Advertisement

Insights into Pivotal Role of Phytohormonal Cross Talk in Tailoring Underground Plant Root System Architecture

  • Priyanka Singla
  • Surinder Kaur
Chapter
Part of the Soil Biology book series (SOILBIOL, volume 52)

Abstract

Root architecture development is a fundamental component of plant growth, facilitating plant with firm anchorage in the ground, adequate acquisition of water and nutrients, as well as their responses to abiotic and biotic signals in various ecological niches. Physiological and molecular research in the field of root biology has substantiated that root organogenesis is governed by the intricate role of “plant growth regulators—phytohormones.” Typically, master regulator—auxin—plays a crucial role at various developmental processes; however other hormones also interact either synergistically or antagonistically with auxin to trigger cascades of events leading to appropriate root morphogenesis. Studies on phytohormonal regulation of root architecture development principally focus on analysis of gene mutations modulating hormone synthesis and catabolism and those encoding for receptors and signaling elements along with analysis of the feedback regulation of hormonal pathways. Hormonal regulation of root architecture operates through a web of interacting responses rather than through linear conduit, where one hormone may be positively regulating one step but downregulating the other step. This chapter is designed to highlight the significance of complicated interplay among the phytohormones in regulating downstream events coupled with root architecture development at three important steps: primary root (PR) development, lateral root (LR) development, and root hair (RH) growth.

Keywords

Phytohormones Root architecture Primary and lateral root Root hair development 

References

  1. Abel S, Nguyen MD, Chow W, Theologis A (1995) ACS4, a primary indoleacetic acid-responsive gene encoding 1-aminocyclopropane- 1-carboxylate synthase in Arabidopsis thaliana. J Biol Chem 270:19093–19099PubMedCrossRefGoogle Scholar
  2. Achard P, Gusti A, Cheminant S, Alioua M, Dhondt S, Coppens F, Beemster GT, Genschik P (2009) Gibberellin signaling controls cell proliferation rate in Arabidopsis. Curr Biol 19:1188–1193PubMedCrossRefGoogle Scholar
  3. Aida M, Beis D, Heidstra R, Willemsen V, Blilou I, Galinha C, Nussaume L, Noh YS, Amasino R, Scheres B (2004) The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell 119:109–120PubMedCrossRefGoogle Scholar
  4. Alonso JM, Stepanova AN, Solano R, Wisman E, Ferrari S, Ausubel FM, Ecker JR (2003) Five components of the ethylene-response pathway identified in a screen for weak ethylene-insensitive mutants in Arabidopsis. Proc Natl Acad Sci 100:2992–2997PubMedPubMedCentralCrossRefGoogle Scholar
  5. Antoni R, Gonzalez-Guzman M, Rodriguez L, Peirats-Llobet M, Pizzio GA et al (2013) PYRABACTIN RESISTANCE1-LIKE8 plays an important role for the regulation of abscisic acid signaling in root. Plant Physiol 161:931–941PubMedCrossRefGoogle Scholar
  6. Band LR, Wells DM, Larrieu A, Sun J, Middleton AM, French AP et al (2012) Root gravitropism is regulated by a transient lateral auxin gradient controlled by a tipping-point mechanism. PNAS 109(12):4668–4673PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bao F, Shen J, Brady SR, Muday GK, Asami T, Yang Z (2004) Brassinosteroids interact with auxin to promote lateral root development in Arabidopsis. Plant Physiol 134:1624–1631PubMedPubMedCentralCrossRefGoogle Scholar
  8. Beeckman T, Burssens S, Inze D (2001) The peri-cell-cycle in Arabidopsis. J Exp Bot 52:403–411PubMedGoogle Scholar
  9. Beemster GT, Baskin TI (1998) Analysis of cell division and elongation underlying the developmental acceleration of root growth in Arabidopsis thaliana. Plant Physiol 116:1515–1526PubMedPubMedCentralCrossRefGoogle Scholar
  10. Belin C, Megies C, Hauserova E, Lopez-Molina L (2009) Abscisic acid represses growth of the Arabidopsis embryonic axis after germination by enhancing auxin signaling. Plant Cell 21:2253–2268PubMedPubMedCentralCrossRefGoogle Scholar
  11. Benfey PN, Linstead PJ, Roberts K, Schiefelbein JW, Hauser M-T, Aeschbacher RA (1993) Root development in Arabidopsis: four mutants with dramatically altered root morphogenesis. Development 119:57–70PubMedGoogle Scholar
  12. Benfey PN, Bennett M, Schiefelbein J (2010) Getting to the root of plant biology: impact of the Arabidopsis. Plant J 61:992–1000PubMedPubMedCentralCrossRefGoogle Scholar
  13. Benjamins R, Scheres B (2008) Auxin: the looping star in plant development. Annu Rev Plant Biol 59:443–465PubMedCrossRefGoogle Scholar
  14. Benjamins R, Quint AB, Weijers D, Hooykaas P, Offringa R (2001) The PINOID protein kinase regulates organ development in Arabidopsis by enhancing polar auxin transport. Development 128:4057–4067PubMedGoogle Scholar
  15. Benkova E, Michniewicz M, Sauer M, Teichmann T, Seifertova D, Jurgens G, Friml J (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115:591–602PubMedCrossRefGoogle Scholar
  16. Berger F, Hung C-Y, Dolan L, Schiefelbein J (1998) Control of cell division in the root epidermis of Arabidopsis thaliana. Dev Biol 194:235–245PubMedCrossRefPubMedCentralGoogle Scholar
  17. Berova M, Zlatev Z (2000) Physiological response and yield of paclobutrazol treated tomato plants (Lycopersicon esculentum Mill.). Plant Growth Regul 30:117–123Google Scholar
  18. Beveridge CA, Kyozuka J (2010) New genes in the strigolactone-related shoot branching pathway. Curr Opin Plant Biol 13:34–39PubMedCrossRefGoogle Scholar
  19. Bhalerao RP, Eklof J, Ljung K, Marchant A, Bennett M, Sandberg G (2002) Shoot-derived auxin is essential for early lateral root emergence in Arabidopsis seedlings. Plant J 29:325–332PubMedCrossRefGoogle Scholar
  20. Bianco MD, Kepinski S (2011) Context, specificity, and self-organization in auxin response. Cold Spring Harb Perspect Biol 3:a001578PubMedPubMedCentralGoogle Scholar
  21. Bianco MD, Giustini L, Sabatini S (2013) Spatiotemporal changes in the role of cytokinin during root development. New Phytol 199:324–338PubMedCrossRefGoogle Scholar
  22. Bielach A, Duclercq J, Marhavy P, Benkova E (2012) Genetic approach towards the identification of auxin–cytokinin crosstalk components involved in root development. Philos Trans R Soc B 367:1469–1478CrossRefGoogle Scholar
  23. Birnbaum K, Shasha DE, Wang JY, Jung JW, Lambert GM, Galbraith DW, Philip NB (2003) A gene expression map of the Arabidopsis root. Science 302:1956–1960PubMedCrossRefPubMedCentralGoogle Scholar
