Advertisement

Root Biology pp 221-237 | Cite as

Biological Control of Root-Knot and Cyst Nematodes Using Nematophagous Fungi

  • Geeta Saxena
Chapter
Part of the Soil Biology book series (SOILBIOL, volume 52)

Abstract

Plant-parasitic nematodes like root-knot and cyst nematodes are global pests of agricultural and horticultural crops, causing severe yield losses. The penetration of plant roots by juveniles of root-knot nematodes particularly Meloidogyne incognita leads to a surge in physiological and physical changes which results in the formation of giant cells and galls in the root. Nematophagous fungi are widespread in soil. Nematophagous fungi are natural antagonists of nematodes and are considered potential biological control agents of nematodes. They are environmentally beneficial and inexpensive alternatives to nematicides. They have the capacity to capture prey or parasitize and kill nematodes at all stages of their life cycle like eggs, juvenile females and cysts. They fall in four categories: (1) nematode-trapping or predatory fungi which kill the nematodes by producing either adhesive or non-adhesive trapping devices. They possess comparatively good saprophytic ability. Adhesive devices such as hyphae, branches, knobs and nets are coated with adhesive which firmly hold the nematode leading to penetration and colonization by the fungi. Non-adhesive trapping devices are constricting and non-constricting rings. (2) Endoparasitic fungi use adhesive or palatable conidia to enter the nematode body. They are obligate parasites, grow at the expense of body content and finally kill the nematode. Members of Chytridiomycota and Oomycota produce uni- and biflagellate zoospores respectively, to parasitize the nematodes. (3) Parasites of cyst and root-knot nematodes utilize females or eggs as food source, colonizing by the growth of somatic hyphae and causing enzymatic dissolution of egg shell and larval cuticle. These fungi are involved in the degradation of cysts in soil over time. They clearly have the capacity to regulate its host population in soil. (4) Toxin-producing fungi immobilize nematodes by secreting toxins. Most studied potential biological control agents of nematodes are Arthrobotrys oligospora, Pochonia chlamydosporia (syn. Verticillium chlamydosporium), Purpureocillium lilacinum (syn. Paecilomyces lilacinus) and Oomycete Nematophthora gynophila.

Keywords

Nematophagous fungi Biological control Arthrobotrys oligospora Pochonia chlamydosporia Meloidogyne Heterodera 

Notes

Acknowledgments

The author is thankful to her family members for constant encouragement and support throughout the preparation of this chapter.

