Advertisement

Root Biology pp 85-142 | Cite as

Morphological and Symbiotic Root Modifications for Mineral Acquisition from Nutrient-Poor Soils

  • A. Kleinert
  • V. A. Benedito
  • R. J. L. Morcillo
  • J. Dames
  • P. Cornejo-Rivas
  • A. Zuniga-Feest
  • Mabel Delgado
  • Gastón Muñoz
Chapter
Part of the Soil Biology book series (SOILBIOL, volume 52)

Abstract

Plants have the ability to form vast root systems with lengths measuring up to several kilometers and branch roots numbering in millions. These expansive root systems provide plants with a large surface area for water and nutrient uptake from the surrounding soil. Roots also have further equally important functions to fulfil such as vegetative reproduction, hormone biosynthesis, photoassimilate storage, and the establishment of symbiotic relationships with microorganisms. Root systems have evolved several adaptations to aid them in maximizing nutrient uptake. These adaptations can be morphological such as changes in the root architecture or formation of cluster roots or may be symbiotic associations with mycorrhizae or nitrogen-fixing bacteria. Improvement of nutrient acquisition and use by plants is imperative for economic, humanitarian, and environmental reasons, and a better understanding of the processes governing root adaptations would enable us to adapt fertilizer and pesticide programs. In this chapter, we will focus on both morphological (cluster roots) and symbiotic root adaptations (associations with ectomycorrhizae, arbuscular mycorrhizae, and nitrogen-fixing bacteria) to soil nutrient deficiencies.

Keywords

Root architecture remodeling Cluster roots Symbiosis Root development Mycorrhiza Rhizosphere 

Notes

Acknowledgements

The authors would like to acknowledge the various research agencies, whose funding supported much of the work, upon which this chapter is based. P Cornejo, A Zuniga-Feest and M Delgado were funded by the following grants—Fondecyt grant postdctoral Nº 3150187 (MD), Fondecyt iniciation grant Nº 11170368 (MD), Fondecyt Nº 1130440 (AZF) and FONDECYT grant Nº 1170264 (PC) (CONICYT-Chile). Research at V Benedito’s laboratory is funded by the USDA National Institute of Food and Agriculture (Hatch Project WVA00686). A Kleinert is funded by the National Research Foundation of South Africa. The authors would like to thank Alexander Valentine for Figs. 4.34.5.

References

  1. Agerer R (2001) Exploration types of ectomycorrhizae—a proposal to classify ectomycorrhizal mycelial systems according to their patterns of differentiation and putative ecological importance. Mycorrhiza 11:107–114CrossRefGoogle Scholar
  2. Agerer R (2006) Fungal relationships and structural identity of their ectomycorrhizae. Mycol Prog 5:67–10CrossRefGoogle Scholar
  3. Aguilera P, Borie F, Seguel A, Cornejo P (2011) Fluorescence detection of aluminum in arbuscular mycorrhizal fungal structures and glomalin by using confocal laser scanning microscopy. Soil Biol Biochem 43:2417–2431CrossRefGoogle Scholar
  4. Al-Karaki GN (2006) Nursery inoculation of tomato with arbuscular mycorrhizal fungi and subsequent performance under irrigation with saline water. Sci Horticult 109:1–7CrossRefGoogle Scholar
  5. Almeida JPF, Hartwig UA, Frehner M, Nosberger J, Luscher A (2000) Evidence that P deficiency induces N feedback regulation of symbiotic N2 fixation in white clover (Trifolium repens L.) J Exp Bot 51:1289–1297PubMedGoogle Scholar
  6. Al-Niemi TS, Kahn ML, McDermott TR (1997) P metabolism in the bean-Rhizobium tropici symbiosis. Plant Physiol 113:1233–1242PubMedPubMedCentralCrossRefGoogle Scholar
  7. Al-Niemi TS, Kahn ML, McDermott TR (1998) Phosphorus uptake by bean nodules. Plant Soil 198:71–78CrossRefGoogle Scholar
  8. Ané JM, Kiss GB, Riely BK, Penmetsa RV, Oldroyd GE, Ayax C, Levy J, Debelle F, Baek JM, Kalo P, Rosenberg C, Roe BA, Long SR, Denarie J, Cook DR (2004) Medicago truncatula DMI1 required for bacterial and fungal symbioses in legumes. Science 303:1364–1367PubMedCrossRefGoogle Scholar
  9. Araujo AP, Plassard C, Drevon JJ (2008) Phosphatase and phytase activities in nodules of common bean genotypes at different levels of phosphorus supply. Plant Soil 312:129–138CrossRefGoogle Scholar
  10. Ashkannejhad S, Horton TR (2006) Ectomycorrhizal ecology under primary succession on coastal sand dunes: interactions involving Pinus contorta, suilloid fungi and deer. New Phytol 169:345–354PubMedCrossRefGoogle Scholar
  11. Avila A (2013) Evaluación de la capacidad de extracción de fósforo en Proteaceas chilenas. Tesis para optar al grado de Magister en Ciencias vegetales. Escuela de Postgrado en Ciencias Agrarias. Universidad Austral de Chile. Valdivia, ChileGoogle Scholar
  12. Badri DV, Weir TL, Van der Lelie D, Vivanco JM (2009) Rhizosphere chemical dialogues: plant–microbe interactions. Curr Opin Biotechnol 20(6):642–650CrossRefPubMedGoogle Scholar
  13. Bago B, Pfeffer P, Shachar-Hill Y (2001) Could the urea cycle be translocating nitrogen in the arbuscular mycorrhizal symbiosis? New Phytol 149:4–8CrossRefGoogle Scholar
  14. Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266CrossRefPubMedGoogle Scholar
  15. Balzergue C, Puech-Pags V, Bécard G, Rochange SF (2011) The regulation of arbuscular mycorrhizal symbiosis by phosphate in pea involves early and systemic signalling events. J Exp Bot 62:1049–1060PubMedCrossRefGoogle Scholar
  16. Balzergue C, Chabaud M, Barker DG, Bécard G, Rochange SF (2013) High phosphate reduces host ability to develop arbuscular mycorrhizal symbiosis without affecting root calcium spiking responses to the fungus. Front Plant Sci 4:426PubMedPubMedCentralCrossRefGoogle Scholar
  17. Bargaz A, Ghoulam C, Amenc L, Lazali M, Faghire M, Drevon JJ (2012) Phosphoenol pyruvate phosphatase is induced in the root nodule cortex of Phaseolus vulgaris under phosphorus deficiency. J Exp Bot 63:4723–4730PubMedPubMedCentralCrossRefGoogle Scholar
  18. Bargaz A, Faghire M, Farissi M, Drevon J-J, Ghoulam C (2013) Oxidative stress in the root nodules of Phaseolus vulgaris is induced under conditions of phosphorus deficiency. Acta Physiol Plant 35:1633–1644CrossRefGoogle Scholar
  19. Bárzana G, Aroca R, Ruiz-Lozano JM (2015) Localized and non-localized effects of arbuscular mycorrhizal symbiosis on accumulation of osmolytes and aquaporins and on antioxidant systems in maize plants subjected to total or partial root drying. Plant Cell Environ 38:1613–1627CrossRefPubMedGoogle Scholar
  20. Beckett D (2009) Regulating transcription regulators via allostery and flexibility. Proc Natl Acad Sci USA 106(52):22035–22036PubMedPubMedCentralCrossRefGoogle Scholar
  21. Benedito VA, Dai X, He J, Zhao PX, Udvardi MK (2006) Functional genomics of plant transporters in legume nodules. Funct Plant Biol 33(8):731–736CrossRefGoogle Scholar
  22. Benedito VA, Torres-Jerez I, Murray JD, Andriankaja A, Allen S, Kakar K, Wandrey M, Verdier J, Zuber H, Ott T, Moreau S, Niebel A, Frickey T, Weiller G, He J, Dai X, Zhao PX, Tang Y, Udvardi MK (2008) A gene expression atlas of the model legume Medicago truncatula. Plant J 55(3):504–513PubMedCrossRefGoogle Scholar
  23. Benedito VA, Li H, Dai X, Wandrey M, He J, Kaundal R, Torres-Jerez I, Gomez SK, Harrison MJ, Tang Y, Zhao PX, Udvardi MK (2010) Genomic inventory and transcriptional analysis of Medicago truncatula transporters. Plant Physiol 152(3):1716–1730PubMedCrossRefGoogle Scholar
  24. Berta G, Fusconi A, Trotta A (1993) VA mycorrhizal infection and the morphology and function of root systems. Environ Exp Bot 33:159–173CrossRefGoogle Scholar
  25. Bieleski RL (1973) Phosphate pools, phosphate transport, and phosphate availability. Annu Rev Plant Physiol 24:225–252CrossRefGoogle Scholar
  26. Bona E, Scarafoni A, Marsano F, Boatti L, Copetta A, Massa N, Gamalero E, D’Agostino G, Cesaro P, Cavaletto M, Berta G (2016) Arbuscular mycorrhizal symbiosis affects the grain proteome of Zea mays: a field study. Sci Rep 6:26439PubMedPubMedCentralCrossRefGoogle Scholar
  27. Bonneau L, Huguet S, Wipf D, Pauly N, Truong HN (2013) Combined phosphate and nitrogen limitation generates a nutrient stress transcriptome favorable for arbuscular mycorrhizal symbiosis in Medicago truncatula. New Phytol 199(1):188–202PubMedCrossRefGoogle Scholar
  28. Borie F, Rubio R (2003) Total and organic phosphorus in Chilean volcanic soils. Gayana Bot 60:69–78CrossRefGoogle Scholar
  29. Boulet F, Lambers H (2005) Characterisation of arbuscular mycorrhizal fungi colonization in cluster roots of shape Hakea verrucosa F. Muell (Proteaceae), and its effects on grown and nutrient acquisition in ultramafic soils. Plant Soil 269:357–367CrossRefGoogle Scholar
  30. Breuillin-Sessoms F, Schramm J, Hajirezaei M, Ahkami A, Favre P, Druege U, Hause B, Bucher M, Kretzschmar T, Bossolini E, Kuhlemeier C, Martinoia E, Franken P, Scholz U, Reinhardt D (2010) Phosphate systemically inhibits development of arbuscular mycorrhiza in Petunia hybrida and represses genes involved in mycorrhizal functioning. Plant J 64:1002–1017CrossRefGoogle Scholar
  31. Breuillin-Sessoms F, Floss DS, Gomez SK, Nathan Pumplin N, Ding Y, Levesque-Tremblay V, Noar RD, Daniels DA, Bravo A, Eaglesham JB, Benedito VA, Udvardi MK, Harrisona MJ (2015) Suppression of arbuscule degeneration in Medicago truncatula phosphate transporter4 Mutants is dependent on the ammonium transporter 2 family protein AMT2;3. Plant Cell 27(4):1352–1366PubMedPubMedCentralCrossRefGoogle Scholar
  32. Brundett MC (2009) Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 320:37–77CrossRefGoogle Scholar
  33. Brundrett M (2004) Diversity and classification of mycorrhizal associations. Biol Rev Camb Philos Soc 79:473–495PubMedCrossRefGoogle Scholar
  34. Cabeza RA, Liese R, Lingner A, von Stieglitz I, Neumann J, Salinas-Riester G, Pommerenke C, Dittert K, Schulze J (2014) RNA-seq transcriptome profiling reveals that Medicago truncatula nodules acclimate N2 fixation before emerging P deficiency reaches the nodules. J Exp Bot 65:6035–6048PubMedPubMedCentralCrossRefGoogle Scholar
  35. Calvo-Polanco M, Sánchez-Castro I, Cantos M, García JL, Azcón R, Ruiz-Lozano JM, Beuzón CR, Aroca R (2016) Effects of different arbuscular mycorrhizal fungal backgrounds and soils on olive plants growth and water relation properties under well-watered and drought conditions. Plant Cell Environ 39:2498–2514PubMedCrossRefGoogle Scholar
  36. Campanelli A, Ruta C, De Mastro G, Morone-Fortunato I (2012) The role of arbuscular mycorrhizal fungi in alleviating salt stress in Medicago sativa L. var. icon. Symbiosis 59(2):65–76CrossRefGoogle Scholar