  24. Bishopp A, Help H, El-Showk S, Weijers D, Scheres B, Friml J, Benkova E, Mahonen AP, Helariutta Y (2011a) A mutually inhibitory interaction between auxin and cytokinin specifies vascular pattern in roots. Curr Biol 21:917–926PubMedCrossRefGoogle Scholar
  25. Bishopp A, Lehesranta S, Vaten V, Help H, El-Showk E, Scheres B, Helariutta K, Mahonen AP, Sakakibara H, Helariutta Y (2011b) Phloem-transported cytokinin regulates polar auxin transport and maintains vascular pattern in the root meristem. Curr Biol 21:927–932PubMedCrossRefGoogle Scholar
  26. Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Aida M, Palme K, Scheres B (2005) The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433:39–44PubMedCrossRefGoogle Scholar
  27. Bouchereau A, Aziz A, Larher F, Martin-Tanguy J (1999) Polyamines and environmental challenges: recent development. Plant Sci 140:103–125CrossRefGoogle Scholar
  28. Brady SM, Sarkar SF, Bonetta D, McCourt P (2003) The ABSCISIC ACID INSENSITIVE 3 (ABI3) gene is modulated by farnesylation and is involved in auxin signalling and lateral root development in Arabidopsis. Plant J 34:67–75PubMedCrossRefGoogle Scholar
  29. Brewer PB, Koltai H, Beveridge CA (2013) Diverse roles of strigolactones in plant development. Mol Plant 6(1):18–28PubMedCrossRefGoogle Scholar
  30. Brugiere N, Jiao S, Hantke S, Zinselmeier C, Roessler JA, Niu X, Jones RJ, Habben JE (2003) Cytokinin oxidase gene expression in maize is localized to the vasculature, and is induced by cytokinins, abscisic acid, and abiotic stress. Plant Physiol 132:1228–1240PubMedPubMedCentralCrossRefGoogle Scholar
  31. Buer CS, Sukumar P, Muday GK (2006) Ethylene modulates flavonoid accumulation and gravitropic responses in roots of Arabidopsis thaliana. Plant Physiol 140:1384–1396PubMedPubMedCentralCrossRefGoogle Scholar
  32. Busov V, Meilan R, Pearce DW, Rood SB, Ma C, Tschaplinski TJ, Strauss SH (2006) Transgenic modification of gai or rgl1 causes dwarfing and alters gibberellins, root growth, and metabolite profiles in Populus. Planta 224:288–299PubMedCrossRefGoogle Scholar
  33. Cao XF, Linstead P, Berger F, Kieber J, Dolan L (1999) Differential sensitivity of epidermal cells is involved in the establishment of cell pattern in the Arabidopsis root. Physiol Plant 106:311–317PubMedCrossRefGoogle Scholar
  34. Cardoso C, Zhang Y, Jamil M, Hepworth J, Charnikhova T, Dimkpa SO et al (2014) Natural variation of rice strigolactone biosynthesis is associated with the deletion of two MAX1 orthologs. Proc Natl Acad Sci 111:2379–2384PubMedPubMedCentralCrossRefGoogle Scholar
  35. Cary AJ, Liu W, Howell SH (1995) Cytokinin action is coupled to ethylene in its effects on the inhibition of root and hypocotyl elongation in Arabidopsis thaliana seedlings. Plant Physiol 107:1075–1082PubMedPubMedCentralCrossRefGoogle Scholar
  36. Casimiro I, Marchant A, Bhalerao RP, Beeckman T, Dhooge S, Swarup R, Graham N, Inzé D, Sandberg G, Casero PJ, Bennett M (2001) Auxin transport promotes Arabidopsis lateral root initiation. Plant Cell 13:843–852PubMedPubMedCentralCrossRefGoogle Scholar
  37. Casson SA, Lindsey K (2003) Genes and signalling in root development. New Phytol 158:11–38CrossRefGoogle Scholar
  38. Casson SA, Chilley PM, Topping JF, Evans IM, Souter MA, Lindsey K (2002) The POLARIS gene of Arabidopsis encodes a predicted peptide required for correct root growth and leaf vascular patterning. Plant Cell 14:1705–1721PubMedPubMedCentralCrossRefGoogle Scholar
  39. Celenza JL, Grisafi PL, Fink GR (1995) A pathway for lateral root formation in Arabidopsis thaliana. Genes Dev 9:2131–2142PubMedCrossRefGoogle Scholar
  40. Chapman EJ, Estelle M (2009) Cytokinin and auxin intersection in root meristems. Genome Biol 10:210PubMedCentralCrossRefGoogle Scholar
  41. Chen H, Xiong L (2009) The short-rooted vitamin B6-deficient mutant pdx1 has impaired local auxin biosynthesis. Planta 229:1303–1310PubMedCrossRefGoogle Scholar
  42. Cheng Y, Dai X, Zhao Y (2006) Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes Dev 20:1790–1799PubMedPubMedCentralCrossRefGoogle Scholar
  43. Chilley PM, Casson SA, Tarkowski P, Hawkins N, Wang KL, Hussey PJ (2006) The POLARIS peptide of Arabidopsis regulates auxin transport and root growth via effects on ethylene signaling. Plant Cell 18:3058–3072PubMedPubMedCentralCrossRefGoogle Scholar
  44. Cho H, Ryu H, Rho S, Hill K, Smith S, Audenaert D, Park J, Han S, Beeckman T, Bennett MJ, Hwang D, De Smet I, Hwang I (2014) A secreted peptide acts on BIN2-mediated phosphorylation of ARFs to potentiate auxin response during lateral root development. Nat Cell Biol 16:66–76PubMedCrossRefGoogle Scholar
  45. Choi Y, Lee Y, Kim SY, Lee Y, Hwang J (2012) Arabidopsis ROP interactive CRIB motif-containing protein 1 (RIC1) positively regulates auxin signalling and negatively regulates abscisic acid (ABA) signalling during root development. Plant Cell Environ 36(5):945–955PubMedCrossRefGoogle Scholar
  46. Chung Y, Maharjan PM, Lee O, Fujioka S, Jang S, Kim B, Takatsuto S, Tsujimoto M, Kim H, Cho S, Park T, Cho H, Hwang I, Choe S (2011) Auxin stimulates DWARF4 expression and brassinosteroid biosynthesis in Arabidopsis. Plant J 66:564–578PubMedCrossRefGoogle Scholar
  47. Clark NM, de Luis Balaguer MA, Sozzani R (2014) Experimental data and computational modeling link auxin gradient and development in the Arabidopsis root. Front Plant Sci 5:328PubMedPubMedCentralCrossRefGoogle Scholar
  48. Cnops G, Wang X, Linstead P, Van Montagu M, Van Lijsebettens M, Dolan L (2000) TORNADO1 and TORNADO2 are required for the specification of radial and circumferential pattern in the Arabidopsis root. Development 127:3385–3394PubMedGoogle Scholar
  49. Cohen M, Prandi C, Occhiato EG, Tabasso S, Wininger S, Resnick N, Steinberger Y, Koltai H, Kapulnik Y (2013) Structure-function relations of strigolactone analogs: activity as plant hormones and plant interactions. Mol Plant 6:141–152PubMedCrossRefGoogle Scholar
  50. Couee I, Hummel I, Sulmon C, Gouesbet G, Amrani AE (2004) Involvement of polyamines in root development. Plant Cell Tiss Org Cult 76:1–10CrossRefGoogle Scholar
  51. Cui H, Levesque MP, Vernoux T, Jung JW, Paquette AJ, Gallagher KL, Wang JY, Blilou I, Scheres B, Benfey PN (2007) An evolutionarily conserved mechanism delimiting SHR movement defines a single layer of endodermis in plants. Science 316:421–425PubMedCrossRefGoogle Scholar
  52. Dai Y, Wang H, Li B, Huang J, Liu X, Zhou Y, Mou Z, Li J (2006) Increased expression of MAP KINASE KINASE7 causes deficiency in polar auxin transport and leads to plant architectural abnormality in Arabidopsis. Plant Cell 18:308–320PubMedPubMedCentralCrossRefGoogle Scholar