References

  1. Abd-Elgawad MMM (2016) Biological control agents of plant-parasitic nematodes. Egypt J Biol Pest Control 26(2):423–429Google Scholar
  2. Ahman J, Ek B, Rask L, Tunlid A (1996) Sequence analysis and regulation of a cuticle degrading serine protease from the nematophagous fungus Arthrobotrys oligospora. Microbiology 142:1605–1616CrossRefGoogle Scholar
  3. Ahman J, Johansson T, Olsson M, Peter JP, Cees AMJJ, Hondel v, Tunlid A (2002) Improving the pathogenicity of a nematode-trapping fungus by genetic engineering of a subtilisin with nematotoxic activity. Appl Environ Microbiol 68:3408–3415CrossRefGoogle Scholar
  4. Anke H, Stadler M, Mayer A, Sterner O (1995) Secondary metabolites with nematicidal and antimicrobial activity from nematophagous fungi and Ascomycetes. Can J Bot 73(1):932–939CrossRefGoogle Scholar
  5. Bailey F, Gray NF (1989) The comparison of isolation techniques for nematophagous fungi from soil. Ann Appl Biol 114:125–132CrossRefGoogle Scholar
  6. Barron GL (1977) The nematode destroying fungi. Topics in mycobiology I. Canadian Biological Publications, Guelph, Canada, pp 140Google Scholar
  7. Bourne JM, Kerry BR, De Leij FAAM (1996) The importance of the host plant on the interaction between root-knot nematodes (Meloidogyne spp.) and the nematophagous fungus Verticillium chlamydosporium Goddard. Bicontrol Sci Technol 6:539–548CrossRefGoogle Scholar
  8. Castaneda-Ramirez GS, Mendoza-de-Gives P, Aguilar-Marcelino L, Lopez-Arellano ME, Hernandez-Romano J (2016) Phylogenetic analysis of nucleotide sequence from the ITS region and biological characterization of nematophagous fungi from Morelos, Mexico. J Mycol. Article ID 8502629, pp 13Google Scholar
  9. Chen S (1997) Infection of Heterodera glycines by Hirsutella rhossiliensis in a Minnesota soybean field. J Nematol 29:573Google Scholar
  10. Chen TH, Hsu CS, Tsai PJ, Ho YF, Lin NS (2001) Heterotrimeric G-protein and signal transduction in the nematode-trapping fungus Arthrobotrys dactyloides. Planta 212:858–863CrossRefGoogle Scholar
  11. Chitwood DJ (2003) Research on plant-parasitic nematode biology conducted by the United States Department of Agriculture-Agricultural Research Service. Pest Manag Sci 59:748–753CrossRefGoogle Scholar
  12. Cooke RC, Godfrey BES (1964) A key to the nematode-destroying fungi. Trans Br Mycol Soc 47:61–74CrossRefGoogle Scholar
  13. Crump DH, Sayre RM, Young LD (1983) Occurrence of nematophagous fungi in cyst nematode populations. Plant Dis 67:63–64CrossRefGoogle Scholar
  14. Culbreath AK, Rodriguez-Kabana R, Morgan-Jones G (1986) Chitin and Paecilomyces lilacinus for control of Meloidogyne arenaria. Nematropica 16:153–166Google Scholar
  15. Dallemole-Giaretta R, de Freitas LG, Lopes EA, Ferraz S, de Poderta GS, Agnes EL (2011) Cover crops and Pochonia chlamydosporia for the control of Meloidogyne javanica. Nematology (13):919–926Google Scholar
  16. Dallemole-Giaretta R, de Freitas LG, Lopes EA, Pereira OL, Zooca RJF, Ferraz S (2012) Screening of Pochonia chlamydosporia Brazilian isolates as biocontrol agents of Meloidogyne javanica. Crop Prot 42:102–107CrossRefGoogle Scholar
  17. Davide RG, Zorilla RA (1995) Farm trials by potato growers on the use of Paecilomyces lilacinus fungus for the biological control of potato cyst nematode and other species. Biocontrol 1:63–75Google Scholar
  18. De Leij FAAM, Kerry BR, Dennehy JA (1993) Verticillium chlamydosporium as a biological control agent for Meloidogyne incognita and M. hapla in pot and microplot test. Nematologica 39:115–126CrossRefGoogle Scholar
