Root Biology pp 465-486 | Cite as

Arbuscular Mycorrhizal Fungi Symbiosis and Conservation of Endangered Tropical Legume Trees

  • Husna Faad
  • Faisal Danu Tuheteru
  • Asrianti Arif
Part of the Soil Biology book series (SOILBIOL, volume 52)


Arbuscular mycorrhizal fungi (AMF) are obligate fungi of phylum Glomeromycota which make symbiotic associations with various types of terrestrial plants in different parts of the world. In Indonesia, a total of 72 types of AMF are reported to be symbiotic with many plant species under varying circumstances. Glomeraceae is the family with the largest number of species (36 species). Three types of legumes endangered in Indonesia, namely, Pericopsis mooniana (Thw.), Pterocarpus indicus (Willd), and Kalappia celebica (Kosterm), also have symbiotic association with AMF. Fifteen types of AMF were found in the rhizosphere of P. mooniana (Thw.) and four of them, including the first type reported in Indonesia, namely, Glomus canadense, G. halonatum, Racocetra gregaria, and Ambispora appendicula. Roots of three endangered legume species were colonized by AMF, and internal hyphae showed common AMF structures. AMF inoculation promotes the growth and improvement of tropical forest plantation quality on a greenhouse and nursery scale. AMF is also effective in the improvement and cultivation of endangered species (P. mooniana and P. indicus) and can significantly accelerate the succession and the success of living species in conservation programs and forest restoration types.


Glomeraceae Indonesia Endangered species Conservation Legumes Reforestation 



This research was supported by a competitive grant (No. 228c.1/UN29.20/PP/2016) and a fundamental grant (No. 229.a.1/UN.29.20/PPM/2016) of the Ministry of Research, Technology and Higher Education. The author would like to thank the leadership of the PT Vale Indonesia (PT) Pomalaa Region, Kolaka, Southeast Sulawesi.


  1. Akhtar MS, Siddiqui ZA (2007) Effects of Glomus fasciculatum and Rhizobium sp. on the growth and root-rot disease complex of chickpea. Arch Phytopathol Plant Protect 40:37–43CrossRefGoogle Scholar
  2. Aradea NN (2004) Arbuscular mycorrhizal fungi (AMF) on Iwul (Orania sylvicola). Floribunda 2(6):164–170Google Scholar
  3. Arif S, Yusnaini S, Niswati A, Setiawan A, Tuchida K, Katou T, Touji Y, Nonaka M (1999) Population of arbuscular mycorrhizal fungi (AMF) by different land use in Sumatra, Indonesia comparison of AMF spore numbers in primary forest, secondary forest, fields growing coffee and native grass. Microbes Environ 14(1):9–17CrossRefGoogle Scholar
  4. Arif A, Tuheteru FD, Husna (2015) The conservation of endemic and endangered species Kalappia celebica Kosterm through cuttings propagation and AMF potential assessment. In: Proceedings ICSD, Universitas Mahasaraswati press. ISBN: 978-602-18622-7-8, Bali, pp 53–65Google Scholar
  5. Arif A, Tuheteru FD, Husna, Kandari AM, Mekuo IS, Masnun (2016) Status and culture of arbuscular mycorrhizal fungi isolated from rhizosphere of endemic and endangered species of Kalapi (Kalappia celebica Kosterm). Eur J Sustain Dev 5(4):395–402Google Scholar
  6. Arofatullah NA (2015) Isolation, molecular identification, and in vitro propagation of arbuscular mycorrhiza from tea plant rhizosphere. Thesis, Gadjah Mada UniversityGoogle Scholar
  7. Aryaji L (2017) Kolonisasi dan komposisi genetik jamur mikoriza arbuskula pada 8 varietas ketela pohon (Manihot esculenta crantz) di tanah vulkanik. Skripsi. Universitas Gadjah MadaGoogle Scholar