  53. De Rybel B, Vassileva V, Parizot B, Demeulenaere M, Grunewald W, Audenaert D et al (2010) A novel aux/IAA28 signaling cascade activates GATA23-dependent specification of lateral root founder cell identity. Curr Biol 20:1697–1706PubMedCrossRefGoogle Scholar
  54. De Smet I (2012) Lateral root initiation: one step at a time. New Phytol 193:867–873PubMedCrossRefGoogle Scholar
  55. De Smet I, Signora L, Beeckman T, Inze D, Foyer CH, Zhang H (2003) An abscisic acid sensitive checkpoint in lateral root development of Arabidopsis. Plant J 33:543–555PubMedCrossRefGoogle Scholar
  56. De Smet I, Vanneste S, Inze D, Beeckman T (2006) Lateral root initiation or the birth of a new meristem. Plant Mol Biol 60:871–887PubMedCrossRefPubMedCentralGoogle Scholar
  57. De Smet I, Tetsumura T, De Rybel B, Frey N, Laplaze L, Casimiro I et al (2007) Auxin-dependent regulation of lateral root positioning in the basal meristem of Arabidopsis. Development 134:681–690PubMedCrossRefGoogle Scholar
  58. De Smet I, Vassileva V, De Rybel B, Levesque MP, Grunewald W, Van Damme D et al (2008) Receptor-like kinase ACR4 restricts formative cell divisions in the Arabidopsis root. Science 322:594–597PubMedCrossRefGoogle Scholar
  59. De Smet I, White PJ, Bengough AG, Dupuy L, Parizot B, Casimiro I et al (2012) Analyzing lateral root development: how to move forward. Plant Cell 24:15–20PubMedPubMedCentralCrossRefGoogle Scholar
  60. Del Bianco M, Kepinski S (2011) Context, specificity and self-organization in auxin response. Cold Spring Harb Perspect Biol 3:a001578PubMedPubMedCentralGoogle Scholar
  61. Del Bianco M, Giustini L, Sabatini S (2013) Spatiotemporal changes in the role of cytokinin during root development. New Phytol 199:324–338PubMedCrossRefGoogle Scholar
  62. Delbarre A, Muller P, Guern J (1998) Short-lived and phosphorylated proteins contribute to carrier-mediated efflux, but not to influx, of auxin in suspension-cultured tobacco cells. Plant Physiol 116:833–844PubMedPubMedCentralCrossRefGoogle Scholar
  63. Della Rovere F, Fattorini L, D’Angeli D, Veloccia A, Falasca G, Altamura MM (2013) Auxin and cytokinin control formation of the quiescent centre in the adventitious root apex of Arabidopsis. Ann Bot 112:1395–1407PubMedPubMedCentralCrossRefGoogle Scholar
  64. Dello Ioio R, Linhares FS, Scacchi E, Casamitjana-Martinez E, Heidstra R, Costantino P, Sabatini S (2007) Cytokinins determine Arabidopsis root meristem size by controlling cell differentiation. Curr Biol 17:678–682CrossRefGoogle Scholar
  65. Dello Ioio R, Nakamura K, Moubayidin L, Perilli S, Taniguchi M, Morita MT, Aoyama T, Costantino P, Sabatini S (2008) A genetic framework for the control of cell division and differentiation in the root meristem. Science 322:1380–1384CrossRefGoogle Scholar
  66. Depuydt S, Hardtke CS (2011) Hormone signalling crosstalk in plant growth regulation. Curr Biol 21:365–373CrossRefGoogle Scholar
  67. Dharmasiri N, Dharmasiri S, Estelle M (2005) The F-box protein TIR1 is an auxin receptor. Nature 435:441–445PubMedCrossRefGoogle Scholar
  68. Dhonukshe P, Grigoriev I, Fischer R, Tominaga M, Robinson DG, Hasek J et al (2008) Auxin transport inhibitors impair vesicle motility and actin cytoskeleton dynamics in diverse eukaryotes. PNAS 105:4489–4494PubMedPubMedCentralCrossRefGoogle Scholar
  69. Di Laurenzio L, Wysocka-Diller J, Malamy J, Pysh L, Helariutta Y, Freshour G, Hahn MG, Feldmann KA, Benfey PN (1996) The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root. Cell 86:423–433PubMedCrossRefGoogle Scholar
  70. Doerner P, Jorgensen J-E, You R, Steppuhn J, Lamb C (1996) Control of root growth and development by cyclin expression. Nature 380:520–523PubMedCrossRefGoogle Scholar
  71. Dolan L, Janmaat K, Willemsen V, Linstead P, Poethig S, Roberts K, Scheres B (1993) Cellular organization of the Arabidopsis thaliana root. Development 119:71–84PubMedGoogle Scholar
  72. Dolan L, Duckett C, Grienon C, Linstead P, Schneider K, Lawson E, Dean C, Poethig S, Roberts K (1994) Clonal relations and patterning in the root epidermis of Arabidopsis. Development 120:2465–2474Google Scholar
  73. Dong L, Wang L, Zhang Y, Zhang Y, Deng X, Xue Y (2006) An auxin-inducible F-box protein CEGENDUO negatively regulates auxin-mediated lateral root formation in Arabidopsis. Plant Mol Biol 60:599–615PubMedCrossRefGoogle Scholar
  74. Echevarria-Machado I, MRM E-G, Larque-Saavedra A (2007) Responses of transformed Catharanthus roseus roots to femtomolar concentrations of salicylic acid. Plant Physiol Biochem 45:501–507PubMedCrossRefGoogle Scholar
  75. Eriksson ME, Israelsson M, Olsson O, Moritz T (2000) Increased gibberellin biosynthesis in transgenic trees promotes growth, biomass production and xylem fiber length. Nat Biotechnol 18:784–788PubMedCrossRefGoogle Scholar
  76. Esau K (1977) Anatomy of seed plants. John Wiley & Sons, New YorkGoogle Scholar
  77. Fabregas N, Li N, Boeren S, Nash TE, Goshe MB, Clouse SD, de Vries S, Cano-Delgado AI (2013) The BRASSINOSTEROID INSENSITIVE1-LIKE3 signalosome complex regulates Arabidopsis root development. Plant Cell 25:3377–3388PubMedPubMedCentralCrossRefGoogle Scholar
  78. Frigerio M, Alabadi D, Perez-Gomez J, Gracia-Cacel L, Phillips AL, Hedden P, Blazquez MA (2006) Transcriptional regulation of gibberellins metabolism genes by auxin signaling in Arabidopsis. Plant Physiol 142:553–563PubMedPubMedCentralCrossRefGoogle Scholar
  79. Friml J, Benkova E, Blilou I, Wisniewska J, Hamann T, Ljung K, Woody S, Sandberg G, Scheres B, Jurgens G, Palme K (2002) AtPIN4 mediates sink-driven auxin gradients and root patterning in Arabidopsis. Cell 108:661–673PubMedCrossRefGoogle Scholar
  80. Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, Hamann T, Offringa R, Jurgens G (2003) Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 426:147–153PubMedCrossRefPubMedCentralGoogle Scholar
  81. Fu X, Harberd NP (2003) Auxin promotes Arabidopsis root growth by modulating gibberellins response. Nature 421:740–743PubMedCrossRefGoogle Scholar
  82. Fukaki H, Tameda S, Masuda H, Tasaka M (2002) Lateral root formation is blocked by a gain-of-function mutation in the SOLITARY-ROOT/IAA14 gene in Arabidopsis. Plant J 29:153–168PubMedCrossRefGoogle Scholar
  83. Galinha C, Hofhuis H, Luijten M, Willemsen V, Blilou I, Heidstra R, Scheres B (2007) PLETHORA proteins as dose dependent master regulators of Arabidopsis root development. Nature 449:1053–1057PubMedCrossRefGoogle Scholar
  84. Garay-Arroyo A, Sanchez MD, Garcia-PonceB AE, Alvarezuylla ER (2012) Hormone symphony during root growth and development. Dev Dyn 241:1867–1885PubMedCrossRefGoogle Scholar
  85. Giehl RFH, von Wirén N (2014) Root nutrient foraging. Plant Physiol 166:509–517PubMedPubMedCentralCrossRefGoogle Scholar