  37. Carroll BJ, Matthews A (1990) Nitrate inhibition of nodulation in legumes. In: Gresshoff PM (ed) Molecular biology of symbiotic nitrogen fixation. CRC, Boca Raton, FL, pp 159–180Google Scholar
  38. Casieri L, Lahmidi NA, Doidy J, Veneault-Fourrey C, Migeon A, Bonneau L, Courty PE, Garcia K, Charbonnier M, Delteil A, Brun A, Zimmermann S, Plassard C, Wipf D (2013) Biotrophic transportome in mutualistic plant fungal interactions. Mycorrhiza 23:597–625PubMedCrossRefGoogle Scholar
  39. Chabaud M, Genre A, Sieberer BJ, Faccio A, Fournier J, Novero M, Barker DG, Bonfante P (2011) Arbuscular mycorrhizal hyphopodia and germinated spore exudates trigger Ca2+ spiking in the legume and nonlegume root epidermis. New Phytol 189:347–355PubMedCrossRefGoogle Scholar
  40. Chaparro JM, Badri DV, Vivanco JM (2014) Rhizosphere microbiome assemblage is affected by plant development. ISME J 8:790–803CrossRefPubMedGoogle Scholar
  41. Chen Y, Cao S, Chai Y, Clardy J, Kolter R, Guo JH, Losick R (2012) A Bacillus subtilis sensor kinase involved in triggering biofilm formation on the roots of tomato plants. Mol Microbiol 85:418–430PubMedPubMedCentralCrossRefGoogle Scholar
  42. Chen A, Gu M, Wang S, Chen J, Xu G (2018) Transport properties and regulatory roles of nitrogen in arbuscular mycorrhizal symbiosis. Semin Cell Dev Biol 74:80–88.  https://doi.org/10.1016/j.semcdb.2017.06.015 CrossRefPubMedGoogle Scholar
  43. Coenye T, Vandamme P (2003) Diversity and significance of Burkholderia species occupying diverse ecological niches. Environ Microbiol 5:719–729PubMedCrossRefGoogle Scholar
  44. Colebatch G, Desbrosses G, Ott T, Krussell L, Montanari O, Kloska S, Kopka J, Udvardi M (2004) Global changes in transcription orchestrate metabolic differentiation during symbiotic nitrogen fixation in Lotus japonicus. Plant J 39:487–512PubMedCrossRefGoogle Scholar
  45. Compant S, Nowak J, Coenye T, Clément C, Ait Barka E (2008) Diversity and occurrence of Burkholderia spp. in the natural environment. FEMS Microbiol Rev 32:607–626PubMedCrossRefGoogle Scholar
  46. Cordell D, White S (2011) Peak phosphorus: clarifying the key issues of a vigorous debate about long-term phosphorus security. Sustainability 3:2027–2049CrossRefGoogle Scholar
  47. Cornejo P, Meier S, Borie G, Rillig M, Borie F (2008a) Glomalin-related soil protein in a Mediterranean ecosystem affected by a copper smelter and its contribution to Cu and Zn sequestration. Sci Total Environ 406:154–160PubMedCrossRefGoogle Scholar
  48. Cornejo P, Rubio R, Castillo C, Azcón R, Borie F (2008b) Mycorrhizal effectiveness on wheat nutrient acquisition in an acidic soil from Southern Chile as affected by nitrogen sources. J Plant Nutr 31(9):1555–1569CrossRefGoogle Scholar
  49. Cornejo P, Rubio R, Borie F (2009) Mycorrhizal propagule persistence in a succession of cereals in a disturbed and undisturbed andisol fertilized with two nitrogen sources. Chilean J Agric Res 69(3):426–434CrossRefGoogle Scholar
  50. Cornejo P, Pérez-Tienda J, Meier S, Valderas A, Borie F, Azcón-Aguilar C, Ferrol N (2013) Copper compartmentalization in spores as a survival strategy of arbuscular mycorrhizal fungi in Cu-polluted environments. Soil Biol Biochem 57:925–928CrossRefGoogle Scholar
  51. Cornejo P, Meier S, García S, Ferrol N, Durán P, Borie F, Seguel A (2017a) Contribution of inoculation with arbuscular mycorrhizal fungi to the bioremediation of a copper polluted soil using Oenothera picensis. J Soil Sci Plant Nutr 17:14–21Google Scholar
  52. Cornejo P, Seguel A, Aguilera P, Meier S, Larsen J, Borie F (2017b) Arbuscular mycorrhizal fungi improves tolerance of agricultural plants to cope abiotic stress conditions. In: Singh DP (ed) Plant-microbe interactions in agro-ecological perspectives. Vol. 2. Microbial interactions and agro-ecological impacts. Springer, Singapore. ISBN: 978-981-10-6592-7CrossRefGoogle Scholar
  53. Courty PE, Pritsch K, Schloter M, Hartmann A, Garbaye J (2005) Activity profiling of ectomycorrhiza communities in two forest soils using multiple enzymatic tests. New Phytol 167:309–319PubMedCrossRefGoogle Scholar
  54. Courty PE, Hoegger PJ, Kilaru S, Kohler A, Buee M, Garbaye J, Martin F, Kues U (2009) Phylogenetic analysis, genomic organisation, and expression analysis of multi-copper oxidases in the ectomycorrhizal basidiomycete Laccaria bicolor. New Phytol 182:736–750PubMedCrossRefGoogle Scholar
  55. Cramer MD, Shane MW, Lambers H (2005) Physiological changes in white lupin associated with variation in root-zone CO2 concentration and cluster-root P mobilization. Plant Cell Environ 28:1203–1217CrossRefGoogle Scholar
  56. Crocker LJ, Schwintzer CR (1993) Factors affecting formation of cluster roots in Myrica gale seedlings in water culture. Plant Soil 152:287–298CrossRefGoogle Scholar
  57. Culleré L, Ferreira V, Chevret B, Venturini ME, Sánchez-Gimeno AC, Blanco D (2010) Characterisation of aroma active compounds in black truffles (Tuber melanosporum) and summer truffles (Tuber aestivum) by gas chromatography–olfactometry. Food Chem 122:300–306CrossRefGoogle Scholar
  58. Daei G, Ardakani M, Rejali F, Teimuri S, Miransari M (2009) Alleviation of salinity stress on wheat yield, yield components, and nutrient uptake using arbuscular mycorrhizal fungi under field conditions. J Plant Physiol 166:617–625PubMedCrossRefGoogle Scholar
  59. Deacon JW, Fleming LV (1992) Interactions of ectomycorrhizal fungi. In: Allen MF (ed) Mycorrhizal functioning: an integrative plant-fungal process. Chapman and Hall, New York, pp 249–300Google Scholar
  60. de Britto P, Abrahão A, Gorne Viani RA, Santin Brancalion PH, Lambers H, Frankand Sawaya CH, Oliveira R (2015) Cluster-root formation and carboxylate release in Euplassa cantareirae (Proteaceae) from a neotropical biodiversity hotspot. Plant Soil.  https://doi.org/10.1007/s11104-015-2630-2
  61. Delgado M, Zúñiga-Feest A, Alvear M, Borie F (2013) The effect of phosphorus on cluster root formation and functioning of Embothrium coccineum (R. et J. Forst.) Plant Soil 373:765–773.  https://doi.org/10.1007/s11104-013-1829-3 CrossRefGoogle Scholar
  62. Delgado M, Suriyagoda L, Zúñiga-Feest A, Borie F, Lambers H, Field K (2014) Divergent functioning of Proteaceae species: the South American Embothrium coccineum displays a combination of adaptive traits to survive in high-phosphorus soils. Funct Ecol 28:1356–1366CrossRefGoogle Scholar
  63. Delgado M, Zúñiga-Feest A, Almonacid L, Lambers H, Borie F (2015) Cluster roots of Embothrium coccineum (Proteaceae) affect enzyme activities and phosphorus lability in rhizosphere soil. Plant Soil 395:189–200CrossRefGoogle Scholar
  64. Dell B, Kuo J, Thompson GJ (1980) Development of proteoid roots in Hakea oblique R. BR. (Proteaceae) grown in water culture. Aust J Bot 28:27–37CrossRefGoogle Scholar
  65. Dell J, Malajczuk N, Bougher NL, Thomson G (1994) Development and function of Pisolithus and Scleroderma ectomycorrhizas formed in vivo with Allocasuarina, Casuarina and Eucalyptus. Mycorrhiza 5:129–138CrossRefGoogle Scholar
  66. Dellórto M, Santi S, de Nisi P, Cesco S, Varanini Z, Zocchi G, Pinton R (2000) Development of Fe-deficiency responses in cucumber (Cucumis sativus L.) roots: involvement of plasma membrane H+-ATPase activity. J Exp Bot 51:695–701Google Scholar
  67. Dessureault-Rompre J, Nowack B, Schulin R, Luster J (2007) Spatial and temporal variation in organic acid anion exudation and nutrient anion uptake in the rhizosphere of Lupinus albus L. Plant Soil 301:123–134CrossRefGoogle Scholar
  68. Dinkelaker B, Romheld V, Marschner H (1989) Citric acid excretion and precipitation of calcium citrate in the rhizosphere of white lupin (Lupinus albus L.) Plant Cell Environ 12:285–292CrossRefGoogle Scholar
  69. Dinkelaker B, Hengeler C, Marschner H (1995) Distribution and function of proteoid roots and other root clusters. Bot Acta 108:183–200CrossRefGoogle Scholar
  70. Ditengou FA, Lapeyrie F (2000) Hypaphorine from the ectomycorrhizal fungus Pisolithus tinctorius counteracts activities of indole-3-acetic acid and ethylene but not synthetic auxins in eucalypt seedlings. Mol Plant Microbe Interact 13:151–158PubMedCrossRefGoogle Scholar
  71. Ditengou FA, Beguiristain T, Lapeyrie F (2000) Root hair elongation is inhibited by hypaphorine, the indole alkaloid from the ectomycorrhizal fungus Pisolithus tinctorius, and restored by indole-3-acetic acid. Planta 211:722–728PubMedCrossRefGoogle Scholar
  72. Ditengou FA, Müller A, Rosenkranz M, Felten J, Lasok H, van Doorn MM, Legué V, Palme K, Schnitzler J-P, Polle A (2015) Volatile signalling by sesquiterpenes from ectomycorrhizal fungi reprogammes root architecture. Nat Commun 6:6279.  https://doi.org/10.1038/ncomms7279 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Dixon R, Kahn D (2004) Genetic regulation of biological nitrogen fixation. Nat Rev Microbiol 2:621–631PubMedCrossRefGoogle Scholar
  74. Doornbos RF, Van Loon LC, Bakker P (2012) Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere. A review. Agron Sustain Dev 32:227–243CrossRefGoogle Scholar
  75. Drapek C, Sparks EE, Benfey PN (2017) Uncovering gene regulatory networks controlling plant cell differentiation. Trends Genet 33(8):529–539PubMedCrossRefPubMedCentralGoogle Scholar
  76. Drevon JJ, Hartwig UA (1997) Phosphorus deficiency increases the argon-induced decline of nodule nitrogenase activity in soybean and alfalfa. Planta 201:463–469CrossRefGoogle Scholar
  77. Drevon JJ, Abadie J, Alkama N, Andriamananjara A, Amenc L, Bargaz A, Carlssonn G, Jaillard B, Lazali M, Ghoulam C, Ounane SM (2015) Phosphorus use efficiency for N2 fixation in the rhizobial symbiosis with legumes. In: de Bruijn FJ (ed) Biological Nitrogen Fixation. Wiley, Hoboken, NJ, pp 455–464CrossRefGoogle Scholar
  78. Duff SMG, Sarath G, Plaxton WC (1994) The role of acid phosphatases in plant phosphorus metabolism. Physiol Plant 90:791–800CrossRefGoogle Scholar
  79. Duke SH, Collins M, Soberalske RM (1980) Effects of potassium fertilization on nitrogen fixation and nodules enzymes of nitrogen metabolism in alfalfa. Crop Sci 20:213–219CrossRefGoogle Scholar
  80. Duplessis S, Courty PE, Tagu D, Martin F (2005) Transcript patterns associated with ectomycorrhizal development in Eucalyptus globulus and Pisolithus microcarpus. New Phytol 165:599–611PubMedCrossRefGoogle Scholar
  81. Elser J, Bennett E (2011) Phosphorus cycle: a broken biogeochemical cycle. Nature 478:29–31PubMedCrossRefGoogle Scholar