  19. Deacon JW, Saxena G (1997) Oriented zoospore attachment and cyst germination in Catenaria anguillulae, facultative endoparasite of nematodes. Mycol Res 101(5):513–522CrossRefGoogle Scholar
  20. Degenkolb T, Vilcinskas A (2016) Metabolites from nematophagous fungi and nematicidal natural products from fungi as an alternative for biological control. Part I: metabolites from nematophagous ascomycetes. Appl Microbiol Biotechnol 100:3799–3812CrossRefGoogle Scholar
  21. Drechsler C (1933) Morphological diversity among fungi capturing and destroying nematodes. J Wash Acad Sci 23:138–141Google Scholar
  22. Drechsler C (1937) Some hyphomycetes that prey on free-living terricolous nematodes. Mycologia 29:447–552CrossRefGoogle Scholar
  23. Duddington CL (1951) The ecology of predaceous fungi I. Trans Br Mycol Soc 34:322–338CrossRefGoogle Scholar
  24. Duponnois R, Mateille T, Gueye M (1995) Biological characteristics and effect of two strains of Arthrobotrys oligospora from Senegal on Meloidogyne species parasitizing tomato plants. Biocontrol Sci Technol 5:517–525CrossRefGoogle Scholar
  25. Gapasin RM (1995) Evaluation of Paecilomyces lilacinus (Thom) Samson for the control of Pratylenchus sp. in corn. Biocontrol 1:35–39Google Scholar
  26. Giuma AY, Cooke RC (1971) Nematoxin production by Nematoctonus haptocladus and N. concurrens. Trans Br Mycol Soc 56:89–94CrossRefGoogle Scholar
  27. Gortari MC, Hours RA (2008) Fungal chitinases and their biological role in antagonism onto nematode eggs. Annu Rev Mycol Prog 7:221–238CrossRefGoogle Scholar
  28. Hallman J, Davies KG, Sikora R (2009) Biological control using microbial pathogens, endophytes and antagonists. In: Perry RN, Moens M, Starr JL (eds) Root-knot nematodes. CAB, WallingfordGoogle Scholar
  29. Hao Y, Mo M, Su H, Zhang KQ (2005) Ecology of aquatic nematode-trapping hyphomycetes in southwestern China. Aquat Microb Ecol 40:175–181CrossRefGoogle Scholar
  30. Hussain M, Zouhar M, Rysamek P (2017) Effects of nematophagous fungi on viability of eggs and juveniles of Meloidogyne incognita. J Anim Plant Sci 27(1):252–258Google Scholar
  31. Jaffee BA, Muldoon AE (1989) Suppression of cyst nematode by a natural infestation of a nematophagous fungus. J Nematol 21:505–510PubMedPubMedCentralGoogle Scholar
  32. Jaffee BA, Phillips R, Muldoon AE, Mangel M (1992) Density-dependent host-pathogens dynamics in soil microcosms. Ecology 73:495–506CrossRefGoogle Scholar
  33. Jaffee BA, Tedford EC, Muldoon AE (1993) Tests for density-dependent parasitism of nematodes by nematode-trapping and endoparasitic fungi. Biol Control 3:329–326CrossRefGoogle Scholar
  34. Jatala P (1985) Biological control of nematodes. In: Sasser JN, Carter C (eds) An advanced treatise on Meloidogyne, biology and control, vol I. North Carolina State Graphics, Raleigh, NC, pp 303–308Google Scholar
  35. Jatala P, Kaltenbach R, Bocangel M (1979) Biological control of Meloidogyne incognita acrita and Globodera pallida on potatoes. J Nematol 11:303Google Scholar
  36. Jatala P, Salas R, Kaltenbach R, Bocangel M (1981) Multiple application and long term effect of Paecilomyces lilacinus in controlling Meloidogyne incognita under field conditions. J Nematol 13:445Google Scholar
  37. Johnson TW, Autsery CL (1961) An Arthrobotrys from brackish water. Mycologia 53:432–433CrossRefGoogle Scholar
  38. Karakas M, Benli M, Cebesoy S (2012) Effects of some cultural conditions on the growth of nematophagous fungus Pochonia chlamydosporia (Fungi: Clavicipitaceae) isolated from Meloidogyne incognita eggs. J Anim Vet Adv 11(24):4644–4647Google Scholar
  39. Kerry BR (1975) Fungi and the decrease of cereal cyst-nematode population in cereal monoculture. EPPO Bull 5:353–361CrossRefGoogle Scholar