  86. Giehl RF, Gruber BD, von Wiren N (2014) It’s time to make changes: modulation of root system architecture by nutrient signals. J Exp Bot 65:769–778PubMedCrossRefGoogle Scholar
  87. Gonzalez-Carranza ZH, Elliott KA, Roberts JA (2007) Expression of polygalacturonases and evidence to support their role during cell separation processes in Arabidopsis thaliana. J Exp Bot 58:3719–3730PubMedCrossRefGoogle Scholar
  88. Gou J, Strauss SH, Tsai CJ, Fang K, Chen Y, Jiang X, Busova VB (2010) Gibberellins regulate lateral root formation in Populus through interactions with auxin and other hormones. Plant Cell 22:623–639PubMedCrossRefGoogle Scholar
  89. Grebe M, Friml J, Swarup R, Ljung K, Sandberg G, Terlou M, Palme K, Bennett MJ, Scheres B (2002) Cell polarity signalling in Arabidopsis involves a BFA-sensitive auxin influx pathway. Curr Biol 12:329–334PubMedCrossRefGoogle Scholar
  90. Grieneisen VA, Xu J, Maree AFM, Hogeweg P, Scheres B (2007) Auxin transport is sufficient to generate a maximum and gradient guiding root growth. Nature 449:1008–1013PubMedCrossRefGoogle Scholar
  91. Grossi JA, Moraes PJ, Tinoco SA, Barbosa JG, Finger FL, Cecon PR (2005) Effects of paclobutrazol on growth and fruiting characteristics of Pitanga ornamental pepper. Acta Hortic (683):333–336Google Scholar
  92. Gruber BD, Giehl RFH, Friedel S, von Wirén N (2013) Plasticity of the Arabidopsis root system under nutrient deficiencies. Plant Physiol 163:161–179PubMedPubMedCentralCrossRefGoogle Scholar
  93. Guilfoyle TJ, Hagen G (2007) Auxin response factors. Curr Opin Plant Biol 10:453–460PubMedCrossRefGoogle Scholar
  94. Gupta S, Rashotte AM (2012) Down-stream components of cytokinin signaling and the role of cytokinin throughout the plant. Plant Cell Rep 31:801–812PubMedCrossRefGoogle Scholar
  95. Gupta A, Singh M, Laxmi A (2015) Interaction between glucose and brassinosteroid during the regulation of lateral root development in Arabidopsis. Plant Physiol 168:307–320PubMedPubMedCentralCrossRefGoogle Scholar
  96. Hacham Y, Holland N, Butterfield C, Ubeda-Tomas S, Bennett MJ, Chory J, Savaldi-Goldstein S (2011) Brassinosteroid perception in the epidermis controls root meristem size. Development 138:839–848PubMedPubMedCentralCrossRefGoogle Scholar
  97. Hamann T, Mayer U, Jurgens G (1999) The auxin-insensitive bodenlos mutation affects primary root formation and apical-basal patterning in the Arabidopsis embryo. Development 126:1387–1395PubMedGoogle Scholar
  98. Hamann T, Benkova E, Baurle I, Kientz M, Jurgens G (2002) The Arabidopsis BODENLOS gene encodes an auxin response protein inhibiting MONOPTEROS-mediated embryo patterning. Genes Dev 16:1610–1615PubMedPubMedCentralCrossRefGoogle Scholar
  99. Heidstra R, Sabatini S (2014) Plant and animal stem cells: similar yet different. Nat Rev Mol Cell Biol 15:301–312PubMedCrossRefGoogle Scholar
  100. Helariutta Y, Fukaki H, Wysocka-Diller J, Nakajima K, Jung J, Sena G, Hauser MT, Benfey PN (2000) The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling. Cell 101:555–567PubMedCrossRefGoogle Scholar
  101. Himanen K, Boucheron E, Vanneste S, de Almeida Engler J, Inze D, Beeckman T (2002) Auxin-mediated cell cycle activation during early lateral root initiation. Plant Cell 14:2339–2351PubMedPubMedCentralCrossRefGoogle Scholar
  102. Hirota A, Kato T, Fukaki H, Aida M, Tasaka M (2007) The auxin-regulated AP2/EREBP gene PUCHI is required for morphogenesis in the early lateral root primordium of Arabidopsis. Plant Cell 19:2156–2168PubMedPubMedCentralCrossRefGoogle Scholar
  103. Hochholdinger F, Zimmermann R (2008) Conserved and diverse mechanisms in root development. Curr Opin Plant Biol 11:70–74PubMedCrossRefGoogle Scholar
  104. Hummel I, Couee I, EI Amrani A, Martin-Tanguy J, Hennion F (2002) Involvement of polyamines in root development at low temperature in the subantarctic cruciferous species Pringlea antiscorbutica. J Exp Bot 53:1463–1473PubMedCrossRefGoogle Scholar
  105. Hung C-Y, Lin Y, Zhang M, Pollock S, Marks MD, Schiefelbein J (1998) A common position-dependent mechanism controls cell-type patterning and GLABRA2 regulation in the root and hypocotyl epidermis of Arabidopsis. Plant Physiol 117:73–84PubMedPubMedCentralCrossRefGoogle Scholar
  106. Ikeda Y, Men S, Fischer U, Stepanova AN, Alonso JM, Ljung K, Grebe M (2009) Local auxin biosynthesis modulates gradient directed planar polarity in Arabidopsis. Nat Cell Biol 11:731–738PubMedCrossRefGoogle Scholar
  107. Ishida T, Kurata T, Okada K, Wada T (2008) A genetic regulatory network in the development of trichomes and root hairs. Annu Rev Plant Biol 59:365–386PubMedCrossRefGoogle Scholar
  108. Ivanchenko MG, Coffeen WC, Lomax TL, Dubrovsky JG (2006) Mutations in the Diageotropica (Dgt) gene uncouple patterned cell division during lateral root initiation from proliferative cell division in the pericycle. Plant J 46:436–447PubMedCrossRefGoogle Scholar
  109. Ivanchenko MG, Muday GK, Dubrovsky JG (2008) Ethylene–auxin interactions regulate lateral root initiation and emergence in Arabidopsis thaliana. Plant J 55:335–347PubMedCrossRefGoogle Scholar
  110. Jaillais Y, Santambrogio M, Rozier F, Fobis-Loisy I, Miege C, Gaude T (2007) The retromer protein VPS29 links cell polarity and organ initiation in plants. Cell 130:1057–1070PubMedCrossRefGoogle Scholar
  111. Jang SJ, Choi YJ, Park KY (2002) Effects of polyamines on shoot and root development in Arabidopsis seedlings and carnation cultures. Plant Biol J 45:230–236CrossRefGoogle Scholar
  112. Jung JKH, McCouch S (2013) Getting to the roots of it: genetic and hormonal control of root architecture. Front Plant Sci 4:186PubMedPubMedCentralCrossRefGoogle Scholar
  113. Kapulnik Y, Koltai H (2014) Strigolactone involvement in root development, response to abiotic stress, and interactions with the biotic soil environment. Plant Physiol 166:560–569PubMedPubMedCentralCrossRefGoogle Scholar
  114. Kapulnik Y, Delaux PM, Resnick N, Mayzlish-Gati E, Wininger S, Bhattacharya C et al (2011a) Strigolactones affect lateral root formation and root-hair elongation in Arabidopsis. Planta 233:209–216CrossRefPubMedGoogle Scholar
  115. Kapulnik Y, Resnick N, Mayzlish-Gati E, Kaplan Y, Wininger S, Hershenhorn J, Koltai H (2011b) Strigolactones interact with ethylene and auxin in regulating root-hair elongation in Arabidopsis. J Exp Bot 62:2915–2924PubMedCrossRefGoogle Scholar
  116. Kepinski S, Leyser O (2005) The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435:446–451PubMedCrossRefGoogle Scholar
  117. Kim H, Park PJ, Hwang HJ, Lee SY, Oh MH, Kim SG (2006) Brassinosteroid signals control expression of the AXR3/IAA17 gene in the cross-talk point with auxin in root development. Biosci Biotechnol Biochem 70:768–773CrossRefPubMedGoogle Scholar