  82. Evelin H, Giri B, Kapoor R (2012) Contribution of Glomus intraradices inoculation to nutrient acquisition and mitigation of ionic imbalance in NaCl-stressed Trigonella foenum-graecum. Mycorrhiza 22:203–217CrossRefPubMedGoogle Scholar
  83. Fernández-Bidondo L, Bompadre J, Pergola M, Silvani V, Colombo R, Bracamonte F, Godeas A (2012) Differential interaction between two Glomus intraradices strains with different extraradical mycelium architecture and a phosphate solubilizing bacterium in maize rhizosphere. Pedobiologia 55(12):227–232CrossRefGoogle Scholar
  84. Fitter AH (2004) Magnolioid roots—hairs, architecture and mycorrhizal dependency. New Phytol 164:15–16CrossRefGoogle Scholar
  85. Foo E, Yoneyama K, Hugill CJ, Quittenden LJ, Reid JB (2013) Strigolactones and the regulation of pea symbioses in response to nitrate and phosphate deficiency. Mol Plant 6(1):76–87PubMedCrossRefGoogle Scholar
  86. Fusconi A (2014) Regulation of root morphogenesis in arbuscular mycorrhizae: what role do fungal exudates, phosphate, sugars and hormones play in lateral root formation? Ann Bot 113:19–33PubMedCrossRefGoogle Scholar
  87. Gadd GM (1999) Fungal production of citric and oxalic acid: importance of metal speciation, physiology and biogeochemical processes. Adv Microb Physiol 41:48–92Google Scholar
  88. Gage DJ (2004) Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbiol Mol Biol Rev 68:280–300PubMedPubMedCentralCrossRefGoogle Scholar
  89. Gardner WK, Barber DA, Parbery DG (1983) The acquisition of phosphorus by Lupinus albus L. III. The probable mechanism by which phosphorus, movement in the soil/root interface is enhanced. Plant Soil 70:107–124CrossRefGoogle Scholar
  90. Garg N, Bhandari P (2016) Silicon nutrition and mycorrhizal inoculations improve growth, nutrient status, K+/Na+ ratio and yield of Cicer arietinum L .genotypes under salinity stress. Plant Growth Regul 78(3):371–387CrossRefGoogle Scholar
  91. Gay G, Debaud JC (1987) Genetic study on indole-3-acetic acid production by ectomycorrhizal Hebeloma species: inter- and intraspecific variability in homo- and dikaryotic mycelia. Appl Microbiol Biotechnol 26:141–146CrossRefGoogle Scholar
  92. Genre A, Chabaud M, Balzergue C, Puech-Pagès V, Novero M, Rey T, Fournier J, Rochange S, Bécard G, Bonfante P, Barker DG (2013) Short-chain chitin oligomers from arbuscular mycorrhizal fungi trigger nuclear Ca2+ spiking in Medicago truncatula roots and their production is enhanced by strigolactone. New Phytol 198:190–202PubMedCrossRefGoogle Scholar
  93. Gerke J, Römer W, Jungk A (1994) The excretion of citric and malic acid by proteoid roots of Lupinus albus L.: effects on soil solution concentration of phosphate, iron, and aluminum in the proteoid rhizosphere in samples of an oxisol and a luvisol. Z Pflanzen Bodenk 157:289–294CrossRefGoogle Scholar
  94. Gilbert GA, Knight JD, Vance CP, Allan DL (1999) Acid phosphatase activity in phosphorus-deficient white lupin roots. Plant Cell Environ 22:801–810CrossRefGoogle Scholar
  95. Gobbato E, Marsh JF, Vernié T, Wang E, Maillet F, Kim J, Miller JB, Sun J, Bano SA, Ratet P, Mysore KS, Dénarié J, Schultze M, Oldroyd GE (2012) A GRAS-type transcription factor with a specific function in mycorrhizal signaling. Curr Biol 22:2236–2241PubMedCrossRefGoogle Scholar
  96. Gogala N (1991) Regulation of mycorrhizal infection by hormonal factors produced by hosts and fungi. Experientia 47:331–340CrossRefGoogle Scholar
  97. Gordon AJ, Minchin FR, James CL, Komina O (1999) Sucrose synthase in legume nodules is essential for nitrogen fixation. Plant Physiol 120:867–878PubMedPubMedCentralCrossRefGoogle Scholar
  98. Govindarajulu M, Pfeffer PE, Jin H, Abubaker J, Douds DD, Allen JW, Bücking H, Lammers PJ, Shachar-Hill Y (2005) Nitrogen transfer in the arbuscular mycorrhizal Simbiosis. Nature 435:819–823PubMedCrossRefGoogle Scholar
  99. Graham PH, Vance CP (2000) Nitrogen fixation in perspective: an overview of research and extension needs. Field Crop Res 65:93–106CrossRefGoogle Scholar
  100. Gregory PJ (2006) Plant roots: growth, activity and interaction with soils. Blackwell, OxfordCrossRefGoogle Scholar
  101. Grinbergs J, Valenzuela E, Ramírez C (1987) Formación y desarrollo de raíces proteiformes en plántulas de Gevuina avellana Mol. Agro Sur 15(1):1–9Google Scholar
  102. Gruber BD, Giehl RFH, Friedel S, von Wirén N (2013) Plasticity of the Arabidopsis root system under nutrient deficiencies. Plant Physiol 163:161–179PubMedPubMedCentralCrossRefGoogle Scholar
  103. Guether M, Balestrini R, Hannah M, He J, Udvardi MK, Bonfante P (2009) Genome-wide reprogramming of regulatory networks, transport, cell wall and membrane biogenesis during arbuscular mycorrhizal symbiosis in Lotus japonicus. New Phytol 182:200–212PubMedCrossRefGoogle Scholar
  104. Guo WB, Zhao J, Li XX, Qin L, Yan XL, Liao H (2011) A soybean β-expansin gene GmEXPB2 intrinsically involved in root system architecture responses to abiotic stresses. Plant J 66:541–552PubMedCrossRefGoogle Scholar
  105. Gupta AK, Kaur V, Kaur N (1998) Appearance of different phosphatase forms and phosphorus partitioning in nodules of chickpea (Cicer arietinum L.) during development. Acta Physiol Plant 20:369–374CrossRefGoogle Scholar
  106. Güsewell S (2017) Regulation of dauciform root formation and root phosphatase activities of sedges (Carex) by nitrogen and phosphorus. Plant Soil 415(1-2):57–72CrossRefGoogle Scholar
  107. Gutjahr C, Casieri L, Paszkowski U (2009) Glomus intraradices induces changes in root system architecture of rice independently of common symbiosis signaling. New Phytol 182:829–837PubMedCrossRefGoogle Scholar
  108. Hammer EC, Nasr H, Pallon J, Olsson PA, Wallander H (2011) Elemental composition of arbuscular mycorrhizal fungi at high salinity. Mycorrhiza 21:117–129CrossRefPubMedGoogle Scholar
  109. Han M, Okamoto M, Beatty PH, Rothstein SJ, Good AG (2015) The genetics of nitrogen use efficiency in crop plants. Annu Rev Genet 49:269–289PubMedCrossRefGoogle Scholar
  110. Harrison MJ (1999) Molecular and cellular aspects of the arbuscular mycorrhizal symbiosis. Annu Rev Plant Physiol Plant Mol Biol 50:361–389PubMedCrossRefGoogle Scholar
  111. Harrison MJ (2005) Signaling in the arbuscular mycorrhizal symbiosis. Annu Rev Microbiol 59:19–42PubMedCrossRefGoogle Scholar
  112. Haselwandter K (1995) Mycorrhizal fungi: siderophore production. Crit Rev Biotechnol 15:287–291CrossRefGoogle Scholar
  113. Haselwandter K, Winkelmann G (2002) Ferricrocin—an ectomycorrhizal siderophore of Cenoccoccum geophilum. Biometals 15:73–77PubMedCrossRefGoogle Scholar
  114. Hawkins H-J, Johansen A, George E (2000) Uptake and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi. Plant Soil 226:275–285CrossRefGoogle Scholar
  115. Hayes P, Turner BL, Lambers H (2014) Foliar nutrient concentrations and resorption efficiency in plants of contrasting nutrient-acquisition strategies along a 2-million-year dune chronosequence. J Ecol 102:396–410CrossRefGoogle Scholar
  116. Heckman DS, Geiser DM, Eidell BR, Stauffer RL, Kardos NL, Hedges SB (2001) Molecular evidence for the early colonization of land by fungi and plants. Science 293:1129–1133PubMedCrossRefGoogle Scholar
  117. Hernandez G, Valdes-Lopez O, Ramirez M, Goffard N, Weiller G, Aparicio-Fabre R, Fuentes SI, Erban A, Kopka J, Udvardi MK, Vance CP (2009) Global changes in the transcript and metabolic profiles during symbiotic nitrogen fixation in phosphorus-stressed common bean plants. Plant Physiol 151:1221–1238PubMedPubMedCentralCrossRefGoogle Scholar
  118. Hinsinger P (1998) How do plant roots acquire mineral nutrients? Chemical properties involved in the rhizosphere. Adv Agron 64:225–265CrossRefGoogle Scholar
  119. Ho MD, Rosas JC, Brown KM, Lynch JP (2005) Root architectural tradeoffs for water and phosphorus acquisition. Funct Plant Biol 32:737–748CrossRefGoogle Scholar
  120. Hobbie EA, Agerer R (2010) Nitrogen isotopes in ectomycorrhizal sporocarps correspond to belowground exploration types. Plant Soil 327:71–83CrossRefGoogle Scholar
  121. Hobecker KV, Reynoso MA, Bustos-Sanmamed P, Wen J, Mysore KS, Crespi M, Blanco FA, Zanetti ME (2017) The microRNA390/TAS3 pathway mediates symbiotic nodulation and lateral root growth. Plant Physiol 174(4):2469–2486PubMedPubMedCentralCrossRefGoogle Scholar
  122. Hodge A (2003) Plant nitrogen capture from organic matter as affected by spatial dispersion, interspecific competition and mycorrhizal colonization. New Phytol 157:303–314CrossRefGoogle Scholar
  123. Hodge A, Campbell CD, Fitter AH (2001) An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 413:297–299PubMedCrossRefGoogle Scholar
  124. Hodge A, Helgason T, Fitter AH (2010) Nutritional ecology of arbuscular mycorrhizal fungi. Fungal Ecol 3(4):267–273CrossRefGoogle Scholar
  125. Hoffland E, Kuyper TW, Wallander H, Plassard C, Gorbushina AA, Haselwandter K, Holström S, Landeweert R, Lundström US, Rosling A, Sen R, Smits MM, van Hess PAW, van Breemen N (2004) The role of fungi in weathering. Front Ecol Environ 2:258–264CrossRefGoogle Scholar
  126. Hogh-Jensen H (2003) The effect of potassium deficiency on growth and N2-fixation in Trifolium repens. Physiol Plant 119:440–449CrossRefGoogle Scholar
  127. Hogh-Jensen H, Schjoerring JK, Soussana JF (2002) The influence of phosphorus deficiency on growth and nitrogen fixation of white clover plants. Ann Bot 90:745–753PubMedPubMedCentralCrossRefGoogle Scholar
  128. Huault E, Laffont C, Wen J, Mysore KS, Ratet P, Duc G, Frugier F (2014) Local and systemic regulation of plant root system architecture and symbiotic nodulation by a receptor-like kinase. PLoS Genet 10(12):e1004891PubMedPubMedCentralCrossRefGoogle Scholar
  129. Imin N, Mohd-Radzman NA, Ogilvie HA, Djordjevic MA (2013) The peptide-encoding CEP1 gene modulates lateral root and nodule numbers in Medicago truncatula. J Exp Bot 64(17):5395–5409PubMedCrossRefGoogle Scholar
  130. Israel DW (1987) Investigation of the role of phosphorus in symbiotic dinitrogen fixation. Plant Physiol 84:835–840PubMedPubMedCentralCrossRefGoogle Scholar
  131. Jacoby R, Peukert M, Succurro A, Koprivova A, Kopriva S (2017) The role of soil microorganisms in plant mineral nutrition—current knowledge and future directions. Front Plant Sci 8:1617PubMedPubMedCentralCrossRefGoogle Scholar
  132. Jakobsen I, Leggett ME, Richardson AE (2005) Rhizosphere microorganisms and plant phosphorus uptake. In: Sims JT, Sharpley AN (eds) Phosphorus, agriculture and the environment. American Society for Agronomy, Madison, pp 437–494Google Scholar