  40. Kerry BR (1981) Progress in the use of biological agents for control of nematodes. In: Papavizas GC (ed) Biological control in crop production. BARC symposium no. 5. Allenheld and Osmum, Totowa, NJ, pp 79–90Google Scholar
  41. Kerry BR (1984) Nematophagous fungi and the regulation of nematode population in soil. Helminthol Abstr Ser B 53:1–14Google Scholar
  42. Kerry BR (1987) Biological control. In: Brown RH, Kerry BR (eds) Principles and practice of nematode control in crops. Academic, New York, pp 233–263Google Scholar
  43. Kerry BR, Crump DH (1980) Two fungi parasitic on females of cyst nematodes (Heterodera spp.) Trans Br Mycol Soc 74:119–125CrossRefGoogle Scholar
  44. Kerry BR, Crump DH (1998) The dynamics of the decline of the cereal cyst nematode Heterodera avenae in four soils under intensive cereal production. Fundam Appl Nematol 21:617–625Google Scholar
  45. Kerry BR, Jaffee BA (1997) Fungi as biological control agents for plant parasitic nematodes. In: Wicklow DT, Soderstrom B (eds) The mycota IV: Environmental and microbial relationships. Springer, Berlin, pp 203–218Google Scholar
  46. Kerry BR, Crump DH, Mullen LA (1982) Studies of the cereal cyst-nematode Heterodera avenae under continuous cereals 1974-1978 I, Plant growth and nematode multiplication. Ann Appl Biol 100:477–487CrossRefGoogle Scholar
  47. Khan TA, Saxena SK (1997) Integrated management of root-knot nematode Meloidogyne javanica infecting tomato using organic materials and Paecilomyces lilacinus. Bioresource Technol 61:247–250CrossRefGoogle Scholar
  48. Kiewnick S (2010) Importance of multitrophic interactions for successful biocontrol of plant parasitic nematodes with Paecilomyces lilacinus strain 251. In: Gisi U, Chet I, Lodvica Gullino M (eds) Recent developments in management of plant diseases, plant pathology in the 21st century. Springer, Dordrecht, pp 81–92CrossRefGoogle Scholar
  49. Kiewnick S, Neumann S, Sikora RA, Frey JE (2011) Effect of Meloidogyne incognita inoculum density and application rate of Paecilomyces lilacinus strain 251 on biocontrol efficacy and colonization of egg masses analyzed by real-time quantitative PCR. Phytopathology 101:105–112CrossRefGoogle Scholar
  50. Kwok OCH, Plattner R, Weisleder D, Wicklow DT (1992) A nematicidal toxin from Pleurotus ostreatus NRRL 3526. J Chem Ecol 18:127–135CrossRefGoogle Scholar
  51. Lackey BA, Muldoon AE, Jaffee BA (1993) Alginate pellet formulation of Hirsutella rhossiliensis for biological control of plant-parasitic nematodes. Biol Control 3:155–160CrossRefGoogle Scholar
  52. Larriba E, Jaime M, Carbonell-Caballero J, Conesa A, Dopazo J, Nislow C, Martni-Nieto J, Lopez-Llorca LV (2014) Sequencing and functional analysis of the genome of a nematode egg-parasitic fungus Pochonia chlamydosporia. Fungal Genet Biol 65:69–80CrossRefGoogle Scholar
  53. Li GH, Zhang KQ (2014) Nematode toxic fungi and their nematicidal metabolites. In: Zhang KQ, Hyde KD (eds) Nematode-trapping fungi, Fungal diversity research series. Mushroom Research Foundation 2014. Springer, Dordrecht, pp 313–375CrossRefGoogle Scholar
  54. Liu XZ, Chen SY (2000) Parasitism of Heterodera glycines by Hirsutella spp. in Minnesota soybean fields. Biol Control 19:161–166CrossRefGoogle Scholar
  55. Liu S, Chen SY (2005) Efficacy of the fungi Hirsutella minnesotensis and H. rhossiliensis from liquid culture for control of the soybean cyst nematodes Heterodera glycines. Nematology 7:149–157CrossRefGoogle Scholar