  118. Knox K, Grierson CS, Leyser O (2003) AXR3 and SHY2 interact to regulate root hair development. Development 130:5769–5777CrossRefPubMedGoogle Scholar
  119. Koiwai H, Tagiri A, Katoh S, Katoh E, Ichikawa H, Minami E, Nishizawa Y (2007) RING-H2 type ubiquitin ligase EL5 is involved in root development through the maintenance of cell viability in rice. Plant J 51:92–104PubMedCrossRefGoogle Scholar
  120. Koltai H (2011) Strigolactones are regulators of root development. New Phytol 190:545–549PubMedCrossRefGoogle Scholar
  121. Koltai H, Dor E, Hershenhorn J, Joel DM, Weininger S, Lekalla S et al (2010) Strigolactones effect on root growth and root-hair elongation may be mediated by auxin-efflux carriers. J Plant Growth Regul 29:129–136CrossRefGoogle Scholar
  122. Krupinski P, Jonsson H (2010) Modeling auxin-regulated development. Cold Spring Harb Perspect Biol 2:a001560PubMedPubMedCentralCrossRefGoogle Scholar
  123. Kuderová A, Urbánková I, Válková M, Malbeck J, Brzobohaty B, Némethová D, Hejátko J (2008) Effects of conditional IPT-dependent cytokinin overproduction on root architecture of Arabidopsis seedlings. Plant Cell Physiol 49:570–582PubMedCrossRefGoogle Scholar
  124. Kurakawa T, Ueda N, Maekawa M, Kobayashi K, Kojima M, Nagato Y, Sakakibara H, Kyozuka J (2007) Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature 445:652–655PubMedCrossRefGoogle Scholar
  125. Kuroha T, Tokunaga H, Kojima M, Ueda N, Ishida T, Nagawa S, Fukuda H, Sugimoto K, Sakakibara H (2009) Functional analyses of LONELY GUY cytokinin-activating enzymes reveal the importance of the direct activation pathway in Arabidopsis. Plant Cell 21:3152–3169PubMedPubMedCentralCrossRefGoogle Scholar
  126. Laplaze L, Benkova E, Casimiro I, Maes L, Vanneste S, Swarup R et al (2007) Cytokinins act directly on lateral root founder cells to inhibit root initiation. Plant Cell 19:3889–3900PubMedPubMedCentralCrossRefGoogle Scholar
  127. Laskowski MJ, Williams ME, Nusbaum HC, Sussex IM (1995) Formation of lateral root meristems is a two-stage process. Development 121:3303–3310PubMedGoogle Scholar
  128. Laskowski M, Biller S, Stanley K, Kajstura T, Prusty R (2006) Expression profiling of auxin-treated Arabidopsis roots: toward a molecular analysis of lateral root emergence. Plant Cell Physiol 47:788–792PubMedCrossRefGoogle Scholar
  129. Lau S, Shao N, Bock R, Jurgens G, De Smet I (2009) Auxin signaling in algal lineages: fact or myth? Trends Plant Sci 14:182–188PubMedCrossRefGoogle Scholar
  130. Le J, Vandenbussche F, Van Der Straeten D, Verbelen JP (2001) In the early response of Arabidopsis roots to ethylene, cell elongation is up- and down-regulated and uncoupled from differentiation. Plant Physiol 125(2):519–522PubMedPubMedCentralCrossRefGoogle Scholar
  131. Lee MM, Schiefelbein J (1999) WEREWOLF, a MYB-related protein in Arabidopsis, is a position-dependent regulator of epidermal cell patterning. Cell 99:473–483PubMedCrossRefGoogle Scholar
  132. Lee JS, Wang S, Sritubtim S, Chen JG, Ellis BE (2009) Arabidopsis mitogen-activated protein kinase MPK12 interacts with the MAPK phosphatase IBR5 and regulates auxin signaling. Plant J 57:975–985PubMedCrossRefGoogle Scholar
  133. Lewis DR, Negi S, Sukumar P, Muday GK (2011) Ethylene inhibits lateral root development, increases IAA transport and expression of PIN3 and PIN7 auxin efflux carriers. Development 138:3485–3495PubMedCrossRefGoogle Scholar
  134. Lewis DR, Olex AL, Lundy SR, Turkett WH, Fetrow JS, Muday GK (2013) A kinetic analysis of the auxin transcriptome reveals cell wall remodeling proteins that modulate lateral root development in Arabidopsis. Plant Cell 25:3329–3346PubMedPubMedCentralCrossRefGoogle Scholar
  135. Li X, Mo X, Shou H, Wu P (2006) Cytokinin-mediated cell cycling arrest of pericycle founder cells in lateral root initiation of Arabidopsis. Plant Cell Physiol 47:1112–1123PubMedCrossRefGoogle Scholar
  136. Liang Y, Mitchell DM, Harris JM (2007) Abscisic acid rescues the root meristem defects of the Medicago truncatula latd mutant. Dev Biol 304:297–307PubMedCrossRefGoogle Scholar
  137. Lindsay D, Sawhney V, Bonham-Smith P (2006) Cytokinin-induced changes in CLAVATA1 and WUSCHEL expression temporally coincide with altered floral development in Arabidopsis. Plant Sci 170:1111–1117CrossRefGoogle Scholar
  138. Liscum E, Reed JW (2002) Genetics of Aux/IAA and ARF action in plant growth and development. Plant Mol Biol 49:387–400PubMedCrossRefGoogle Scholar
  139. Liu W, Xu ZH, Luo D, Xue HW (2003) Roles of OsCKI1, a rice casein kinase I, in root development and plant hormone sensitivity. Plant J 36:189–202PubMedCrossRefGoogle Scholar
  140. Liu X, Zhang H, Zhao Y, Feng Z, Li Q, Yang HQ, Luan S, Li J, He ZH (2013) Auxin controls seed dormancy through stimulation of abscisic acid signaling by inducing ARF-mediated ABI3 activation in Arabidopsis. Proc Natl Acad Sci 110:15485–15490PubMedPubMedCentralCrossRefGoogle Scholar
  141. Liu J, Rowe J, Lindsey K (2014) Hormonal cross talk for root development: a combined experimental and modeling perspective. Front Plant Sci 5:116PubMedPubMedCentralGoogle Scholar
  142. Ljung K, Hull AK, Celenza J, Yamada M, Estelle M, Normanly J, Sandberga G (2005) Sites and regulation of auxin biosynthesis in Arabidopsis roots. Plant Cell 17:1090–1104PubMedPubMedCentralCrossRefGoogle Scholar
  143. Lohar DP, Schaff JE, Laskey JG, Kieber JJ, Bilyeu KD, Bird DM (2004) Cytokinins play opposite roles in lateral root formation, and nematode and rhizobial symbioses. Plant J 38:203–214PubMedCrossRefGoogle Scholar
  144. Lucas M, Godin C, Jay-Allemand C, Laplaze L (2007) Auxin fluxes in the root apex co-regulate gravitropism and lateral root initiation. J Exp Bot 59:56–66Google Scholar
  145. Maharjan PM, Schulz B, Choe S (2011) BIN2/DWF12 antagonistically transduces brassinosteroid and auxin signals in the roots of Arabidopsis. J Plant Biol 54:126–134CrossRefGoogle Scholar
  146. Mähönen H, Törmäkangas M, Pischke S, Helariutta K (2006) Cytokinins regulate a bidirectional phosphorelay network in Arabidopsis. Curr Biol 16:1116–1122PubMedCrossRefGoogle Scholar
  147. Malamy JE (2005) Intrinsic and environmental response pathways that regulate root system architecture. Plant Cell Environ 28:67–77PubMedCrossRefGoogle Scholar
  148. Malamy JE, Benfey PN (1997) Organization and cell differentiation in lateral roots of Arabidopsis thaliana. Development 124:33–44PubMedGoogle Scholar
  149. Marchant A, Bhalerao R, Casimiro I, Eklöf J, Casero PJ, Bennett M, Sandberg G (2002) AUX1 promotes lateral root formation by facilitating Indole-3-Acetic Acid distribution between sink and source tissues in the Arabidopsis seedling. Plant Cell 14(3):589–597PubMedPubMedCentralCrossRefGoogle Scholar