  133. Javot H, Pumplin N, Harrison M (2007) Phosphate in arbuscular mycorrhizal symbiosis: transporter properties and regulatory role. Plant Cell Environ 30:310–322PubMedCrossRefGoogle Scholar
  134. Javot H, Penmetsa RV, Breuillin F, Bhattarai KK, Noar RD, Gomez SK, Cook DR (2011) Medicago truncatula mtpt4 mutants reveal a role for nitrogen in the regulation of arbuscule degeneration in arbuscular mycorrhizal symbiosis. Plant J 68:954–965PubMedCrossRefGoogle Scholar
  135. Jeong J, Merkovich A, Clyne M, Connolly EL (2017) Directing iron transport in dicots: regulation of iron acquisition and translocation. Curr Opin Plant Biol 39:106–113PubMedCrossRefGoogle Scholar
  136. Johansson T, Le Quéré A, Ahren D, Söderström B, Erlandsson R, Lundeberg J, Uhlén M, Tunlid A (2004) Transcriptional responses of Paxillus involutus and Betula pendula during formation of ectomycorrhizal root tissue. Mol Plant Microbe Interact 17:202–215PubMedCrossRefGoogle Scholar
  137. Johnson JF, Allan D, Vance CP (1994) Phosphorus stress-induced proteoid roots show altered metabolism in Lupinus albus. Plant Physiol 104:657–665PubMedPubMedCentralCrossRefGoogle Scholar
  138. Johnson JF, Allan D, Vance CP, Weiblen G (1996) Root carbon dioxide fixation by phosphorus-deficient Lupinus albus. Contribution to organic acid exudation by proteoid roots. Plant Physiol 112:19–30PubMedPubMedCentralCrossRefGoogle Scholar
  139. Joly C, Assis M, Bernacci L (2012) Florística e fitossociologia em parcelas permanentes da Mata Atlântica do sudeste do Brasil ao longo de um gradiente altitudinal. Biota Neotrop 12:125–145CrossRefGoogle Scholar
  140. Jones D (1998) Organic acids in the rhizosphere—a critical review. Plant Soil 205:25–44CrossRefGoogle Scholar
  141. Jones DL, Brassington DS (1998) Sorption of organic acids in acid soils and its implications in the rhizosphere. Eur Soil Sci 49:447–455CrossRefGoogle Scholar
  142. Joshi M, Fogelman E, Belausov E, Ginzberg I (2016) Potato root system development and factors that determine its architecture. J Plant Physiol 205:113–123PubMedCrossRefGoogle Scholar
  143. Jung JKH, McCouch S (2013) Getting to the roots of it: genetic and hormonal control of root architecture. Front Plant Sci 4:186PubMedPubMedCentralCrossRefGoogle Scholar
  144. Kanamori N, Madsen LH, Radutoiu S, Frantescu M, Quitsgaard EMH, Miwa H, Downie JA (2006) A nucleoporin is required for induction of Ca2+ spiking in legume nodule development and essential for rhizobial and fungus symbiosis. Proc Natl Acad Sci USA 103:359–364PubMedPubMedCentralCrossRefGoogle Scholar
  145. Kapulnik Y, Koltai H (2014) Strigolactone involvement in root development, response to abiotic stress, and interactions with the biotic soil environment. Plant Physiol 166(2):560–569PubMedPubMedCentralCrossRefGoogle Scholar
  146. Kaya C, Ashraf M, Sonmez O (2009) The influence of arbuscular mycorrhizal colonisation on key growth parameters and fruit yield of pepper plants grown at high salinity. Sci Hortic 121:1–6CrossRefGoogle Scholar
  147. Keerthisinghe G, Hocking PJ, Ryan PR, Delhaize E (1998) Effect of phosphorus supply on the formation and function of proteoid roots of lupin white (Lupinus albus L.) Plant Cell Environ 21:467–478CrossRefGoogle Scholar
  148. Kiba T, Krapp A (2016) Plant nitrogen acquisition under low availability: regulation of uptake and root architecture. Plant Cell Physiol 57(4):707–714PubMedPubMedCentralCrossRefGoogle Scholar
  149. Kihara T, Wada T, Suzuki Y, Hara T, Koyama H (2003) Alteration of citrate metabolism in cluster roots of white lupin. Plant Cell Physiol 44:901–908PubMedCrossRefGoogle Scholar
  150. Kikuchi Y, Hijikata N, Ohtomo R, Handa Y, Kawaguchi M, Saito K, Masuta C, Ezawa T (2016) Aquaporin-mediated long-distance polyphosphate translocation directed towards the host in arbuscular mycorrhizal symbiosis: application of virus-induced gene silencing. New Phytol 211:1202–1208PubMedCrossRefGoogle Scholar
  151. Kleijn RJ, Buescher JM, Le Chat L, Jules M, Aymerich S, Sauer U (2010) Metabolic fluxes during strong carbon catabolite repression by malate in Bacillus subtilis. J Biol Chem 285:1587–1596PubMedCrossRefGoogle Scholar
  152. Kleinert A, Venter M, Kossmann J, Valentine A (2014) The reallocation of carbon in P deficient lupins affects biological nitrogen fixation. J Plant Physiol 171:1619–1624PubMedCrossRefGoogle Scholar
  153. Kobae Y, Tamura Y, Takai S, Banba M, Hata S (2010) Localized expression of arbuscular mycorrhiza-inducible ammonium transporters in soybean. Plant Cell Physiol 51:1411–1415PubMedCrossRefGoogle Scholar
  154. Kost T, Stopnisek N, Agnoli K, Eberl L, Weisskopf L (2014) Oxalotrophy, a widespread trait of plant-associated Burkholderia species, is involved in successful root colonization of lupin and maize by Burkholderia phytofirmans. Front Microbiol 4:421PubMedPubMedCentralCrossRefGoogle Scholar
  155. Kosuta S, Chabaud M, Lougnon G, Gough C, Denaire J, Baker DG, Becard G (2003) Diffusible factor from arbuscular mycorrhizal fungi induces symbiosis-specific MtENOD11 expression in roots of Medicago truncatula. Plant Physiol 131:952–962PubMedPubMedCentralCrossRefGoogle Scholar
  156. Kosuta S, Hazledine S, Sun J, Miwa H, Morris RJ, Downie JA, Oldroyd GED (2008) Differential and chaotic calcium signatures in the symbiosis signaling pathway of legume. Proc Natl Acad Sci USA 105:9823–9828PubMedPubMedCentralCrossRefGoogle Scholar
  157. Krishnamoorthy R, Kim K, Subramanian P, Senthilkumar M, Anandham R, Sa T (2016) Arbuscular mycorrhizal fungi and associated bacteria isolated from salt-affected soil enhances the tolerance of maize to salinity in coastal reclamation soil. Agric Ecosyst Environ 231:233–239CrossRefGoogle Scholar
  158. Kusuda M, Nagai M, Ueda THM, Terashita T (2003) Purification and some properties of α-amylase from an ectomycorrhizal fungus, Tricholoma matsutake. Mycoscience 44:311–317CrossRefGoogle Scholar
  159. Kusuda M, Ueda M, Konishi Y, Yamanaka K, Miyatake K (2007) Effects of carbohydrate substrate on the vegetative growth of an ectomycorrhizal mushroom, Tricholoma matsutake, isolated from Quercus. Mycoscience 48:358–364CrossRefGoogle Scholar
  160. Lagrange H, Jay-Allgmand C, Lapeyrie F (2001) Rutin, the phenolglycoside from eucalyptus root exudates, stimulates Pisolithus hyphal growth at picomolar concentration. New Phytol 149:349–355CrossRefGoogle Scholar
  161. Lambers H, Shane MW (2007) Role of root clusters in phosphorus acquisition and increasing biological diversity in agriculture. In: JHJ S, Struik PC, van Laar HH (eds) Scale and complexity in plant systems research: gene-plant-crop relations. Springer, Dordrecht, pp 237–250CrossRefGoogle Scholar
  162. Lambers H, Juniper D, Cawthray GR, Veneklaas EJ, Martínez-Ferri E (2002) The pattern of carboxylate exudation in Banksia grandis (Proteaceae) is affected by the form of phosphate added to the soil. Plant Soil 238:111–122CrossRefGoogle Scholar
  163. Lambers H, Shane WM, Cramer MD, Pearse SJ, Veneklaas EJ (2006) Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits. Ann Bot 98:693–713PubMedPubMedCentralCrossRefGoogle Scholar
  164. Lambers H, Raven JA, Shaver GR, Smith SE (2008) Plant nutrient-acquisition strategies change with soil age. Trends Ecol Evol 23:95–103PubMedCrossRefGoogle Scholar
  165. Lambers H, Bishop J, Hopper S, Laliberté E, Zuñiga-Feest A (2012a) Phosphorus mobilization ecosystem engineering: the roles of cluster roots and carboxylate exudation in young P-limited ecosystems. Ann Bot 110:329–348PubMedPubMedCentralCrossRefGoogle Scholar
  166. Lambers H, Cawthray G, Giavalisco P, Kuo J, Laliberte E, Pearse S, Scheibke W, Stitt M, Teste F, Turner BL (2012b) Proteaceae from severely phosphorus-impoverished soils extensively replace phospholipids with galactolipids and sulfolipids during leaf development to achieve a high photosynthetic phosphorus-use-efficiency. New Phytol 196:1098–1108PubMedCrossRefGoogle Scholar
  167. Lambers H, Clode P, Hawkins HJ, Oliveira RS, Reddell P, Shane SW, Weston P (2015) Chapter 11. Metabolic adaptations of the non-mycotrophic Proteaceae to soil with a low phosphorus availability. In: Plaxton WC, Lambers H (eds) Phosphorus metabolism in plants in the post-genomic era: from gene to ecosystem. Wiley-Blackwell, ChicesterGoogle Scholar
  168. Lamont B (1974) The biology of dauciform roots in the sedge Cyathochaeta avenacea. New Phytol 73:985–996CrossRefGoogle Scholar
  169. Lamont BB (1982) Mechanisms for enhancing nutrient uptake in plants, with particular reference to Mediterranean South Africa and Western Australia. Bot Rev 48:597–689CrossRefGoogle Scholar
  170. Lamont BB (2003) Structure, ecology and physiology of root clusters—a review. Plant Soil 248:1–19CrossRefGoogle Scholar
  171. Lamont BB, Pérez-Fernández M, Rodríguez-Sánchez J (2015) Soil bacteria hold the key to root cluster formation. New Phytol 206(3):1156–1162PubMedCrossRefGoogle Scholar
  172. Landeweert R, Hoffland E, Finlay RD, Kuyper TW, Van Breemen N (2001) Linking plants to rocks: ectomycorrhizal fungi mobilize nutrients from minerals. Trends Ecol Evol 16(5):248–254PubMedCrossRefGoogle Scholar
  173. Laparre J, Balzergue C, Rochange S, Ludwiczak P, Letisse F, Portais JC, Bécard G, Puech-Pages V (2011) Metabolite profiling of pea roots in response to phosphate availability. Plant Signal Behav 6:837–839PubMedPubMedCentralCrossRefGoogle Scholar
  174. Laurent P, Voiblet C, Tagu D, De Carvalho D, Nehls U, De Bellis R, Balestrini R, Bauw G, Bonfante P, Martin F (1999) A novel class of ectomycorrhiza-regulated cell wall polypeptides in Pisolithus tinctorius. Mol Plant Microbe Interact 12:862–871PubMedCrossRefGoogle Scholar
  175. Layzell DB, Hunt S (1990) Oxygen and the regulation of nitrogen fixation in legume nodules. Physiol Plant 80:322–327CrossRefGoogle Scholar
  176. Layzell DB, Hunt S, Palmer GR (1990) Mechanisms of nitrogenase inhibition in soybean nodules. Pulse-modulated spectroscopy indicates that nitrogenase activity is limited by O2. Plant Physiol 92:1101–1107PubMedPubMedCentralCrossRefGoogle Scholar
  177. Lazali M, Zaman-Allah M, Amenc L, Ounane G, Abadie J, Drevon J-J (2013) A phytase gene is overexpressed in root nodules cortex of Phaseolus vulgaris–rhizobia symbiosis under phosphorus deficiency. Planta 238:317–324PubMedCrossRefGoogle Scholar
  178. Lazali M, Bargaz A, Brahimi S, Amenc L, Abadie J, Drevon JJ (2016) Expression of a phosphate-starvation inducible fructose-1,6-bisphosphatase gene in common bean nodules correlates with phosphorus use efficiency. J Plant Physiol 205:48–56PubMedCrossRefGoogle Scholar