  56. Lopez-Llorca LV, Macia-Vicente JG, Jansson HB (2008) Mode of action and interactions of nematophagous fungi. In: Ciancio A, Mukerji KG (eds) Integrated management and biocontrol of vegetable and grain crops nematodes. Springer, Dordrecht, pp 51–76Google Scholar
  57. Luambano ND, Manzanilla-Lopez RH, Kimenju JW, Powers SJ, Narla RD, Wanjohi WJ, Kerry BR (2015) Effect of temperature, pH, carbon and nitrogen ratios on the parasitic activity of Pochonia chlamydosporia on Meloidogyne incognita. Biol Control 80:23–29CrossRefGoogle Scholar
  58. Luo H, Liu YJ, Fang L, Li X, Tang NH, Zhang KQ (2007) Coprinus comatus damages nematode cuticles mechanically with spiny balls and produces potent toxins. Appl Environ Microbiol 73:3916–3923CrossRefGoogle Scholar
  59. Mauchline TH, Kerry BR, Hirsch PR (2002) Quantification in soil and the rhizosphere of the nematophagous fungus Verticillium chlamydosporium by competitive PCR and comparison with selective plating. Appl Environ Microbiol 68(4):1846–1853CrossRefGoogle Scholar
  60. McInnis TM, Jaffee BA (1989) An assay for Hirsutella rhossiliensis spores and the importance of phialides for nematode inoculation. J Nematol 21:229–234PubMedPubMedCentralGoogle Scholar
  61. McSorley R, Wang KH, Kokalis-Burelle N, Church G (2006) Effects of soil type and steam on nematode biological control potential of the rhizosphere community. Nematropica 36:197–214Google Scholar
  62. Mittal N, Saxena G, Mukerji KG (1988) Few predators from Delhi soils. J Rec Adv Appl Sci 3:383–388Google Scholar
  63. Mittal N, Saxena G, Mukerji KG (1989) Ecology of nematophagous fungi: distribution in Delhi. J Phytol Res 2(1):31–37Google Scholar
  64. Mittal N, Saxena G, Mukerji KG (1995) Integrated control of root-knot disease in three crop plants using chitin and Paecilomyces lilacinus. Crop Prot 14(8):647–651CrossRefGoogle Scholar
  65. Mittal N, Saxena G, Mukerji KG (1999) Biological control of root-knot nematode by nematode-destroying fungi. In: Singh J, Aneja KR (eds) From ethnomycology to fungal biotechnology: exploiting fungi from natural resources for novel product. Kluwer, Plenum, New York, pp 163–172CrossRefGoogle Scholar
  66. Mo MH, Chen WM, Su HY, Zhang KQ, Duan CQ, He DM (2006) Heavy metal tolerance of nematode-trapping fungi in lead-polluted soils. Appl Soil Ecol 31:11–19CrossRefGoogle Scholar
  67. Mo MH, Chen WM, Yang HR, Zhang KQ (2008) Diversity and metal tolerance of nematode-trapping fungi in Pb-polluted soils. J Microbiol 46:16–22CrossRefGoogle Scholar
  68. Moens M, Perry RN, Starr JL (2009) Meloidogyne species—a diverse group of novel and important plant parasites. In: Perry RN, Moens M, Starr JL (eds) Root-knot nematodes. CAB, Wallingford, pp 1–17Google Scholar
  69. Morgan-Jones G, Rodriguez-Kabana R (1987) Fungal biocontrol for the management of nematodes. In: Veech JA, Dickson DW (eds) Vistas on nematology. Society Nematologists, Hyattsville, MD, pp 94–99Google Scholar
  70. Morgan-Jones G, White JF, Rodriguez-Kabana R (1984) Phytonematode pathology: ultrastructural studies 2. Parasitism of Meloidogyne arenaria eggs and larvae by Paecilomyces lilacinus. Nematropica 16:21–31Google Scholar
  71. Morton CO, Hirsch PR, Kerry BR (2004) Infection of plant-parasitic nematodes by nematophagous fungi—a review of the application of molecular biology to understand infection processes and to improve biological control. Nematology 6:161–170CrossRefGoogle Scholar
  72. Muller HG (1958) The constricting ring mechanism of two predacious Hyphomycetes. Trans Br Mycol Soc 41:341–364CrossRefGoogle Scholar
  73. Noe JP, Sasser JN (1995) Evaluation of Paecilomyces lilacinus as an agent for reducing yield losses due to Meloidogyne incognita. Biocontrol 1:57–67Google Scholar