  8. Astuti WD (2000) Biodiversity of arbuscular mycorrhizal fungi in elephant grass (Pennisetum purpureum) rhizosphere in Bogor dan Lembang. Skripsi, Institut Pertanian BogorGoogle Scholar
  9. Boddington CL, Dodd JC (2000) The effect of agricultural practices on the development of indigenous arbuscular mycorrhizal fungi. I. Field studies in an Indonesian ultisol. Plant Soil 218:137–144CrossRefGoogle Scholar
  10. Bothe H, Turnau K, Regvar M (2010) The potential role of arbuscular mycorrhizal fungi in protecting endangered plants and habitats [review]. Mycorrhiza 20:445–457CrossRefGoogle Scholar
  11. Chairani, Gunawan AW, Kramadibrata K (2002) Mikoriza durian di Bogor dan sekitarnya. J Mikrobiol Indones 7:44–46Google Scholar
  12. dan Suciatmih, Kramadibrata K (2002) Arbuscular mycorrhizal fungi at different ecosystems of Gunung Halimun National Park. Bertia Biol 6(1):145–149Google Scholar
  13. Delvian (2003) Diversity of arbuscular mycorrhizal fungi in coastal forest and its potential use. Dissertation, Bogor Agricultural UniversityGoogle Scholar
  14. Destifani YF (2013) Arbuscular mycorrhizal fungi on Star Apple (Chrysophyllum cainito) at IPB Darmaga Campus. Undergraduate Thesis, Bogor Agricultural UniversityGoogle Scholar
  15. Dewi NKS, Wirawan GP, Sritamin M (2014) Identification of arbuscular mycorrhiza through microscopis methode in rhizosfer of several Grass and Cacao (Theobroma cacao L.) E-J Agroteknol 3(4):259–268Google Scholar
  16. Djuuna IAF, Puteh HP, Bachri S (2010) Spatial distribution of arbuscular mycorrhiza (am) fungi in the tailing modADA deposition areas. In: 19th World Congress of soil science, soil solutions for a changing world, 1–6 August 2010, Brisbane. Published on DVGoogle Scholar
  17. Ervayenri (2005) The beneficial of arbuscular mycorrhizal fungi (AMF) and indigenous plant for the revegetation of the petroleum contaminated land. Dissertation, Bogor Agricultural UniversityGoogle Scholar
  18. Fahriny RA (2013) Arbuscular mycorrhizal diversity of Areca in Bogor Botanical Garden. Undergraduate Thesis, Bogor Agricultural UniversityGoogle Scholar
  19. Faiza R, Rahayu YS, Yuliani (2013) Identifikasi spora jamur mikoriza vesikular arbuskular (MVA) pada tanah tercemar minyak bumi di Bojonegoro. Lentera Bio 2(1):7–11Google Scholar
  20. Food and Agriculture Organization (2016) State of the world’s forests 2016: forest and agriculture: land-use challenges and opportunities. FAO, RomaGoogle Scholar
  21. Fuchs B, Haselwandter K (2004) Red list plants: colonization by arbuscular mycorrhizal fungi and dark septate endophytes. Mycorrhiza 14:277–281CrossRefGoogle Scholar
  22. Fuchs B, Haselwandter K (2008) Arbuscular mycorrhiza of endangered plant species: potential impacts on restoration strategies. In: Varma A (ed) Mycorrhiza: state of the art, genetics and molecular biology, eco-function, biotechnology, eco-physiology, structure and systematics, 3rd edn. Springer, New York, pp 565–579CrossRefGoogle Scholar
  23. Garg N, Singla P (2016) Stimulation of nitrogen fixation and trehalose biosynthesis by naringenin (Nar) and arbuscular mycorrhiza (AM) in chickpea under salinity stress. Plant Growth Regul 80:5–22CrossRefGoogle Scholar
  24. Geneva M, Zehirov G, Djonova E et al (2006) The effect of inoculation of pea plants with mycorrhizal fungi and Rhizobium on nitrogen and phosphorus assimilation. Plant Soil Environ 52(10):435–440CrossRefGoogle Scholar
  25. Ghazoul J, Sheil D (2010) Tropical rain forest ecology, diversity and conservation. Oxford University Press, New York, p 516Google Scholar