  179. Le Quere A, Wright DP, Söderström B, Tunlid A, Johansson T (2005) Global patterns of gene regulation associated with the development of ectomycorrhiza between birch (Betula pendula Roth.) and Paxillus involutus (Batsch) Fr. Mol Plant Microbe Interact 18(7):659–673PubMedCrossRefGoogle Scholar
  180. Le Roux MR, Ward CL, Botha FC, Valentine AJ (2006) Routes of pyruvate synthesis in phosphorous-deficient lupin roots and nodules. New Phytol 169:399–408PubMedCrossRefGoogle Scholar
  181. Le Roux MR, Kahn S, Valentine AJ (2008) Organic acid accumulation inhibits N2–fixation in P-stressed lupin nodules. New Phytol 177(4):956–964PubMedCrossRefGoogle Scholar
  182. Le Roux MR, Khan S, Valentine AJ (2009) Nitrogen and carbon costs of soybean and lupin root systems during phosphate starvation. Symbiosis 48:102–109CrossRefGoogle Scholar
  183. Le Roux M, Phiri E, Khan W, Şakiroglu M, Valentine A, Khan S (2014) Expression of novel cytosolic malate dehydrogenases (cMDH) in lupinus angustifolius nodules during phosphorus starvation. J Plant Physiol 171(17):1609–1618PubMedCrossRefGoogle Scholar
  184. Lea PJ, Sodek L, Parry MAJ, Shewry PR, Halford NG (2007) Asparagine in plants. Ann Appl Biol 150:1–26CrossRefGoogle Scholar
  185. Lei J, Dexheimer J (1988) Ultrastructural localisation of ATPase activity in Pinus sylvestris/Laccaria laccata mycorrhizal association. New Phytol 108:329–334CrossRefGoogle Scholar
  186. Lei J, Lapeyrie F, Malajczuk N, Dexheimer J (1990) Infectivity of pine and eucalypt isolates of Pisolithus tinctorius Pers. Coker and Couch on roots of Eucalyptus urophylla S.T. Blake in vitro. New Phytol 116:115–122CrossRefGoogle Scholar
  187. Leidi EO, Rodríguez-Navarro DN (2000) Nitrogen and phosphorus availability limit N2 fixation in bean. New Phytol 147:337–346CrossRefGoogle Scholar
  188. Li M, Shinano T, Tadona T (1997) Distribution of exudates of lupin roots in the rhizosphere under phosphorus deficient conditions. Soil Sci Plant Nutr 43:237–245CrossRefGoogle Scholar
  189. Li C, Giu S, Yang T, Walk T, Wang X, Liao H (2010) Identification of soybean purple acid phosphatase genes and their expression response to phosphorus availability and symbiosis. Ann Bot 109:275–285CrossRefGoogle Scholar
  190. Li L, Tilman D, Lambers H, Zhang FS (2014) Plant diversity and overyielding: insights from belowground facilitation of intercropping in agriculture. New Phytol 203(1):63–69PubMedCrossRefGoogle Scholar
  191. Li X, Zhao J, Tan Z, Zeng R, Liao H (2015) GmEXPB2, a cell wall β-expansin, affects soybean nodulation through modifying root architecture and promoting nodule formation and development. Plant Physiol 169(4):2640–2653PubMedPubMedCentralGoogle Scholar
  192. Liese R, Alings K, Meier IC (2017a) Root branching is a leading root trait of the plant economics spectrum in temperate trees. Front Plant Sci 8:315PubMedPubMedCentralCrossRefGoogle Scholar
  193. Liese R, Schulze J, Cabeza RA (2017b) Nitrate application or P deficiency induce a decline in Medicago truncatula N2-fixation by similar changes in the nodule transcriptome. Sci Rep 7:46264.  https://doi.org/10.1038/srep46264 CrossRefPubMedPubMedCentralGoogle Scholar
  194. Lima JE, Kojima S, Takahashi H, von Wirén N (2010) Ammonium triggers lateral root branching in Arabidopsis in an AMMONIUM TRANSPORTER1;3-dependent manner. Plant Cell 22(11):3621–3633PubMedPubMedCentralCrossRefGoogle Scholar
  195. López-Pedrosa A, González-Guerrero M, Valderas A, Azcón-Aguilar C, Ferrol N (2006) GintAMT1 encodes a functional high-affinity ammonium transporter that is expressed in the extraradical mycelium of Glomus. Fungal Genet Biol 43:102–110PubMedCrossRefGoogle Scholar
  196. López-Ráez JA, Charnikhova T, Gómez-Roldán V, Matusova R, Kohlen W, De Vos R, Verstappen F, Puech-Pages V, Bécard G, Mulder P, Bouwmeester H (2008) Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation. New Phytol 178:863–879PubMedCrossRefGoogle Scholar
  197. Ludwig-Müller J (2010) Hormonal responses in host plants triggered by arbuscular mycorrhizal fungi. In: Koltai HY, Kapulnik Y (eds) Arbuscular mycorrhizas: physiology and function. Springer, Amsterdam, pp 169–190CrossRefGoogle Scholar
  198. Lynch JP (2007) Roots of the second green revolution. Aust J Bot 55:1–20CrossRefGoogle Scholar
  199. Maherali H (2014) Is there an association between root architecture and mycorrhizal growth response? New Phytol 204(1):192–200PubMedCrossRefGoogle Scholar
  200. Maijala P, Fagerstedt KV, Raudaskoski M (1991) Detection of extracellular cellulolytic and proteolytic activity in ectomycorrhizal fungi and Heterobasidion annosum (Fr.) Bref. New Phytol 117:643–648CrossRefGoogle Scholar
  201. Maillet F, Poinsot V, André O (2011) Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature 469:58–63PubMedPubMedCentralCrossRefGoogle Scholar
  202. Malajczuk N, Lapeyrie F, Garbaye J (1990) Infectivity of pine and eucalypt isolates of Pisolithus tinctorius on the roots of Eucalyptus urophylla in vitro. New Phytol 114:627–631CrossRefGoogle Scholar
  203. Maldonado-Mendoza IE, Dewbre GR, Harrison MJ (2001) A phosphate transporter gene from the extra-radical mycelium of an arbuscular mycorrhizal fungus Glomus intraradices is regulated in response to phosphate in the environment. Mol Plant Microbe Interact 14(10):1140–1148PubMedCrossRefGoogle Scholar
  204. Mardukhi B, Rejali F, Daei G, Ardakani MR, Malakouti M, Miransari M (2011) Arbuscular mycorrhizas enhance nutrient uptake in different wheat genotypes at high salinity levels under field and greenhouse conditions. Com Rend Biol 334:564–571CrossRefGoogle Scholar
  205. Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, LondonGoogle Scholar
  206. Marschner H, Dell B (1994) Nutrient uptake in mycorrhizal symbiosis. Plant Soil 159:89–102CrossRefGoogle Scholar
  207. Marschner P, Timonen S (2005) Interactions between plant species and mycorrhizal colonization on the bacterial community composition in the rhizosphere. Appl Soil Ecol 28:23–36CrossRefGoogle Scholar
  208. Marschner P, Grierson PF, Rengel Z (2005) Microbial community composition and functioning in the rhizosphere of three Banksia species in native woodland in Western Australia. Appl Soil Ecol 28:191–201CrossRefGoogle Scholar
  209. Massicotte HB, Peterson RL, Ackerley CA, Piché Y (1986) Structure and ontogeny of Alnus crispa-Alpova diplophloeus ectomycorrhizae. Can J Bot 64:177–192CrossRefGoogle Scholar
  210. Massicotte HB, Peterson RL, Ackerley CA, Ashford AE (1987) Ontogeny of Eucalyptus pilularis–Pisolithus tinctorius ectomycorrhizae. II. Transmission electron microscopy. Can J Bot 65:1940–1947CrossRefGoogle Scholar
  211. Massicotte HB, Peterson RL, Ackerley CA, Melville LH (1990) Structure and ontogeny of Betula alleghaniensis-Pisolithus tinctorius ectomycorrhizae. Can J Bot 68:579–593CrossRefGoogle Scholar
  212. Massonneau A, Langlade N, Leon S, Smutny J, Vogt E, Neumann G, Martinoia E (2001) Metabolic changes associated with cluster root development in white lupin (Lupinus albus L.): relationship between organic acid excretion, sucrose metabolism and energy status. Planta 213:534–542PubMedCrossRefGoogle Scholar
  213. McArthur DAJ, Knowles NR (1992) Resistance responses of potato to vesicular arbuscular Mycorrhizal fungi under varying abiotic phosphorus levels. Plant Physiol 100:341–351PubMedPubMedCentralCrossRefGoogle Scholar
  214. McCleery WT, Mohd-Radzman NA, Grieneisen VA (2017) Root branching plasticity: collective decision-making results from local and global signalling. Curr Opin Cell Biol 44:51–58PubMedCrossRefGoogle Scholar
  215. Meier S, Borie F, Bolan N, Cornejo P (2012) Phytoremediation of metal-polluted soils by arbuscular mycorrhizal fungi. Crit Rev Environ Sci Technol 42:741–775CrossRefGoogle Scholar
  216. Mew MC (2016) Phosphate rock costs, prices and resources interaction. Sci Total Environ 542:1008–1012PubMedCrossRefGoogle Scholar
  217. Mi G, Chen F, Wu Q, Lai N, Yuan L, Zhang F (2010) Ideotype root architecture for efficient nitrogen acquisition by maize in intensive cropping systems. Sci China Life Sci 53(12):1369–1373PubMedCrossRefGoogle Scholar
  218. Miao SJ, Han XZ, Liu XB, Qiao YF (2007) Seedling treatments and phosphorus solution concentrations affect nodulation and nodule functions in soybean (Glycine max L.) Plant Soil Environ 53:65–71CrossRefGoogle Scholar
  219. Middleton PH, Jakab J, Penmetsa RV, Starker CG, Doll J, Kaló P, Prabhu R, Marsh JF, Mitra RM, Kereszt A, Dudas B, VandenBosch K, Long SR, Cook DR, Kiss GB, Oldroyd GE (2007) An ERF transcription factor in Medicago truncatula that is essential for Nod factor signal transduction. Plant Cell 19:1221–1234PubMedPubMedCentralCrossRefGoogle Scholar
  220. Miguel MA (2011) Functional role and synergistic effect of root traits for phosphorus acquisition efficiency and their genetic basis in common bean (Phaseolus vulgaris L.). PhD thesis. Pennsylvania State University, University ParkGoogle Scholar
  221. Miransari M, Abrishamchi A, Khoshbakht K, Niknam V (2014) Plant hormones as signals in arbuscular mycorrhizal symbiosis. Crit Rev Biotechnol 34(2):123–133PubMedCrossRefGoogle Scholar
  222. Mohd-Radzman NA, Laffont C, Ivanovici A, Patel N, Reid D, Stougaard J, Frugier F, Imin N, Djordjevic MA (2016) different pathways act downstream of the CEP peptide receptor CRA2 to regulate lateral root and nodule development. Plant Physiol 171(4):2536–2548PubMedPubMedCentralGoogle Scholar
  223. Molina R, Massicotte H, Trappe JM (1992) Specificity phenomena in mycorrhizal symbiosis: community ecological consequences and practical application. In: Allen MF (ed) Mycorrhizal functioning. Chapman and Hall, New York, pp 357–423Google Scholar
  224. Möller BK, Xuan W, Beeckman T (2017) Dynamic control of lateral root positioning. Curr Opin Plant Biol 35:1–7PubMedCrossRefPubMedCentralGoogle Scholar
  225. Morel M, Jacob C, Kohler A, Johansson T, Martin F, Chalot M, Brun A (2005) Identification of genes differentially expressed in extraradical mycelium and ectomycorrhizal roots during Paxillus involutus-Betula pendula ectomycorrhizal symbiosis. Appl Environ Microbiol 71:382–391PubMedPubMedCentralCrossRefGoogle Scholar
  226. Morris EC, Griffiths M, Golebiowska A, Mairhofer S, Burr-Hersey J, Goh T, von Wangenheim D, Atkinson B, Sturrock CJ, Lynch JP, Vissenberg K, Ritz K, Wells DM, Mooney SJ, Bennett MJ (2017) Shaping 3D root system architecture. Curr Biol 27(17):R919–R930PubMedCrossRefGoogle Scholar