  74. Nordbring-Hertz B, Jansson HB, Tunlid A (2006) Nematophagous fungi. In: Encyclopedia of life sciences. Wiley, Chichester, pp 1–11.  https://doi.org/10.1038/npg.els.0004293
  75. Perry RN, Trett MW (1986) Ultrastructure of the eggshell of Heterodera schachtii and Heterodera glycines (Nematode, Tylenchida). Rev Nematol 9:399–403Google Scholar
  76. Persmark L, Jansson HB (1997) Nematophagous fungi in the rhizosphere of agricultural crops. FEMS Microbiol Ecol 22:303–312CrossRefGoogle Scholar
  77. Pfister DH (1997) Castor, Pollux and life histories of fungi. Mycologia 89:1–23CrossRefGoogle Scholar
  78. Quandt CA, Kepler RM, Gams W, Evans HC, Hudghes D, Humber R, Hymel-Jones N, Li Luangsa-Ard JJ, Rehner SA, Sato M, Shrestha B, Sung GH, Yao YJ, Zara R, Spatafora JW (2014) Phylogenetic-based nomenclatural proposals for Ophiocordycipitaceae (Hypocreales) with new combination in Tolypocladium. IMA Fungus 5:121–134CrossRefGoogle Scholar
  79. Rawat R, Pandey A, Saxena G, Mukerji KG (1999) Rhizosphere biology of root-knot diseased Abelmoschus esculentus in relation to its biocontrol. In: Singh J, Aneja KR (eds) From ethnomycology to fungal biotechnology: exploiting fungi from natural resources for novel products. Plenum, New York, pp 173–184CrossRefGoogle Scholar
  80. Rudek WT (1975) The construction of the trapping rings in Dactylaria brochopaga. Mycopathologia 53:193–197CrossRefGoogle Scholar
  81. Sasser JN (1989) Plant-parasitic nematodes: the farmer’s hidden enemy. Department of Plant Pathology, North Carolina State University and the Consortium for International Crop Protection, pp 115Google Scholar
  82. Sasser JN, Freckman DW (1987) World perspective on Nematology: the role of the society. In: Veech JA, Dickson DW (eds) A commemoration of the twenty-fifth anniversary of the society of nematologists. Society of Nematologists, Hyattsville, MD, pp 7–14Google Scholar
  83. Saxena G (2004) Biocontrol of nematode-borne diseases in vegetable crops. In: Mukerji KG (ed) Fruit and vegetable diseases. Disease management of fruits and vegetables, vol I. Kluwer, Dordrecht, pp 387–450Google Scholar
  84. Saxena G (2007) Nematophagous fungi as biocontrol agents of plant-parasitic nematodes. In: Saxena G, Mukerji KG (eds) Management of nematode and insect-borne plant diseases. Haworth, Taylor and Francis, New York, pp 165–194Google Scholar
  85. Saxena G (2008) Observations on the occurrence of nematophagous fungi in Scotland. Appl Soil Ecol 39:352–357CrossRefGoogle Scholar
  86. Saxena G, Lysek G (1993) Observation of nematophagous fungi in natural soils by fluorescence microscopy and correlation with isolation. Mycol Res 97(8):1005–1011CrossRefGoogle Scholar
  87. Saxena G, Mukerji KG (1991) Distribution of nematophagous fungi in Varanasi, India. Nova Hedwigia 52(3-4):487–497Google Scholar
  88. Saxena G, Mittal N, Mukerji KG, Arora DK (1991) Nematophagous fungi in biological control of nematodes. In: Arora DK, Ajello L, Mukerji KG (eds) Handbook of applied mycology: humans, animals and insects, vol II. Marcel Dekker, New York, pp 707–733Google Scholar
  89. Segers R, Butt TM, Kerry BR, Bechett A, Peberdy JF (1996) The role of the proteinase VCP1 produced by the nematophagous Verticillium chlamydosporium in the infection process of nematode eggs. Mycol Res 100:421–428CrossRefGoogle Scholar
  90. Singh UB, Sahu A, Singh RK, Singh DP, Meena KK, Srivastava JS, Renu, Manna MC (2012) Evaluation of biocontrol potential of Arthrobotrys oligospora against Meloidogyne graminicola and Rhizoctonia solani in Rice (Oryza sativa L). Biol Control 60:262–270CrossRefGoogle Scholar