  150. Marhavý P, Vanstraelen M, De Rybel B, Zhaojun D, Bennett MJ, Beeckman T, Benková E (2013) Auxin reflux between the endodermis and pericycle promotes lateral root initiation. EMBO J 32:149–158PubMedCrossRefGoogle Scholar
  151. Masucci JD, Schiefelbein JW (1994) The rdh6 mutation of Arabidopsis thaliana alters root-hair initiation through an auxin-and-ethylene associated process. Plant Physiol 106:1335–1346PubMedPubMedCentralCrossRefGoogle Scholar
  152. Masucci JD, Schiefelbein JW (1996) Hormones act downstream of TTG and GL2 to promote root hair outgrowth during epidermis development in the Arabidopsis root. Plant Cell 8:1505–1517PubMedPubMedCentralCrossRefGoogle Scholar
  153. Matsumoto-Kitano M, Kusumoto T, Tarkowski P, Kinoshita-Tsujimura K, Vaclavikova K, Miyawaki K, Kakimoto T (2008) Cytokinins are central regulators of cambial activity. Proc Natl Acad Sci U S A 105:20027–20031PubMedPubMedCentralCrossRefGoogle Scholar
  154. Mendes AFS, Cidade LC, Otoni WC, Soares-Filho WS, Costa WGC (2011) Role of auxins, polyamines and ethylene in root formation and growth in sweet orange. Biol Plant 55:375–378CrossRefGoogle Scholar
  155. Michniewicz M, Zago MK, Abas L, Weijers D, Schweighofer A, Meskiene I et al (2007) Antagonistic regulation of PIN phosphorylation by PP2A and PINOID directs auxin flux. Cell 130:1044–1056PubMedCrossRefGoogle Scholar
  156. Miyawaki K, Matsumoto-Kitano M, Kakimoto T (2004) Expression of cytokinin biosynthetic isopentenyl transferase genes in Arabidopsis: tissue specificity and regulation by auxin, cytokinin, and nitrate. Plant J 37:128–138PubMedCrossRefGoogle Scholar
  157. Miyawaki K, Tarkowski P, Matsumoto-Kitano M, Kato T, Sato S, Tarkowska D, Tabata S, Sandberg G, Kakimoto T (2006) Roles of Arabidopsis ATP/ADP isopentenyl transferases and tRNA isopentenyl transferases in cytokinin biosynthesis. Proc Natl Acad Sci USA 103:16598–16603PubMedPubMedCentralCrossRefGoogle Scholar
  158. Monzon GC, Pinedo M, Lamattina L, Canal L (2012) Sunflower root growth regulation: the role of jasmonic acid and its relation with auxins. Plant Growth Regul 66:129–136CrossRefGoogle Scholar
  159. Moore S, Zhang X, Mudge A, Rowe JH, Topping JF, Liu J, Lindsey K (2015) Spatiotemporal modelling of hormonal crosstalk explains the level and patterning of hormones and gene expression in Arabidopsis thaliana wild-type and mutant roots. New Phytol 207:1110–1122PubMedPubMedCentralCrossRefGoogle Scholar
  160. Moreno-Risueno MA, Van Norman JM, Moreno A, Zhang J, Ahnert SE, Benfey PN (2010) Oscillating gene expression determines competence for periodic Arabidopsis root branching. Science 329:1306–1311PubMedPubMedCentralCrossRefGoogle Scholar
  161. Moubayidin L, Perilli S, Dello Ioio R et al (2010) The rate of cell differentiation controls the Arabidopsis root meristem growth phase. Curr Biol 20:1138–1143PubMedCrossRefGoogle Scholar
  162. Moubayidin L, Di Mambro R, Sozzani R, Pacifici E, Salvi E, Terpstra I et al (2013) Spatial coordination between stem cell activity and cell differentiation in the root meristem. Dev Cell 26:405–415PubMedPubMedCentralCrossRefGoogle Scholar
  163. Mravec J, Petrasek J, Li N, Boeren S, Karlova R, Kitakura S et al (2011) Cell plate restricted association of DRP1A and PIN proteins is required for cell polarity establishment in Arabidopsis. Curr Biol 21:1055–1060PubMedCrossRefGoogle Scholar
  164. Mu Y, Zou M, Sun X, HeB, Xu X, Liu Y, Zhang L, Chi1 W (2017) BASIC PENTACYSTEINE proteins repress ABSCISIC ACID INSENSITIVE4 expression via direct recruitment of the Polycomb-Repressive Complex 2 in Arabidopsis root development. Plant Cell Physiol 58(3):607–621Google Scholar
  165. Muday GK, Rahman A, Binder BM (2012) Auxin and ethylene: collaborators or competitors? Trends Plant Sci 17:181–195CrossRefPubMedGoogle Scholar
  166. Muller B, Sheen J (2008) Cytokinin and auxin interaction in root stem-cell specification during early embryogenesis. Nature 453:1094–1097PubMedPubMedCentralCrossRefGoogle Scholar
  167. Murase K, Hirano Y, Sun TP, Hakoshima T (2008) Gibberellin induced DELLA recognition by the gibberellin receptor GID1. Nature 456:459–463PubMedCrossRefGoogle Scholar
  168. Nakamura A, Nakajima N, Goda H, Shimada Y, Hayashi K, Nozaki H, Asami T, Yoshida S, Fujioka S (2006) Arabidopsis Aux/IAA genes are involved in brassinosteroid-mediated growth responses in a manner dependent on organ type. Plant J 45:193–205PubMedCrossRefGoogle Scholar
  169. Nibau C, Gibbs DJ, Coates JC (2008) Branching out in new directions: the control of root architecture by lateral root formation. New Phytol 179:595–614PubMedCrossRefGoogle Scholar
  170. Nieuwland J, Maughan S, Dewitte W, Scofield S, Sanz L, Murray JA (2009) The D-type cyclin CYCD4;1 modulates lateral root density in Arabidopsis by affecting the basal meristem region. Proc Natl Acad Sci 106:22528–22533PubMedPubMedCentralCrossRefGoogle Scholar
  171. Okushima Y, Fukaki H, Onoda M, Theologis A, Tasaka M (2007) ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis. Plant Cell 19:118–130PubMedPubMedCentralCrossRefGoogle Scholar
  172. Overvoorde P, Fukaki H, Beeckman T (2010) Auxin control of root development. Cold Spring Harb Perspect Biol 2:a001537PubMedPubMedCentralCrossRefGoogle Scholar
  173. Pacifici E, Polverari L, Sabatini S (2015) Plant hormone cross-talk: the pivot of root growth. J Exp Bot 66:1113–1121PubMedCrossRefPubMedCentralGoogle Scholar
  174. Palavan-Unsal N (1987) Polyamine metabolism in the roots of Phaseolus vulgaris. Interaction of inhibitors of polyamine biosynthesis with putrescine in growth and polyamine biosynthesis. Plant Cell Physiol 28:565–572Google Scholar
  175. Pandya-Kumar N, Shema R, Kumar M, Mayzlish-Gati E, Levy D, Zemach H et al (2014) Strigolactone analog GR24 triggers changes in PIN2 polarity, vesicle trafficking and actin filament architecture. New Phytol 202:1184–1196PubMedCrossRefGoogle Scholar
  176. Parizot B, Laplaze L, Ricaud L, Boucheron-Dubuisson E, Bayle V, Bonke M et al (2008) Diarch symmetry of the vascular bundle in Arabidopsis root encompasses the pericycle and is reflected in distich lateral root initiation. Plant Physiol 146:140–148PubMedPubMedCentralCrossRefGoogle Scholar
  177. Parry G, Delbarre A, Marchant A, Swarup R, Napier R, Perrot-Rechenmann C, Bennett MJ (2001) Novel auxin transport inhibitors phenocopy the auxin influx carrier mutation aux1. Plant J 25:399–406PubMedCrossRefGoogle Scholar
  178. Peret B, De Rybel B, Casimiro I, Benkova E, Swarup R, Laplaze L, Beeckman T, Bennett MJ (2009) Arabidopsis lateral root development: an emerging story. Trends Plant Sci 14:399–408PubMedCrossRefGoogle Scholar