  26. Ginting F (2013) Arbuscular mycorrhizal fungi on Kechapi (Sandoricum koetjape) at LIPI Cibinong. Undergraduate Thesis, Bogor Agricultural UniversityGoogle Scholar
  27. Giri B (2017) Mycorrhizal dependency and growth response of Gliricidia sepium (Jacq.)Kunth ex Walp. under saline condition. Plant Sci Today 4(4):154–160CrossRefGoogle Scholar
  28. Giri B, Mukerji KG (2004) Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake. Mycorrhiza 14:307–312CrossRefGoogle Scholar
  29. Giri B, Kapoor R, Mukerji KG (2005) Effect of the arbuscular mycorrhizae Glomus fasciculatum and G. macrocarpum on the growth and nutrient content of Cassia siamea in a semi-arid Indian wasteland soil. New Forests 29:63–73CrossRefGoogle Scholar
  30. Graham LL, Turjaman M, Page SE (2013) Shorea balangeran and Dyera polyphylla (syn. Dyera lowii) as tropical peat swamp forest restoration transplant species: effects of mycorrhizae and level of disturbance. Wetl Ecol Manage 21(5):307–321CrossRefGoogle Scholar
  31. Haerida I, Kramadibrata K (2002) Identification of arbuscular mycorrhizal fungi on corn rhizosphere in Java. Floribunda 2(2):33–37Google Scholar
  32. Heyne K (1988) Tumbuhan Berguna Indonesia, Jilid II. Badan Litbang Kehutanan, JakartaGoogle Scholar
  33. Husna (2010) Pertumbuhan bibit kayu kuku (Pericopsis mooniana THW) melalui aplikasi fungi mikoriza arbuskula (FMA) dan ampas sagu pada media tanah bekas tambang nikel. Thesis, Univeristas Halu OleoGoogle Scholar
  34. Husna (2015) Potensi Fungi Mikoriza (FMA) Lokal dalam konservasi ex-situ jenis terancam punah Kayu Kuku [Pericopsis mooniana (Thw.) Thw]. Dissertation, Bogor Agricultural UniversityGoogle Scholar
  35. Husna, Mahfudz, Tuheteru FD (2006) Diversitas mikoriza pada pohon plus jati di Sulawesi Tenggara. J Penelitian Hutan Tanaman 3(1):275–284Google Scholar
  36. Husna, Sri Wilarso Budi R, Mansur I, Kramadibrata K (2014) Fungi mikoriza arbuskula pada rizosfer Pericopsis mooniana (Thw.) Thw. di Sulawesi Tenggara. Berita Biol 13(3):263–273Google Scholar
  37. Husna, Budi SW, Mansur I, Kusmana C (2015a) Diversity of arbuscular mycorrhizal fungi in the growth habitat of Kayu Kuku (Pericopsis mooniana Thw.) in South east Sulawesi. Pak J Biol Sci 18(1):1–10CrossRefGoogle Scholar
  38. Husna, Budi SW, Mansur I, Kusmana C (2015b) Respon pertumbuhan bibit kayu kuku (Pericopsis mooniana (Thw.) Thw.) terhadap inokulasi fungi mikoriza arbuskula lokal. Pemuliaan Tanaman Hutan 9(3):131–148CrossRefGoogle Scholar
  39. Husna, Tuheteru FD, Khalifah N (2016a) Symbiosis arbuscular mycorrhizal fungi with pioneer plants on nickel post mining land. Presented paper on national seminar of Silviculture IV. Faculty of Forestry, Mulawarman University, Balikpapan (Indonesia) 19–20 Juli 2016Google Scholar
  40. Husna, Budi SW, Mansur I, Kusmana C (2016b) Growth and nutrient status of Kayu Kuku (Pericopsis mooniana Thw.) with mycorrhiza in soil media of nickel post mining. Pak J Biol Sci 19:158–170CrossRefGoogle Scholar
  41. Husna, Tuheteru FD, Wigati E (2017a) Growth response and dependency of endangered nedum tree species (Pericopsis mooniana) affected by indigenous arbuscular mycorrhizal fungi inoculation. Nusantara Biosci 9(1):57–61CrossRefGoogle Scholar
  42. Husna, Tuheteru FD, Arif A (2017b) Arbuscular mycorrhizal fungi and plant growth on serpentine soils. In: Wu QS (ed) Arbuscular mycorrhizas and stress tolerance of plants. Springer, Singapore, pp 293–303CrossRefGoogle Scholar
  43. [IUCN] International Union for Conservation of Nature and Natural Resources (1994) IUCN Red List of Threatened Species.