  91. Stadler M, Anke H, Sterner O (1993) New biologically active compounds from the nematode-trapping fungus Arthrobotrys oligospora. Fres Z Naturforsch 48:843–850Google Scholar
  92. Stirling GR (2011) Biological control of plant-parasitic nematodes: an ecological perspective, a review of progress and opportunities for further research. In: Davies K, Spiegel Y (eds) Biological control of plant-parasitic nematodes: building coherence between microbial ecology and molecular mechanisms. Springer, Dordrecht, pp 1–38Google Scholar
  93. Stirling GR (2013) Integration of organic amendments, crop rotation, residue retention and minimum tillage into a subtropical vegetable farming system enhances suppressiveness to root-knot nematode (Meloidogyne incognita). Australas Plant Pathol 42:625–637CrossRefGoogle Scholar
  94. Subramanian CV (1963) Dactylella, Monacrosporium and Dactylina. J Ind Bot Soc 42:291–300Google Scholar
  95. Sun MH, Gao L, Shi YX, Li BJ, Liu XZ (2006) Fungi and actinomycetes associated with Meloidogyne spp. eggs and females in China and their biocontrol potential. J Invertebr Pathol 93:22–28CrossRefGoogle Scholar
  96. Swe A, Jeewon R, Hyde KD (2008) Nematode-trapping fungi from mangrove habitats. Cryptogamie Mycologie 29(4):333–354Google Scholar
  97. Swe A, Jeewon R, Pointing SB, Hyde KD (2009) Diversity and abundance of nematode-trapping fungi from decaying litter in terrestrial and mangrove habitats. Biodivers Conservat 18(6):1695–1714CrossRefGoogle Scholar
  98. Thorn RG, Barron GL (1984) Carnivorous mushrooms. Science 224:76–78CrossRefGoogle Scholar
  99. Velvis H, Kamp P (1995) Infection of second stage juveniles of potato cyst nematodes by the nematophagous fungus Hirsutella rhossiliensis in Dutch potato fields. Nematologica 41:617–627CrossRefGoogle Scholar
  100. Wang CJ, Song CY, Zhang XD, Xie YQ, Xing ZL, Wang MZ (1997) Sustainable control efficacy of Paecilomyces lilacinus against Heterodera glycines. J Nematol 13:26–28Google Scholar
  101. Wang YL, Li LF, Li DX, Wang B, Zhang K, Niu X (2015) Yellow pigment aurovertins mediate interactions between the pathogenic fungus Pochonia chlamydosporia and its nematode host. J Agric Food Chem 63:6577–6587CrossRefGoogle Scholar
  102. Yang Y, Yang E, An Z, Liu X (2007) Evolution of nematode-trapping cells of predatory fungi of the Orbiliaceae based on evidence from rRNA-encoding DNA and multiprotein sequences. Proc Natl Acad Sci USA 104:8379–8384CrossRefGoogle Scholar
  103. Yang J, Wang L, Ji XL, Feng Y, Li XM, Zou CG, Xu JP, Ren Y, Mi QL, Wu JL, Liu SQ, Liu Y, Huang XW, Wang HY, Niu XM, Li J, Liang LM, Luo YL, Ji KF, Zhou W, Yu ZF, Li GH, Liu YJ, Li L, Qiao M, Feng L, Zhang KQ (2011) Genomic and proteomic analyses of the fungus Arthrobotrys oligospora provide insights into nematode trap formation. PLoS Pathog 7:e1002179CrossRefGoogle Scholar
  104. Yang JI, Loffredo A, Borneman J, Jo B (2012) Biocontrol efficacy among strains of Pochonia chlamydosporia obtained from the root-knot suppressive soil. J Nematol 44:67–71PubMedPubMedCentralGoogle Scholar
  105. Yu ZF, Mo MH, Zhang Y, Zhang KQ (2014) Taxonomy of nematode-trapping fungi from Orbiliaceae, Ascomycota. In: Zhang KQ, Hyde KD (eds) Nematode-trapping fungi, Fungal diversity research series, vol 23. Springer, Dordrecht, pp 41–210CrossRefGoogle Scholar
  106. Zare R, Gams W, Evans HC (2001) A revision of Verticillium section Prostrata V. The genus Pochonia with notes on Rotiferophthora. Nova Hedwigia 73:51–86Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Geeta Saxena
    • 1
  1. 1.Department of Botany, Swami Shraddhanand CollegeUniversity of DelhiDelhiIndia

Personalised recommendations