  179. Peret B, Desnos T, Jost R, Kanno S, Berkowitz O, Nussaume L (2014) Root architecture responses: In search of phosphate. Plant Physiol 166:1713–1723PubMedPubMedCentralCrossRefGoogle Scholar
  180. Perilli S, Moubayidin L, Sabatini S (2013) Molecular basis of Cytokinin action during Root development. In: Beeckman T (ed) Plant Roots-The Hidden Half, CRC Press, pp 1–12Google Scholar
  181. Petersson SV, Johansson AI, Kowalczyk M, Makoveychuk A, Wang JY, Moritz T et al (2009) An auxin gradient and maximum in the Arabidopsis root apex shown by high-resolution cell-specific analysis of IAA distribution and synthesis. Plant Cell 21(6):1659–1668CrossRefGoogle Scholar
  182. Petricka JJ, Winter CM, Benfey PN (2012) Control of Arabidopsis root development. In: Merchant SS (ed) Annual Review of Plant Biology. Palo Alto, CA: Annual Reviews, pp 563–590Google Scholar
  183. Pitts RJ, Cernac A, Estelle M (1998) Auxin and ethylene promote root hair elongation in Arabidopsis. Plant J 16:553–560CrossRefPubMedGoogle Scholar
  184. Rahman A, Amakawa T, Goto N, Tsurumi S (2001) Auxin is a positive regulator for ethylene-mediated response in the growth of Arabidopsis roots. Plant Cell Physiol 42:301–307PubMedCrossRefGoogle Scholar
  185. Rahman A, Hosokawa S, Oono Y, Amakawa T, Goto N, Tsurumi S (2002) Auxin and ethylene response interactions during Arabidopsis root hair development dissected by auxin influx modulators. Plant Physiol 130:1908–1917PubMedPubMedCentralCrossRefGoogle Scholar
  186. Rani Debi B, Taketa S, Ichii M (2005) Cytokinin inhibits lateral root initiation but stimulates lateral root elongation in rice (Oryza sativa). J Plant Physiol 162:507–515PubMedCrossRefGoogle Scholar
  187. Raya-Gonzalez J, Pelagio-Flores R, Lopez-Bucio J (2012) The jasmonate receptor COI1 plays a role in jasmonate-induced lateral root formation and lateral root positioning in Arabidopsis thaliana. J Plant Physiol 169:1348–1358PubMedCrossRefGoogle Scholar
  188. Razem FA, El-Kereamy A, Abrams SR, Hill RD (2006) The RNA-binding protein FCA is an abscisic acid receptor. Nature 439:290–294PubMedCrossRefGoogle Scholar
  189. Riefler M, Novak O, Strnad M, Schmülling T (2006) Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Cell 18:40–54PubMedPubMedCentralCrossRefGoogle Scholar
  190. Rosquete MR, von Wangenheim D, Marhavy P, Barbez E, Stelzer EH, Benkova E, Maizel A, Kleine-Vehn J (2013) An auxin transport mechanism restricts positive orthogravitropism in lateral roots. Curr Biol 23:817–822PubMedCrossRefPubMedCentralGoogle Scholar
  191. Rowe JH, Topping JF, Liu J, Lindsey K (2016) Abscisic acid regulates root growth under osmotic stress conditions via an interacting hormonal network with cytokinin, ethylene and auxin. New Phytol 211:225–239PubMedPubMedCentralCrossRefGoogle Scholar
  192. Ruyter-Spira C, Kohlen W, Charnikhova T, van Zeijl A, van Bezouwen L, de Ruijter N et al (2011) Physiological effects of the synthetic strigolactone analog GR24 on root system architecture in Arabidopsis: another belowground role for strigolactones? Plant Physiol 155:721–734PubMedCrossRefGoogle Scholar
  193. Ruzicka K, Ljung K, Vanneste S, Podhorska R, Beechman T, Friml J, Benkova E (2007) Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution. Plant Cell 19:2197–2212PubMedPubMedCentralCrossRefGoogle Scholar
  194. Ruzicka K, Simaskova M, Duclercq J, Petrasek J, Zazimalova E, Simon S, Friml J, Van Montagu MCE, Benkova E (2009) Cytokinin regulates root meristem activity via modulation of the polar auxin transport. Proc Natl Acad Sci U S A 106:4284–4289PubMedPubMedCentralCrossRefGoogle Scholar
  195. Sabatini S, Beis D, Wolkenfelt H, Murfett J, Guilfoyle T, Malamy J, Benfey P, Leyser O, Bechtold N, Weisbeek P, Scheres B (1999) An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell 99:463–472PubMedCrossRefGoogle Scholar
  196. Sabatini S, Heidstra R, Wildwater M, Scheres B (2003) SCARECROW is involved in positioning the stem cell niche in the Arabidopsis root meristem. Genes Dev 17:354–358PubMedPubMedCentralCrossRefGoogle Scholar
  197. Saini S, Sharma I, Kaur N, Pati PK (2013) Auxin: A master regulator in plant root development. Plant Cell Rep 32:741–757PubMedCrossRefGoogle Scholar
  198. Santner A, Mark Estelle M (2009) Recent advances and emerging trends in plant hormone signalling. Nature 459:1071–1078PubMedCrossRefGoogle Scholar
  199. Sarkar AK, Luijten M, Miyashima S, Lenhard M, Hashimoto T, Nakkajima K, Scheres B, Heidstra R, Laux T (2007) Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers. Nature 446:811–814PubMedCrossRefGoogle Scholar
  200. Sauer M, Balla J, Luschnig C, Wisniewska J, Reinohl V, Friml J, Benkova E (2006) Canalization of auxin flow by Aux/IAA-ARF-dependent feedback regulation of PIN polarity. Genes Dev 20:2902–2911PubMedPubMedCentralCrossRefGoogle Scholar
  201. Scacchi E, Salinas P, Gujas B, Santuari L, Krogan N, Ragni L, Berleth T, Hardtke CS (2010) Spatio-temporal sequence of cross regulatory events in root meristem growth. Proc Natl Acad Sci U S A 107:22734–22739PubMedPubMedCentralCrossRefGoogle Scholar
  202. Scheres B, Wolkenfelt H, Willemsen V, Terlouw M, Lawson E, Dean C, Weisbeek P (1994) Embryonic origin of the Arabidopsis primary root and root meristem initials. Development 120:2475–2487Google Scholar
  203. Scheres B, Di Laurenzio L, Willemsen V, Hauser M-T, Janmaat K, Weisbeek P, Benfey PN (1995) Mutations affecting the radial organisation of the Arabidopsis root display specific defects throughout the embryonic axis. Development 121:53–62Google Scholar
  204. Schiefelbein JW (2000) Constructing a plant cell. The genetic control of root hair development. Plant Physiol 124:1525–1531PubMedPubMedCentralCrossRefGoogle Scholar
  205. Schwager KM, Calderon-Villalobos LI, Dohmann EM, Willige BC, Knierer S, Nill C, Schwechheimer C (2007) Characterization of the VIER F-BOX PROTEINE genes from Arabidopsis reveals their importance for plant growth and development. Plant Cell 19:1163–1178PubMedPubMedCentralCrossRefGoogle Scholar
  206. Sena G, Wang X, Liu HY, Hofhuis H, Birnbaum KD (2009) Organ regeneration does not require a functional stem cell niche in plants. Nature 457:1150–1153PubMedPubMedCentralCrossRefGoogle Scholar
  207. Shani E, Weinstain R, Zhang Y, Castillejo C, Kaiserli E, Chory J, Tsien RY, Estelle M (2013) Gibberellins accumulate in the elongating endodermal cells of Arabidopsis root. Proc Natl Acad Sci USA 110:4834–4839PubMedPubMedCentralCrossRefGoogle Scholar
  208. Sharp RE (2002) Interaction with ethylene: changing views on the role of abscisic acid in root and shoot growth responses to water stress. Plant Cell Environ 25:211–222PubMedCrossRefGoogle Scholar