  44. Irianto RSB, Santoso E (2005) Effect of arbuscular mycorrhiza fungi inoculation on teak (Tectona grandis Linn. F) at Cikampek, West Java. J Forest Res 2(2):1–5Google Scholar
  45. Ishaq L, Tae ASJA, Airthut MA, Bako PO (2017) Abundance of arbuscular mycorrhiza associated with corn planted with traditional and more modern farming system in Kupang, East Nusa Tenggara, Indonesia [Short Communication]. Biodiversitas 18(3):887–892CrossRefGoogle Scholar
  46. Iskandar F (2010) Peningkatan kualitas bibit kayu kuku (Pericopsis mooniana Thwaites) yang diberi fungi mikoriza arbuskula dan tepung tulang. Skripsi, Universitas Halu OleoGoogle Scholar
  47. Jasper DA (1994) Management of mycorrhizas in revegetation. In: Robson AD, Abbott LK, Malajczuk N (eds) Management of mycorrhizas in agriculture, horticulture and forestry. Kluwer Academic, Dordrecht, pp 211–219Google Scholar
  48. Keßler PJA, Bos MM, Sierra Daza SEC, Kop A, Willemse LPM, Pitopang R, Gradstein SR (2002) Checklist of woody plants of Sulawesi, Indonesia. BLUMEA Supplement 14. National Herbarium Nederland, Universiteit Leiden branchGoogle Scholar
  49. Kramadibrata K (1993) Jenis-jenis jamur Glomales dari DAS Cisadane. J Mikrobiol 2(2):24–26Google Scholar
  50. Kramadibrata K (2009) The distribution of Glomeromycota in Cacao rhizosphere in Indonesia. Reinwardtia 12(5):347–356Google Scholar
  51. Kramadibrata K (2011) Arbuscular fungi of bamboo in Sumba Island. Berita Biol 10(5):635–639Google Scholar
  52. Kramadibrata K (2012) Arbuscular fungi in Ujung Kulon National Park. Berita Biol 11(2):205–209Google Scholar
  53. Kramadibrata K (2013) Diversity of glomeromycota in baturaden botanic garden and its surrounding area in Slamet mountain. Berita Biol 12(2):217–227Google Scholar
  54. Kramadibrata K (2016) Diversity of arbuscular fungi in Enggano Island. Berita Biol 15(3):257–265Google Scholar
  55. Kramadibrata K, Gunawan AW (2006) Arbuscular mycorrhizal fungi surrounding tropical kudzu and para grass. J Mikrobiol Indones 11(2):67–71Google Scholar
  56. Kramadibrata K, Riyanti EI, Simanungkalit RDM (1995) Arbuscular mycorrhizal fungi from the rhizospheres of soybean crops in Lampung and West Java. Biotropia 8:30–38Google Scholar
  57. Kramidibrata K, Prastyo H, Gunawan AW (2007) Arbuscular fungi of bamboo in Java. Berita Biol 8(6):531–536Google Scholar
  58. Kumalawati Z, Musa Y, Amin N, Laode A, Ridwan I (2014) Exploration of arbuscular mycorrhizal fungi from sugarcane rhizosphere in South Sulawesi. Int J Sci Technol Res 3(1):201–203Google Scholar
  59. Lucia Y (2005) Cendawan mikoriza arbuskula di bawah tegakan tanaman manggis dan peranannya dalam pertumbuhan bibit manggis (Garcinia mangostana L.). Thesis, Institut Pertanian BogorGoogle Scholar
  60. Margarettha (2011) Exploration and identification of indigenous mycorrhiza of ex-coal mining soil. Berita Biol 10(5):641Google Scholar
  61. Marizal S, Syariyah A (2016) The diversity of arbuscular fungus (AMF) indigenous in peanuts (Arachis Hypogea L.) rhizosphere under different elevation. J Trop Soil 21(2):109–114CrossRefGoogle Scholar