  227. Mukherjee A, Ané JM (2011) Germinating spore exudates from arbuscular mycorrhizal fungi: molecular and developmental responses in plants and their regulation by ethylene. Mol Plant Microbe Interact 24:260–270PubMedCrossRefGoogle Scholar
  228. Muler AL, Oliveira RS, Lambers H, Veneklaas EJ (2013) Does cluster-root activity benefit nutrient uptake and growth of co-existing species? Oecologia 174:23–31PubMedCrossRefGoogle Scholar
  229. Nagahashi G, Douds DD, Abney GD (1996) Phosphorus amendment inhibits hyphal branching of the VAM fungus Gigaspora margarita directly and indirectly through its effect on root exudation. Mycorrhiza 6:403–408CrossRefGoogle Scholar
  230. Nagy R, Karandashov V, Chague V, Kalinkevich K, Tamasloukht B, Xu G, Jakobsen I, Levy AA, Amrhein N, Bucher M (2005) The characterization of novel mycorrhiza-specific phosphate transporters from Lycopersicon esculentum and Solanum tuberosum uncovers functional redundancy in symbiotic phosphate transport in solanaceous species. Plant J 42:236–250PubMedCrossRefGoogle Scholar
  231. Nara K, Nakaya H, Hogetsu T (2003a) Ectomycorrhizal sporocarp succession and production during early primary succession on Mount Fuji. New Phytol 158:193–206CrossRefGoogle Scholar
  232. Nara K, Nakaya H, Wu BY, Zhou ZH, Hogetsu T (2003b) Underground primary succession of ectomycorrhizal fungi in a volcanic desert on Mount Fuji. New Phytol 159:743–756CrossRefGoogle Scholar
  233. Neumann G, Römheld V (1999) Root excretion of carboxylic acids and protons in phosphorus-deficient plants. Plant Soil 211:121–130CrossRefGoogle Scholar
  234. Neumann G, Massonneau A, Martinoia E, Römheld V (1999) Physiological adaptations to phosphorus deficiency during proteoid root development in White lupin. Planta 208:373–382CrossRefGoogle Scholar
  235. Niu X, Narasimhan ML, Salzman RA, Bressan RA, Hasegawa PM (1993) NaCl regulation of plasma membrane H+-ATPase gene expression in a glycophyte and a halophyte. Plant Physiol 103:713–718PubMedPubMedCentralCrossRefGoogle Scholar
  236. Nouri E, Breuillin-Sessoms F, Feller U, Reinhardt D (2014) Phosphorus and nitrogen regulate arbuscular mycorrhizal symbiosis in Petunia hybrid. PLoS One 9(6):e90841PubMedPubMedCentralCrossRefGoogle Scholar
  237. Nygren CMR, Edqvist J, Elfstrand M, Heller G, Taylor AFS (2007) Detection of extracellular protease activity in different species and genera of ectomycorrhizal fungi. Mycorrhiza 17:241–248PubMedCrossRefGoogle Scholar
  238. Ohkama-Ohtsu N, Ichida S, Yamaya H, Ohwada T, Itakura M, Hara Y, Mitsui H, Kaneko T, Tabata S, Tejima K, Saeki K, Omori H, Hayashi M, Maekawa T, Murooka Y, Tajima S, Simomura K, Nomura M, Uchiumi T, Suzuki A, Shimoda Y, Abe M, Minamisawa K, Arima Y, Yokoyama T (2015) Peribacteroid solution of soybean root nodules partly induces genomic loci for differentiation into bacteroids of free-living Bradyrhizobium diazoefficiens cells. Soil Sci Plant Nutr 61:461–470CrossRefGoogle Scholar
  239. Oláh B, Briere C, Becard G, Denarie J, Gough C (2005) Nod factors and a diffusible factor from arbuscular mycorrhizal fungi stimulate lateral root formation in Medicago truncatula via the DMI1/DMI2 signalling pathway. Plant J 44:195–207PubMedCrossRefGoogle Scholar
  240. Oldroyd GE, Engstrom EM, Long SR (2001) Ethylene inhibits the Nod factor signal transduction pathway of Medicago truncatula. Plant Cell 13:1835–1849PubMedPubMedCentralCrossRefGoogle Scholar
  241. Oldroyd GED, Downie JA (2004) Calcium, kinases and nodulation signalling in legumes. Nat Rev Mol Cell Biol 5:566–576PubMedCrossRefGoogle Scholar
  242. O’Rourke JA, Yang SS, Miller SS, Bucciarelli B, Liu J, Rydeen A, Bozsoki Z, Uhde-Stone C, Tu ZJ, Allan D, Gronwald JW, Vance CP (2013) An RNA-Seq transcriptome analysis of orthophosphate-deficient white lupin reveals novel insights into phosphorus acclimation in plants. Plant Physiol 161(2):705–724PubMedCrossRefGoogle Scholar
  243. Ötvös K, Benková E (2017) Spatiotemporal mechanisms of root branching. Curr Opin Genet Dev 45:82–89PubMedCrossRefGoogle Scholar
  244. Paungfoo-Lonhienne C, Lonhienne TGA, Rentsch D, Robinson M, Christie M, Webb R, Gamage H, Carroll B, Schenk P, Schmidt S (2008) Plants can use protein as a nitrogen source without assistance from other organisms. Proc Natl Acad Sci USA 105:4524–4529PubMedPubMedCentralCrossRefGoogle Scholar
  245. Paungfoo-Lonhienne C, Schenk P, Lonhienne TGA, Brackin R, Meier S, Rentsch D, Schmidt S (2009) Nitrogen affects cluster root formation and expression of putative peptide transporters. J Exp Bot 60:2665–2676PubMedPubMedCentralCrossRefGoogle Scholar
  246. Peay KG, Kennedy PG, Bruns TD (2011) Rethinking ectomycorrhizal succession: are root density and hyphal exploration types drivers of spatial and temporal zonation? Fungal Ecol 4:233–240CrossRefGoogle Scholar
  247. Peñaloza E, Corcuera LJ, Martinez J (2002) Spatial and temporal variation in citrate and malate exudation and tissue concentration as affected by P stress in roots of white lupin. Plant Soil 241:209–221CrossRefGoogle Scholar
  248. Peñaloza E, Muñoz G, Salvo-Garrido H, Silva H, Corcuera L (2005) Phosphate deficiency regulates phosphoenolpyruvate carboxylase expression in proteoid root clusters of white lupin. J Exp Bot 56:145–153PubMedGoogle Scholar
  249. Pennheiter AR, Duff SMG, Sarath G (1997) Soybean root nodule acid phosphatase. Plant Physiol 114:597–604CrossRefGoogle Scholar
  250. Pereira PAA, Bliss FA (1989) Selection of common bean (Phaseolus vulgaris L.) for N2 fixation at different levels of available phosphorus under field and environmentally-controlled conditions. Plant Soil 115:75–82CrossRefGoogle Scholar
  251. Piper F, Baeza G, Zúñiga-Feest A, Fajardo A (2013) Soil nitrogen, and not phosphorus promotes cluster root formation in a South American Proteaceae. Am J Bot 100(12):2328–2338PubMedCrossRefGoogle Scholar
  252. Plaxton WC (2004) Biochemical adaptations of phosphate starved plants. In: Goodman R (ed) Encyclopedia of plant and crop sciences. Marcel Dekker, New York, pp 976–980CrossRefGoogle Scholar
  253. Plaxton WC, Podestá FE (2006) The functional organization and control of plant respiration. CRC Crit Rev Plant Sci 25:159–198CrossRefGoogle Scholar
  254. Playsted CWS, Johnston ME, Ramage CM (2006) Functional significance of dauciform roots: exudation of carboxylates and acid phosphatase under phosphorus deficiency in Caustis blakei (Cyperaceae). New Phytol 170(3):491–500PubMedCrossRefGoogle Scholar
  255. Podila GK, Zheng J, Balasubramanian S (2002) Fungal gene expression in early symbiotic interactions between Laccaria bicolor and red pine. Plant Soil 244:117–128CrossRefGoogle Scholar
  256. Polidori E, Agostini D, Zeppa S, Potenza L, Palma F, Sisti D, Stocchi G (2002) Identification of differentially expressed cDNA clones in Tilia platyphyllos–Tuber borchii ectomycorrhizae using a differential screening approach. Mol Genet Genomics 266:858–864PubMedCrossRefGoogle Scholar
  257. Popovych N, Tzeng SR, Tonelli M, Ebright RH, Kalodimos CG (2009) Structural basis for cAMP-mediated allosteric control of the catabolite activator protein. Proc Natl Acad Sci USA 106(17):6927–69232PubMedPubMedCentralCrossRefGoogle Scholar
  258. Porcel R, Redondo-Gómez S, Mateos-Naranjo E, Aroca R, García R, Ruiz-Lozano JM (2015) Arbuscular mycorrhizal symbiosis ameliorates the optimum quantum yield of photosystem II and reduces non-photochemical quenching in rice plants subjected to salt stress. J Plant Physiol 185:75–83CrossRefPubMedGoogle Scholar
  259. Prell J, Poole P (2006) Metabolic changes of rhizobia in legume nodules. Trends Microbiol 14:161–168PubMedCrossRefGoogle Scholar
  260. Premaratne KP, Oertli JJ (1994) The influence of potassium on nodulation, nitrogenase activity and nitrogen accumulation of soybean (Glycine max L. Merrill) grown in nutrient solution. Fertil Res 38:95–99CrossRefGoogle Scholar
  261. Purnell H (1960) Studies of the family Proteaceae. I. Anatomy and morphology of the roots of some Victoria species. Aust J Bot 8:38–50CrossRefGoogle Scholar
  262. Qin L, Zhao J, Tian J, Chen L, Sun Z, Guo Y, Lu X, Gu M, Xu G, Liao H (2012) The high-affinity phosphate transporter GmPT5 regulates phosphate transport to nodules and nodulation in soybean. Plant Physiol 159(4):1634–1643PubMedPubMedCentralCrossRefGoogle Scholar
  263. Racette S, Louis I, Torrey JG (1990) Cluster root formation by Gymnostoma papuanum (Casuarinaceae) in relation to aeration and mineral nutrient availability in water culture. Can J Bot 68(2):2564–2570CrossRefGoogle Scholar
  264. Ramírez C, Valenzuela E, San Martín C (2005) Nuevos antecedentes sobre desarrollo temprano, morfología y anatomía de las raíces proteiformes de Gevuina avellana. Agro Sur 32:33–44CrossRefGoogle Scholar
  265. Ramstedt M, Soderhall K (1983) Protease, phenoloxidase and pectinase activities in mycorrhizal fungi. Trans Br Mycol Soc 81:157–161CrossRefGoogle Scholar
  266. Reddell P, Yun Y, Warren A (1997) Cluster roots and mycorrhizae in Casuarina cunninghamiana: their occurrence and formation in relation to phosphorus supply. Aust J Bot 45:41–51CrossRefGoogle Scholar
  267. Reddy SM, Pandey AK, Melayah D, Marmeisse R, Gay G (2003) The auxin responsive gene-C61 is up-regulated in Pinus pinaster roots following inoculation with ectomycorrhizal fungi. Plant Cell Environ 26:681–691CrossRefGoogle Scholar
  268. Redecker D, Morton JB, Bruns TD (2000) Ancestral lineages of arbuscular mycorrhizal fungi (Glomales). Mol Phylogenet Evol 14:276–284PubMedPubMedCentralCrossRefGoogle Scholar
  269. Reichheld SE, Yu Z, Davidson AR (2009) The induction of folding cooperativity by ligand binding drives the allosteric response of tetracycline repressor. Proc Natl Acad Sci USA 106(52):22263–22268PubMedPubMedCentralCrossRefGoogle Scholar
  270. Ribet J, Drevon JJ (1995) Increase in permeability to oxygen and in oxygen uptake of soybean nodules under limiting phosphorus nutrition. Physiol Plant 94:298–304CrossRefGoogle Scholar
  271. Roelofs RFR, Rengel Z, Cawthra YGR, Dixon KW, Lambers H (2001) Exudation of carboxylates in Australian Proteaceae: chemical composition. Plant Cell Environ 24:891–903CrossRefGoogle Scholar
  272. Rubio V, Linhares F, Solano R, Martin AC, Iglesias J, Leyva A, Paz-Ares J (2001) A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Genes Dev 15:2122–2133PubMedPubMedCentralCrossRefGoogle Scholar
  273. Rudrappa T, Czymmek KJ, Pare PW, Bais HP (2008) Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiol 148:1547–1556PubMedPubMedCentralCrossRefGoogle Scholar
