the blue mussel, Mytilus edulis. Eur J Biochem 268:3718–3727PubMedCrossRefPubMedCentralGoogle Scholar
  267. Yamada A, Inoue T, Noda S, Hongoh Y, Ohkuma M (2007) Evolutionary trend of phylogenetic diversity of nitrogen fixation genes in the gut community of wood-feeding termites. Mol Ecol 16:3768–3777PubMedCrossRefPubMedCentralGoogle Scholar
  268. Yan EV, Lawrence JF, Beattie R, Beutel RG (2017) At the dawn of the great rise: †Ponomarenkia belmonthensis (Insecta: Coleoptera), a remarkable new Late Permian beetle from the Southern Hemisphere. J Syst Palaeontol 48:1–9Google Scholar
  269. Yang Z-Q, Wang X-Y, Zhang Y-N (2014) Recent advances in biological control of important native and invasive forest pests in China. Biol Control 68(Suppl C):117–128CrossRefGoogle Scholar
  270. Zavada MS, Mentis MT (1992) Plant-animal interaction: the effect of Permian megaherbivores on the glossopterid flora. Am Midl Nat 127:1–12CrossRefGoogle Scholar

Copyright information

© This is a U.S. government work and its text is not subject to copyright protection in the United States; however, its text may be subject to foreign copyright protection.  2018

Authors and Affiliations

  1. 1.USDA Forest Service, Southern Research StationAthensUSA
  2. 2.Faculty of Forestry and Wood SciencesCzech University of Life SciencesPragueCzech Republic

Personalised recommendations