  62. Martawijaya A, Kartasujana I, Kadir K, Prawira SA (2005) Atlas Kayu Indonesia Jilid I. 3rd.Pusat Penelitian dan Pengambangan Hasil Hutan, BogorGoogle Scholar
  63. Mbaubedari KF (2011) The effect of arbuscular mycorrhizal fungi (AMF) indigenous papua and plantling media to the growth of Agarwood (Gyrinops versteegii (gilg) Domke) plantling from in-vitro multiplication. Thesis, Bogor Agricultural UniversityGoogle Scholar
  64. Miska MEE, Junaedi A, Wachjar A, Mansur I (2016) Characterization of arbuscular mycorrhizal fungus from sufar palm (Arenga pinnata (Wurmb) Merr.)0 West Java and Banten. J Silvikultur Trop 7(1):18–23Google Scholar
  65. Muin A (2003) Pertumbuhan anakan ramin (Gonystylus bancanus (Miq.)Kurz)) dengan inokulasi cendawan mikoriza arbuskula (CMA) pada berbagai intensitas cahaya dan dosis fosfat alam. Dissertation, Institut Pertanian BogorGoogle Scholar
  66. Muliawan J, Gunawan AW, Kramadibrata K (2002) Mycorrhiza of rambutan in Bogor area and its surroundings. J Mikrobiol Indones 7(1):24–25Google Scholar
  67. Namanusart MW (2003) Genetic diversity of arbuscular fungi infected. A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Biotechnology Suranaree University of Technology Academic Year 2003. ISBN: 974-533-309-3Google Scholar
  68. Ningsih DR, Kramadibrata K, Gunawan AW (2013) Arbuscular mycorrhizal fungi associated with Bisbul (Diospyros blancoi). Biotropia 20(2):112–121Google Scholar
  69. Novera Y (2008) Analysis of vegetation, soil characteristics and arbuscular mycorrhizal fungi (AMF) colonization of post tin mining land in Bangka Island. Undergraduate Thesis, Bogor Agricultural UniversityGoogle Scholar
  70. Nuryana I (2016) The colonization and diversity of arbuscular mycorrhizal fungi (AMF) in lesser yam (dioscorea esculenta) plant’s root growing at two altitudes. Thesis, Gadjah Mada UniversityGoogle Scholar
  71. Pangaribuan N (2014) Trapping of indigenous arbuscular mycorrhiza fungi from physic corn and nuts at peatland West Kalimantan. J Agro 1(1):50–60CrossRefGoogle Scholar
  72. Panwar J, Tarafdar JC (2006) Distribution of three endangered medicinal plant species and their colonization with arbuscular mycorrhizal fungi. J Arid Environ 65:337–350CrossRefGoogle Scholar
  73. Prasetyo B, Krisnayanti BD, Utomo WH, Anderson CWN (2010) Rehabilitation of artisanal mining gold land in West Lombok, Indonesia: 2. arbuscular mycorrhiza status of tailings and surrounding soils. J Agric Sci 2(2):202–209Google Scholar
  74. Prastyo H (2004) Cendawan mikorza arbuskula pada bambu. Skripsi, Institut Pertanian BogorGoogle Scholar
  75. Proborini MW, Sudana M, Suarna W, Ristiati NP (2013) Indigenous vesicular arbuscular mycorrhizal (VAM) fungi in cashew nut (Anacardium occidentale L.) plantation at north east-Bali island-Indonesia. J Biol Agric Healthc 3(3):114–121Google Scholar
  76. Puspitasari RT (2005) Diversity of arbuscular mycorrhizal fungi (AMF) at coastal forest Ujung Genteng, Sukabumi-West Java. Thesis, Bogor Agricultural UniversityGoogle Scholar