  274. Ryan PR, Delhaize E, Jones DL (2001) Function and mechanism of organic anion exudation from plant roots. Annu Rev Plant Physiol Plant Mol Biol 52:527–560PubMedCrossRefGoogle Scholar
  275. Saito K, Yoshikawa M, Yamo K, Miwa H, Uchide H, Asamizu E, Sato S et al (2007) NUCLEOPORIN85 is required for calcium spiking, fungal and bacterial symbiosis, and seed production in Lotus japonicus. Plant Cell 19:610624CrossRefGoogle Scholar
  276. Santander C, Aroca R, Ruiz-Lozano JM, Olave J, Borie F, Cornejo P (2017) Arbuscular mycorrhiza effects on plant performance under osmotic stress. Mycorrhiza 27:639–657PubMedCrossRefGoogle Scholar
  277. Sato T, Ezawa T, Cheng W, Tawaraya K (2015) Release of acid phosphatase from extraradical hyphae of arbuscular mycorrhizal fungus Rhizophagus clarus. Soil Sci Plant Nutr 61(2):269–274CrossRefGoogle Scholar
  278. Scarano FR (2002) Structure, function and floristic relationships of plant communities in stressful habitats marginal to the Brazilian Atlantic Rainforest. Ann Bot 90:517–524PubMedPubMedCentralCrossRefGoogle Scholar
  279. Scherer HW, Pacyna S, Spoth KR, Schulz M (2008) Low levels of ferredoxin, ATP, and leghemoglobin contribute to limited N2 fixation of peas (Pisum sativum L.) and alfalfa (Medicago sativa L.) under S deficiency conditions. Biol Fertil Soils 44:909–916CrossRefGoogle Scholar
  280. Schmidt S, Steward GR (1997) Waterlogging and fire impacts on nitrogen availability and utilization in subtropical wet heathland (Wallum). Plant Cell Environ 20:1231–1241CrossRefGoogle Scholar
  281. Schmidt S, Masonm M, Sangtiean T, Stewart GR (2003) Do cluster roots of Hakea actities (Proteaceae) acquire complex organic nitrogen? Plant Soil 248:157–165CrossRefGoogle Scholar
  282. Schnepf A, Roose T, Schweiger P (2008) Impact of growth and uptake patterns of arbuscular mycorrhizal fungi on plant phosphorus uptake—a modelling study. Plant Soil 312:85–99CrossRefGoogle Scholar
  283. Schubert S, Yan F (1997) Nitrate and ammonium nutrition of plants: effects on acid/base balance and adaptation of root cell plasmalemma H+ ATPase. Z Planzen Bodenk 160:275–281CrossRefGoogle Scholar
  284. Schulze J, Drevon J-J (2005) P-deficiency increases the O2 uptake per N2 reduced in alfalfa. J Exp Bot 56:1779–1784PubMedCrossRefGoogle Scholar
  285. Schulze M, Kondorosi A (1998) Regulation of symbiotic root nodule development. Ann Rev Genet 32:33–57CrossRefGoogle Scholar
  286. Schulze J, Temple G, Temple SJ, Beschow H, Vance CP (2006) Nitrogen fixation by white lupin under phosphorus deficiency. Ann Bot 98:731–740PubMedPubMedCentralCrossRefGoogle Scholar
  287. Schüβler A (2000) Glomus claroideum forms an arbuscular mycorrhiza-like symbiosis with the hornwort Anthoceros punctatus. Mycorrhiza 10:15–21CrossRefGoogle Scholar
  288. Schweiger PF, Robson AD, Barrow NJ (1995) Root hair length determines beneficial effect of a Glomus species on shoot growth of some pasture species. New Phytol 131:247–254CrossRefGoogle Scholar
  289. Secco D, Shou H, Whelan J, Berkowitz O (2014) RNA-seq analysis identifies an intricate regulatory network controlling cluster root development in white lupin. BMC Genomics 15:230PubMedPubMedCentralCrossRefGoogle Scholar
  290. Secco D, Whelan J, Rouached H, Lister R (2017) Nutrient stress-induced chromatin changes in plants. Curr Opin Plant Biol 39:1–7PubMedCrossRefGoogle Scholar
  291. Seguel A, Cumming J, Klugh-Stewart K, Cornejo P, Borie F (2013) The role of arbuscular mycorrhizas in decreasing Al phytotoxicity in acidic soils: a review. Mycorrhiza 23:167–183PubMedCrossRefGoogle Scholar
  292. Seguel A, Barea JM, Cornejo P, Borie F (2015) Role of arbuscular mycorrhizal symbiosis in phosphorus-uptake efficiency and aluminium tolerance in barley growing in acid soils. Crop Pasture Sci 66:696–705CrossRefGoogle Scholar
  293. Seguel A, Cornejo P, Ramos A, Von Baer E, Cumming J, Borie F (2017) Phosphorus acquisition by three wheat cultivars contrasting in aluminum tolerance growing in an aluminum-rich Andisol. Crop Pasture Sci 68:305–316CrossRefGoogle Scholar
  294. Selivanov IA, Utemova LD (1969) Root anatomy of sedges in relation to their mycotrophy. Trans Perm State Pedagogical Inst 68:45–55Google Scholar
  295. Sepúlveda F (2016) Estudio de la colimitación por déficit de Nitrógeno y Fósforo en el funcionamiento de las Proteaceas nativas chilenas: Embothrium coccineum, Gevuina avellana y Lomatia dentata. In: Seminario de Titulación Licenciatura en Ciencias. Facultad de Ciencias, Universidad Austral de Chile, Valdivia, ChileGoogle Scholar
  296. Shahzad Z, Amtmann A (2017) Food for thought: how nutrients regulate root system architecture. Curr Opin Plant Biol 39:80–87PubMedPubMedCentralCrossRefGoogle Scholar
  297. Shane MW, Lambers H (2005) Cluster roots: a curiosity in context. Plant Soil 274:101–125CrossRefGoogle Scholar
  298. Shane MW, Lambers H (2006) Systemic suppression of cluster-root formation and net P-uptake rates in Grevillea crithmifolia at elevated P supply: a proteacean with resistance for developing symptoms of ‘P toxicity’. J Exp Bot 57:413–423PubMedCrossRefGoogle Scholar
  299. Shane MW, Cramer MD, Funayama-Noguchi S, Cawthray GR, Millar AH, Day DA, Lambers H (2004) Developmental physiology of cluster-root carboxylate synthesis and exudation in Harsh Hakea. Expression of phosphoenolpyruvate carboxylase and the alternative oxidase. Plant Physiol 135:549–560PubMedPubMedCentralCrossRefGoogle Scholar
  300. Shane MW, Cawthray GR, Cramer MD, Kuo J, Lambers H (2006) Specialized ‘dauciform’ roots of Cyperaceae are structurally distinct, but functionally analogous with ‘cluster’ roots. Plant Cell Environ 29:1989–1999PubMedCrossRefGoogle Scholar
  301. Shane MW, Fedosejevs ET, Plaxton WC (2013) Reciprocal control of anaplerotic phosphoenolpyruvate carboxylase by in vivo monoubiquitination and phosphorylation in developing proteoid roots of phosphate deficient Hakea prostrata RBr. Plant Physiol 161:1634–1644PubMedPubMedCentralCrossRefGoogle Scholar
  302. Sieberer BJ, Chabaud M, Fournier J, Timmers AC, Barker DG (2012) A switch in Ca2+ spiking signature is concomitant with endosymbiotic microbe entry into cortical root cells of Medicago truncatula. Plant J 69:822–830PubMedCrossRefGoogle Scholar
  303. Simon L, Bousquet J, Levesque RC, Lalonde M (1993) Origin and diversification of endomycorrhizal fungi and coincidence with vascular plants. Nature 363:67–69CrossRefGoogle Scholar
  304. Singh SK, Chien CT, Chang IF (2016) The Arabidopsis glutamate receptor-like gene GLR3.6 controls root development by repressing the Kip-related protein gene KRP4. J Exp Bot 67(6):1853–1869PubMedCrossRefGoogle Scholar
  305. Sirohi G, Pandey BK, Deveshwar P, Giri J (2016) Emerging trends in epigenetic regulation of nutrient deficiency response in plants. Mol Biotechnol 58(3):159–171PubMedCrossRefGoogle Scholar
  306. Skene KR (1998) Cluster root: some ecological considerations. J Ecol 86:1060–1064CrossRefGoogle Scholar
  307. Skene KR (2000) Pattern formation in cluster roots: some developmental and evolutionary considerations. Ann Bot 85:901–908CrossRefGoogle Scholar
  308. Skene KR, Raven JA, Sprent JI (1998) Cluster roots development in Grevillea robusta (Proteaceae). I. Xylem, pericycle, cortex and epidermis development in a determinate root. New Phytol 138:725–732CrossRefGoogle Scholar
  309. Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, LondonGoogle Scholar
  310. Smith SE, Smith FA (2012) Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Mycologia 104:1–13PubMedCrossRefGoogle Scholar
  311. Smith SE, Smith FA, Jakobsen I (2004) Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytol 162:511–524CrossRefGoogle Scholar
  312. Sousa MF, Façanha AR, Tavares RM, Lino-Neto T, Gerós H (2007) Phosphate transport by proteoid roots of Hakea sericea. Plant Sci 173:550–558CrossRefGoogle Scholar
  313. Sprent JI, James EK (2008) Legume-rhizobia symbiosis: an anorexic model. New Phytol 179:3–5PubMedCrossRefGoogle Scholar
  314. Stafford WH, Baker GC, Brown SA, Burton SG, Cowan DA (2005) Bacterial diversity in the rhizosphere of Proteaceae species. Environ Microbiol 7(11):1755–1768PubMedCrossRefGoogle Scholar
  315. Streeter JG (1992) Transport and Metabolism of carbon and nitrogen in legume nodules. Adv Bot Res 18:130–187Google Scholar
  316. Suárez-Moreno ZR, Caballero-Mellado J, Coutinho BG, Mendonça-Previato L, James EK, Venturi V (2012) Common features of environmental and potentially beneficial plant-associated Burkholderia. Microb Ecol 63(2):249–266PubMedCrossRefGoogle Scholar
  317. Subramanian KS, Charest C (1998) Arbuscular mycorrhizae and nitrogen assimilation in maize after drought and recovery. Physiol Plantarum 102:285–296CrossRefGoogle Scholar
  318. Sulieman S, Tran L-SP (2015) Phosphorus homeostasis in legume nodules as an adaptive strategy to phosphorus deficiency. Plant Sci 239:36–43PubMedCrossRefGoogle Scholar
  319. Sulieman S, Ha CV, Schulze J, Tran LSP (2013) Growth and nodulation of symbiotic Medicago truncatula at different levels of phosphorus availability. J Exp Bot 64:2701–2712PubMedPubMedCentralCrossRefGoogle Scholar
  320. Sun J, Miller JB, Granqvist E et al (2015) Activation of symbiosis signaling by arbuscular mycorrhizal fungi in legumes and rice. Plant Cell 27(3):823–838PubMedPubMedCentralCrossRefGoogle Scholar
  321. Sun CH, Yu JQ, Hu DG (2017) Nitrate: a crucial signal during lateral roots development. Front Plant Sci 8:485PubMedPubMedCentralGoogle Scholar
  322. Tajima S, Kouchi H (1997) Metabolism and compartmentation of carbon and nitrogen in legume nodules. In: Stacey G, Keen NT (eds) Plant-microbe interactions, vol 2. Chapman & Hall, New York, pp 27–60Google Scholar
  323. Tanaka Y, Yano K (2005) Nitrogen delivery to maize via mycorrhizal hyphae depends on the form of N supplied. Plant Cell Environ 28:1247–1254CrossRefGoogle Scholar
  324. Tawaraya K, Hashimoto K, Wagatsuma T (1998) Effect of root exudate fractions from P-deficient and P-sufficient onion plants on root colonization by the arbuscular mycorrhizal fungus Gigaspora margarita. Mycorrhiza 8:67–70CrossRefGoogle Scholar
  325. Tejima K, Arima Y, Yokoyama T, Sekimoto H (2003) Composition of amino acids, organic acids, and sugars in the peribacteroid space of soybean root nodules. Soil Sci Plant Nutr 49(2):239–247.  https://doi.org/10.1080/00380768.2003.10410003 CrossRefGoogle Scholar