  77. Raharja NC (2015) Isolation and identification of indigenous arbuscular mycorrhizal fungi (AMF) in rhizosphere of grass post tin-mining land at East Belitung. Undergraduate Thesis, Bogor Agricultural UniversityGoogle Scholar
  78. Rainiyati (2007) The status and diversity of arbuscular mycorrhizal fungi (AMF) on Banan cv Raja Nangka and the potential of their application to increase the production of tissue culture-regenerated Banan in Merangin Regency Jambi Province. Dissertation, Bogor Agricultural UniversityGoogle Scholar
  79. Sabaruddin (2004) Diversity of indigenous arbuscular mycorrhizae under three different land uses. Agrikultura 15:80–85Google Scholar
  80. Setiadi Y, Setiawan A (2011) Study of arbuscular mycorrhizal fungi status at rehabilitation post-nickel mining area (Case Study at PT INCO Tbk. Sorowako, South Sulawesi). J Silvikultur Trop 03(01):88–95Google Scholar
  81. Setya AP, Gunawan AW, Kramadibrata K (1995) Arbuscular mycorrhizal fungi isolated from bambooin Bogor Batanic Gardens. Hayati 2(2):85–86Google Scholar
  82. Shah MA (2014) Mycorrhizas: novel dimensions in the changing world. Springer, New DelhiCrossRefGoogle Scholar
  83. Silviana, Gunawan AW, Kramadibrata K (1999) Biodiversity of arbuscular mycorrhizal fungi in the rhizospheres of mangosteen. In: Smith FA, Kramadibrata K, Simanungkalit RDM, Sukarno N, Nuhamara ST (eds) Proceedings of international conference on mycorrhizas in sustainable tropical agriculture and forest ecosystems. The Indonesian Institute University (LIPI), Bogor Agricultural University, and The University of Adelaide, Australia. Bogor-Indonesia, 27–30 October 1997, BogorGoogle Scholar
  84. Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, BostonGoogle Scholar
  85. Smith HF, O’Connor PJ, Smith SE, Smith FA (1998) Vesicular-arbuscular mycorrhizas of durian and other plants of forest gardens in West Kalimantan, Indonesia. In: Schulte A, Ruhiyat D (eds) Soils of tropical forest ecosystems: characteristics, ecology and management. Springer, New York, pp 192–198CrossRefGoogle Scholar
  86. Soerianegara I, Lemmens RHMJ (eds) (1994) Plant resources of South-East Asia 5(1) timber trees: major commercial timbers. PROSEA, Bogor, p 610Google Scholar
  87. Solaiman ZM, Mickan B (2014) Use of Mycorrhiza in sustainable agriculture and land restoration. In: Solaiman ZM et al (eds) Mycorrhizal fungi: use in sustainable agriculture and land restoration. Springer, New York, pp 1–16Google Scholar
  88. Sosef MSM, Hong LT, Prawirohatmodjo S (eds) (1998) Timber trees: lesser-known timbers No 5 (3). PROSEA, Leiden, p 861Google Scholar
  89. Suamba IW, Wirawan IGP, Adiartayasa W (2014) Isolation and identification of mycorrhizal fungi (AMF) by microscopis (AMF) in rhizosphere of citrus plant (Citrus sp.) in Kerta Village, Payangan District, Gianyar Regency. E-J Agroteknol Trop 3(4):201–208Google Scholar
  90. Suharno, Kasiamdari RS, Soetarto ES, Sancayaningsih RP (2016) Presence of arbuscular mycorrhizal fungi on fern from tailing deposition area of gold mine in Timika, Indonesia. Int J Environ Bioremediat Biodegrad 4(1):1–7Google Scholar