  326. Thuynsma R, Valentine AJ, Kleinert A (2014) Phosphorus deficiency affects the allocation of below-ground resources to combined cluster roots and nodules in Lupinus albus. J Plant Physiol 17:285–291CrossRefGoogle Scholar
  327. Tisserant E, Kohler A, Dozolme-Seddas P et al (2012) The transcriptome of the arbuscular mycorrhizal fungus Glomus intraradices (DAOM 197198) reveals functional tradeoffs in an obligate symbiont. New Phytol 193:755–769PubMedCrossRefGoogle Scholar
  328. Udvardi MK, Day DA (1997) Metabolite transport across symbiotic membranes of legume nodules. Annu Rev Plant Physiol Plant Mol Biol 48:493–523PubMedCrossRefGoogle Scholar
  329. Udvardi M, Poole PS (2013) Transport and metabolism in legume-rhizobia symbioses. Annu Rev Plant Biol 64:781–805PubMedCrossRefGoogle Scholar
  330. Uhde-Stone C, Gilbert G, Johnson JM, Litjens R, Zinn KE, Temple SJ, Allan DL (2003) Acclimation of white lupin to phosphorus deficiency involves enhanced expression of genes related to organic acid metabolism. Plant Soil 248(1–2):99–116CrossRefGoogle Scholar
  331. Vadez V, Beck DP, Lasso JH, Drevon J-J (1996) Utilization of the acetylene reduction assay to screen for tolerance of symbiotic N2 fixation to limiting P nutrition in common bean. Physiol Plant 99:227–232CrossRefGoogle Scholar
  332. Valentine AJ, Benedito VA, Kang Y (2011) Legume nitrogen fixation and soil abiotic stress: from physiology to genomics and beyond. Annu Plant Rev 42:207–248Google Scholar
  333. Vance CP (2001) Symbiotic nitrogen fixation and phosphorus acquisition. Plant nutrition in a world of declining renewable resources. Plant Physiol 127:390–397PubMedPubMedCentralCrossRefGoogle Scholar
  334. Vance CP, Uhde-Stone C, Allan DL (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a non-renewable resource. New Phytol 157:423–447CrossRefGoogle Scholar
  335. Vardien W, Mesjasz-Pryzbylowicz J, Pryzbylowicz WJ, Wang Y, Steenkamp ET, Valentine AJ (2014) Nodules from Fynbos legume Virgilia divaricata have high functional plasticity under variable P supply levels. J Plant Physiol 171:1732–1739PubMedCrossRefGoogle Scholar
  336. Varin S, Cliquet JB, Personeni E, Avice JC, Lemauviel-Lavenant S (2010) How does sulphur availability modify N acquisition of white clover (Trifolium repens L). J. Exp Bot 61:225–234CrossRefGoogle Scholar
  337. Viereck N, Hansen PE, Jakobsen I (2004) Phosphate pool dynamics in the arbuscular mycorrhizal fungus Glomus intraradices studied by in vivo 31P NMR spectroscopy. New Phytol 162:783–794CrossRefGoogle Scholar
  338. Voiblet C, Duplessis S, Encelot N, Martin F (2001) Identification of symbiosis-regulated genesin Eucalyptus globulus-Pisolithus tinctorius ectomycorrhiza by differential hybridization of arrayed cDNAs. Plant J 25:181–191PubMedCrossRefGoogle Scholar
  339. Volpe V, Dell’Aglio E, Bonfante P (2013a) The Lotus japonicus MAMI gene links root development, arbuscular mycorrhizal symbiosis and phosphate availability. Plant Signal Behav 8(3):e23414PubMedPubMedCentralCrossRefGoogle Scholar
  340. Volpe V, Dell’Aglio E, Giovannetti M, Ruberti C, Costa A, Genre A, Guether M, Bonfante P (2013b) An AM-induced, MYB-family gene of Lotus japonicus (LjMAMI) affects root growth in an AM-independent manner. Plant J 73(3):442–455PubMedCrossRefGoogle Scholar
  341. Walker L, Boddington C, Jenkins D, Wang Y, Grønlund JT, Hulsmans J, Kumar S, Patel D, Moore JD, Carter A, Samavedam S, Bomono G, Hersh DS, Coruzzi GM, Burroughs NJ, Gifford ML (2017) Root architecture shaping by the environment is orchestrated by dynamic gene expression in space and time. Plant Cell 29:2393–2412PubMedCrossRefGoogle Scholar
  342. Wang B, Qiu YL (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363PubMedCrossRefGoogle Scholar
  343. Wang Z, Straub D, Yang H, Kania A, Shen J, Ludewig U, Neumann G (2014) The regulatory network of cluster-root function and development in phosphate-deficient white lupin (Lupinus albus) identified by transcriptome sequencing. Physiol Plant 151(3):323–338PubMedCrossRefGoogle Scholar
  344. Watt M, Evans JR (1999) Proteoid roots. Physiology and development. Plant Physiol 121(2):317–324PubMedPubMedCentralCrossRefGoogle Scholar
  345. Watteau F, Berthelin J (1994) Microbial dissolution of iron and aluminium from soil minerals: efficiency and specificity of hydroxamate siderophores compared to aliphatic acids. Eur J Soil Biol 30:1–9Google Scholar
  346. Weaver LH, Kwon K, Beckett D, Matthews BW (2001) Corepressor-induced organization and assembly of the biotin repressor: a model for allosteric activation of a transcriptional regulator. Proc Natl Acad Sci U S A 98(11):6045–6050PubMedPubMedCentralCrossRefGoogle Scholar
  347. Weidmann S, Sanchez L, Descombin J, Chatagnier O, Gianinazzi F, Gianinazzi-Pearson V (2004) Fungal elicitation of signal transduction-related plant genes precedes mycorrhiza establishment and requires the dmi3 gene in Medicago truncatula. Mol Plant Microbe Interact 17:1385–1393PubMedCrossRefGoogle Scholar
  348. Weisskopf L, Le Bayon RC, Kohler F, Page V, Jossi M, Gobat JM, Aragno M (2008) Spatio-temporal dynamics of bacterial communities associated with two plant species differing in organic acid secretion: a one-year microcosm study on lupin and wheat. Soil Biol Biochem 40(7):1772–1780CrossRefGoogle Scholar
  349. Weisskopf L, Heller S, Eberl L (2011) Burkholderia species are major inhabitants of white lupin cluster roots. Appl Environ Microbiol 77(21):7715–7720PubMedPubMedCentralCrossRefGoogle Scholar
  350. White J, Prell J, James EK, Poole P (2007) Nutrient sharing between symbionts. Plant Physiol 144:604–614PubMedPubMedCentralCrossRefGoogle Scholar
  351. Wright DP, Johansson T, Le Quere A, Söderström B, Tunlid A (2005) Spatial patterns of gene expression in the extramatrical mycelium and mycorrhizal root tips formed by the ectomycorrhizal fungus Paxillus involutus in association with birch (Betula pendula) seedlings in soil microcosms. New Phytol 167:579–596PubMedCrossRefGoogle Scholar
  352. Yan F, Zhu Y, Möller C, Zörb C, Schubert S (2002) Adaptation of H+-pumping and plasma membrane H+ ATPase activity in proteoid roots of white lupin under phosphate deficiency. Plant Physiol 129:50–63PubMedPubMedCentralCrossRefGoogle Scholar
  353. Yan Y, Wang H, Hamera S, Chen X, Fang R (2014) miR444a has multiple functions in the rice nitrate-signaling pathway. Plant J 78(1):44–55PubMedCrossRefGoogle Scholar
  354. Ye S, Yanga Y, Xin G, Wang Y, Ruan L, Ye G (2015) Studies of the Italian ryegrass–rice rotation system in southern China: arbuscular mycorrhizal symbiosis affects soil microorganisms and enzyme activities in the Lolium multiflorum L. rhizosphere. Appl Soil Ecol 90:26–34CrossRefGoogle Scholar
  355. Yin N, Zhang Z, Wang L, Qian K (2016) Variations in organic carbon, aggregation, and enzyme activities of gangue-fly ash-reconstructed soils with sludge and arbuscular mycorrhizal fungi during 6-year reclamation. Envi Sci Pollut Res 23(17):17840–17849CrossRefGoogle Scholar
  356. Yoneyama K, Xie X, Kim HI, Kisugi T, Nomura T, Sekimoto H, Yokota T, Yoneyama K (2012) How do nitrogen and phosphorus deficiencies affect strigolactone production and exudation? Planta 235(6):1197–1207PubMedCrossRefGoogle Scholar
  357. York L, Lobet G (2017) Phenomics of root system architecture: measuring and analyzing root phenes. Teaching tools in plant biology: lecture notes. Plant Cell (Online).  https://doi.org/10.1105/tpc.117.tt0917
  358. Yu P, Gutjahr C, Li C, Hochholdinger F (2016) Genetic control of lateral root formation in cereals. Trends Plant Sci 21(11):951–961PubMedCrossRefGoogle Scholar
  359. Zaid H, Arahou M, Diem H, El Morabet R (2003) Is Fe deficiency rather than P deficiency the cause of cluster root formation in Casuarina species? Plant Soil 248:229–235CrossRefGoogle Scholar
  360. Zhang F, Niu J, Zhang W, Chen X, Li C, Yuan L, Xie J (2010) Potassium nutrition of crops under varied regimes of nitrogen supply. Plant Soil 335:21–34CrossRefGoogle Scholar
  361. Zhao D, Arrowsmith CH, Jia X, Jardetzky O (1993) Refined solution structures of the Escherichia coli trp holo- and aporepressor. J Mol Biol 229(3):735–746PubMedCrossRefGoogle Scholar
  362. Zheng Y, Drechsler N, Rausch C, Kunze R (2016) The Arabidopsis nitrate transporter NPF7.3/NRT1.5 is involved in lateral root development under potassium deprivation. Plant Signal Behav 11(5):e1176819PubMedPubMedCentralCrossRefGoogle Scholar
  363. Zhu JM, Brown KM, Lynch JP (2010) Root cortical aerenchyma improves the drought tolerance of maize (Zea mays L.) Plant Cell Environ 33:740–749PubMedGoogle Scholar
  364. Zúñiga-Feest A, Delgado M, Alberdi M (2010) The effect of phosphorus on growth and cluster-root formation in the Chilean Proteaceae: Embothrium coccineum (R. et J. Forst.) Plant Soil 334:113–121CrossRefGoogle Scholar
  365. Zúñiga-Feest A, Delgado M, Bustos A (2014) Cluster roots. In: Varma A, Morte A (eds) Root engineering, Soil biology series. Springer, Heidelberg, pp 353–367. http://www.springer.com/series/5138 CrossRefGoogle Scholar
  366. Zúñiga-Feest A, Delgado M, Bustos-Salazar A, Ochoa V (2015) The southern South American Proteaceae, Embothrium coccineum exhibits intraspecific variation in growth and cluster-root formation depending on climatic and edaphic origins. Plant Soil 396:201–213.  https://doi.org/10.1007/s11104-015-2574-6 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • A. Kleinert
    • 1
  • V. A. Benedito
    • 2
  • R. J. L. Morcillo
    • 3
  • J. Dames
    • 4
  • P. Cornejo-Rivas
    • 5
    • 6
  • A. Zuniga-Feest
    • 7
    • 8
  • Mabel Delgado
    • 7
    • 8
  • Gastón Muñoz
    • 7
    • 9
  1. 1.Botany and Zoology DepartmentUniversity of StellenboschMatielandSouth Africa
  2. 2.Division of Plant & Soil SciencesWest Virginia UniversityMorgantownUSA
  3. 3.Shanghai Center for Plant Stress BiologyShanghai Institutes of Biological Sciences, Chinese Academy of SciencesShanghaiChina
  4. 4.Department of Biochemistry and MicrobiologyRhodes UniversityGrahamstownSouth Africa
  5. 5.Departamento de Ciencias Químicas y Recursos NaturalesUniversidad de La FronteraTemucoChile
  6. 6.Centro de Investigación en Micorrizas y Sustentabilidad Agroambiental (CIMYSA)Universidad de La FronteraTemucoChile
  7. 7.Laboratorio de Biología vegetal, Instituto de Ciencias Ambientales y Evolutivas, Facultad de CienciasUniversidad Austral de ChileValdiviaChile
  8. 8.Centro de investigaciones en Suelos volcánicos (CISVo)Universidad Austral de ChileValdiviaChile
  9. 9.Facultad de CienciaUniversidad San Sebastián, Sede ValdiviaValdiviaChile

Personalised recommendations