  91. Sunandar A (2016) Identifikasi Cendawan Mikoriza pada Rizosper Tiga Varietas Padi Lokal Kalimantan Barat. J Biol Educ 3(2):82–86Google Scholar
  92. Tawaraya K, Turjaman M (2014) Use of arbuscular mycorrhizal fungi for reforestation of degraded tropical forests. In: Solaiman ZM et al (eds) Mycorrhizal fungi: use in sustainable agriculture and land restoration. Springer, Berlin, pp 357–373Google Scholar
  93. Tawaraya K, Takaya Y, Turjaman M, Tuah SJ, Limin SH, Tamai Y, Cha JY, Wagatsuma T, Osaki M (2003) Arbuscular mycorrhizal colonization of tree species grown in peat swamp forests of Central Kalimantan, Indonesia. Forest Ecol Manage 182:381–386CrossRefGoogle Scholar
  94. Tsujino R, Yumoto T, Kitamura S, Djamaluddin I, Darnaedi D (2016) History of forest loss and degradation in Indonesia. Land Use Policy 57:335–347CrossRefGoogle Scholar
  95. Tuheteru FD, Wu QS (2017) Arbuscular mycorrhizal fungi and tolerance of waterlogging stress in plants. In: Wu QS (ed) Arbuscular mycorrhizas and stress tolerance of plants. Springer, Singapore, pp 43–66CrossRefGoogle Scholar
  96. Tuheteru FD, Kusmana C, Mansur I, Iskandar (2015) Response of Lonkida (Nauclea orientalis L.) towards mycorrhizal inoculum in waterlogged condition. Biotropia 22(1):61–71Google Scholar
  97. Tuheteru FD, Husna, Arif A (2011a) Respon pertumbuhan dan ketergantungan Albizia saponaria (Lour.) Miq terhadap inokulasi Fungi Mikoriza Arbuskula local Sultra pada media tanah pascatambang nikel. Berita Biol 10(5):605–612Google Scholar
  98. Tuheteru FD, Husna, Alimuddin LD (2011b) Respon pertumbuhan dan ketergantungan Albizia saponaria (Lour.) Miq terhadap fungi mikoriza arbuskula lokal Sultra. Biota 16(2):252–261Google Scholar
  99. Tuheteru FD, Arif A, Widiastuti E, Rahmawati N (2017) Heavy metal uptake by indigenous arbuscular mycorrhizas of Nauclea orientalis L. and the potential for phytoremediation of serpentine soil. J Ilmu Kehutanan 2:76–84CrossRefGoogle Scholar
  100. Turjaman M, Tamai Y, Santoso E, Osaki M, Tawaraya K (2006a) Arbuscular mycorrhizal fungi incresead early growth of two nontimber forest product species Dyera polyphylla and Aquilaria filaria under greenhouse conditions. Mycorrhiza 16:459–464CrossRefGoogle Scholar
  101. Turjaman M, Santosa E, Sumarna Y (2006b) Arbuscular mycorrhizal fungi increased early growth of gaharu wood species Aquilaria malaccensis and A. crasna under greenhouse conditions. J Forest Res 3(2):139–148Google Scholar
  102. Turjaman M, Santoso E, Tawaraya K (2007) Arbuscular mycorrhizal fungi increased plant growth and nutrient concentrations of milkwood tropical tree species Alstonia scholaris under greenhouse conditions. J Forest Res 4(2):61–71Google Scholar
  103. Turjaman M, Tamai Y, Sitepu IR, Santoso E, Osaki M, Tawaraya K (2008) Improvement of early growth of two tropical peat-swampforest tree species Ploiarium alternifolium and Calophyllum hosei by two arbuscular mycorrhizal fungiunder greenhouse conditions. New Forest 36:1–12CrossRefGoogle Scholar
  104. UNEP-WCMC (2007) Strategies for the sustainable use and management of timber tree species subject to international trade: South East Asia. CambridgeGoogle Scholar
  105. Urgiles N, Loja’n P, Aguirre N, Blaschke H, Günter S, Stimm B, Kottke I (2009) Application of mycorrhizal roots improves growth of tropical tree seedlings in the nursery: a step towards reforestation with native species in the Andes of Ecuador. New Forest 38:229–239CrossRefGoogle Scholar
  106. Wang F (2017) Arbuscular Mycorrhizas and Ecosystem Restoration. In: Wu QS (ed) Arbuscular mycorrhizas and stress tolerance of plants, Springer Singapore, pp 245-292CrossRefGoogle Scholar
  107. Wang B, Qiu YL (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363CrossRefGoogle Scholar
  108. Whitten AJ, Mustafa M, Henderson GS (1987) The ecology of Sulawesi. Gajah Mada University Press, YogyakartaGoogle Scholar
  109. Widiastuti H, Kramadibrata K (1992) Vesicular-arbuscular mycorrhizal fungi on selected acid soil of West Java. Menara Perkebunan 60(1):9–19Google Scholar
  110. Widiastuti H, Kramadibrata K (1993) Identification of vesicular-arbuscular mycorrhizal fungi at selected oil palm estates of West Java. Menara Perkebunan 61(1):13–19Google Scholar
  111. Wijayanti DR (2006) Identification arbuscule mycorrhiza fungi from Aqularia spp. Undergraduate Thesis, Bogor Agricultural UniversityGoogle Scholar
  112. Wu QS, Zou YN, Huang YM (2013) The arbuscular mycorrhizal fungus Diversispora spurca ameliorates effects of waterlogging on growth, root system architecture and antioxidant enzyme activities of citrus seedlings. Fungal Ecol 6(1):37–43CrossRefGoogle Scholar
  113. Wulandari DR (2001). Mikoriza vesikular arbuskula pada Talas. Skripsi, Institut Pertanian BogorGoogle Scholar
  114. Wulandari D, Saridi, Cheng W, Tawaraya K (2014) Arbuscular mycorrhizal colonization enhanced earlygrowth of Mallotus paniculatus and Albizia saman under nursery conditions in East Kalimantan, Indonesia. Int J Forest Res 1–8CrossRefGoogle Scholar
  115. Wulandari D, Saridi, Cheng W, Tawaraya K (2016) Arbuscular mycorrhizal fungal inoculation improves Albizia saman and Paraserianthes falcataria growth in post-opencast coal mine field in East Kalimantan, Indonesia. Forest Ecol Manage 376:67–73CrossRefGoogle Scholar
  116. Zhang Z, Zhang J, Huang Y (2014) Effects of arbuscular mycorrhizal fungi on the drought tolerance of Cyclobalanopsis glauca seedlings under greenhouse conditions. New Forests 45:545–556CrossRefGoogle Scholar
  117. Zubek S, Turnau K, Tsimilli-Michael M, Strasser RJ (2009) Response of endangered plant species to inoculation with arbuscular mycorrhizal fungi and soil bacteria. Mycorrhiza 19:113–123CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Husna Faad
    • 1
  • Faisal Danu Tuheteru
    • 1
  • Asrianti Arif
    • 1
  1. 1.Faculty of Forestry and Environmental Science, Department of ForestryHalu Oleo UniversityKendariIndonesia

Personalised recommendations