  209. Shimada A, Ueguchi-Tanaka M, Nakatsu T, Nakajima M, Naoe Y, Ohmiya H, Kato H, Matsuoka M (2008) Structural basis for gibberellins recognition by its receptor GID1. Nature 456:520–523PubMedCrossRefGoogle Scholar
  210. Shkolnik-Inbar D, Bar-Zvi D (2010) ABI4 mediates abscisic acid and cytokinin inhibition of lateral root formation by reducing polar auxin transport in Arabidopsis. Plant Cell 22:3560–3573PubMedPubMedCentralCrossRefGoogle Scholar
  211. Silverstone AL, Chang C, Krol E, Sun TP (1997) Developmental regulation of the gibberellin biosynthetic gene GA1 in Arabidopsis thaliana. The Plant J 12:9–19PubMedCrossRefGoogle Scholar
  212. Singh M, Gupta A, Laxmi A (2014) Glucose control of root growth direction in Arabidopsis thaliana. J Exp Bot 65:2981–2993PubMedPubMedCentralCrossRefGoogle Scholar
  213. Smith MA, Davies PJ (1985) Separation and quantification of polyamines in plant tissue by high performance liquid chromatography of their dansyl derivatives. Plant Physiol 78:89–91PubMedPubMedCentralCrossRefGoogle Scholar
  214. Sozzani R, Cui H, Moreno-Risueno MA, Busch W, Van Norman JM, Vernoux T, Brady SM, Dewitte W, Murray JA, Benfey PN (2010) Spatiotemporal regulation of cell-cycle genes by SHORTROOT links patterning and growth. Nature 466:128–132PubMedPubMedCentralCrossRefGoogle Scholar
  215. Spalding EP, Wu G, Lewis DR (2007) Mutations in Arabidopsis multidrug resistance-like ABC transporters separate the roles of acropetal and basipetal auxin transport in lateral root development. Plant Cell 19:1826–1837PubMedPubMedCentralCrossRefGoogle Scholar
  216. Steinmann T, Geldner N, Grebe M, Mangold S, Jackson CL, Paris S, Galweiler L, Palme K, Jurgens G (1999) Coordinated polar localisation of auxin efflux carrier PIN1 by GNOM ARF GEF. Science 286:316–318PubMedCrossRefGoogle Scholar
  217. Stepanova AN, Hoyt JM, Hamilton AA, Alonso JM (2005) A link between ethylene and auxin uncovered by the characterization of two root-specific ethylene-insensitive mutants in Arabidopsis. Plant Cell 17:2230–2242PubMedPubMedCentralCrossRefGoogle Scholar
  218. Stepanova AN, Robertson-Hoyt J, Yun J, Benavente LM, Xie DY, Dolezal K, Schlereth A, Jurgens G, Alonso JM (2008) TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell 133:177–191PubMedCrossRefGoogle Scholar
  219. Strader LC, Bartel B (2008) A new path to auxin. Nat Chem Biol 4:337–339PubMedCrossRefGoogle Scholar
  220. Strader LC, Bartel B (2009) The Arabidopsis PLEIOTROPIC DRUG RESISTANCE8/ABCG36 ATP binding cassette transporter modulates sensitivity to the auxin precursor indole-3-butyric acid. Plant Cell 21:1992–2007PubMedPubMedCentralCrossRefGoogle Scholar
  221. Street IH, Aman S, Zubo Y, Ramzan A, Wang X, Shakeel SN, Kieber JJ, Schaller GE (2015) Ethylene inhibits cell proliferation of the Arabidopsis Root Meristem. Plant Physiol 169:338–350PubMedPubMedCentralCrossRefGoogle Scholar
  222. Sun J, Xu Y, Ye S, Jiang H, Chen Q, Liu F, Zhou W, Chen R, Li X, Tietz O, Wu X, Cohen JD, Palme K, Li C (2009) Arabidopsis ASA1 is important for jasmonate-mediated regulation of auxin biosynthesis and transport during lateral root formation. Plant Cell 21:1495–1511PubMedPubMedCentralCrossRefGoogle Scholar
  223. Swarup R, Friml J, Marchant A, Ljung K, Sandberg G, Palme K, Bennett M (2001) Localization of the auxin permease AUX1 suggests two functionally distinct hormone transport pathways operate in the Arabidopsis root apex. Genes Dev 15:2648–2653PubMedPubMedCentralCrossRefGoogle Scholar
  224. Swarup R, Kramer EM, Perry P, Knox K, Leyser HM, Haseloff J, Beemster GT, Bhalerao R, Bennett MJ (2005) Root gravitropism requires lateral root cap and epidermal cells for transport and response to a mobile auxin signal. Nat Cell Biol 7:1057–1065PubMedCrossRefPubMedCentralGoogle Scholar
  225. Swarup R, Perry P, Hagenbeek D, Van Der Straeten D, Beemster GT, Sandberg G, Bhalerao R, Ljung K, Bennet MJ (2007) Ethylene upregulates auxin biosynthesis in Arabidopsis seedlings to enhance inhibition of root cell elongation. Plant Cell 19:2186–2196PubMedPubMedCentralCrossRefGoogle Scholar
  226. Swarup K, Benkova E, Swarup R, Casimiro I, Peret B, Yang Y et al (2008) The auxin influx carrier LAX3 promotes lateral root emergence. Nat Cell Biol 10:946–954PubMedCrossRefGoogle Scholar
  227. Szemenyei H, Hannon M, Long JA (2008) TOPLESS mediates auxin dependent transcriptional repression during Arabidopsis embryogenesis. Science 319:1384–1386PubMedCrossRefGoogle Scholar
  228. Tan BC, Joseph LM, Deng WT, Liu L, Li QB, Cline K, McCarty DR (2003) Molecular characterization of the Arabidopsis 9-cis epoxycarotenoid dioxygenase gene family. Plant J 35:44–56PubMedCrossRefGoogle Scholar
  229. Taniguchi M, Sasaki N, Tsuge T, Aoyama T, Oka A (2007) ARR1 directly activates cytokinin response genes that encode proteins with diverse regulatory functions. Plant Cell Physiol 48:263–277PubMedCrossRefGoogle Scholar
  230. Tanimoto M, Roberts K, Dolan L (1995) Ethylene is a positive regulator of root hair development in Arabidopsis thaliana. Plant J 8:943–948PubMedPubMedCentralCrossRefGoogle Scholar
  231. Tao Y, Ferrer JL, Ljung K, Pojer F, Hong F, Long JA et al (2008) Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell 133:164–176PubMedPubMedCentralCrossRefGoogle Scholar
  232. Teale WD, Paponov IA, Palme K (2006) Auxin in action: signalling, transport and the control of plant growth and development. Nat Rev Mol Cell Biol 7:847–859PubMedCrossRefGoogle Scholar
  233. Thole JM, Beisner ER, Liu J, Venkova SV, Strader LC (2014) Abscisic acid regulates root elongation through the activities of auxin and ethylene in Arabidopsis thaliana G3-Genes Genomes. Genetics 4:1259–1274Google Scholar
  234. Thomann A, Lechner E, Hansen M, Dumbliauskas E, Parmentier Y, Kieber J, Scheres B, Genschik P (2009) Arabidopsis CULLIN3 genes regulate primary root growth and patterning by ethylene-dependent and -independent mechanisms. PLoS Genet 5:e1000328PubMedPubMedCentralCrossRefGoogle Scholar
  235. Tian Q, Nagpal P, Reed JW (2003) Regulation of Arabidopsis SHY2/IAA3 protein turnover. Plant J 36:643–651PubMedCrossRefGoogle Scholar
  236. Tiwari SB, Wang XJ, Hagen G, Guilfoyle TJ (2001) Aux/IAA proteins are active repressors, and their stability and activity are modulated by auxin. Plant Cell 13:2809–2822PubMedPubMedCentralCrossRefGoogle Scholar
  237. Topp CN, Iyer-Pascuzzi AS, Anderson JT, Lee CR, Zurek PR, Symonova O et al (2013) 3D phenotyping and quantitative trait locus mapping identify core regions of the rice genome controlling root architecture. Proc Natl Acad Sci USA 110:E1695–E1704PubMedPubMedCentralCrossRefGoogle Scholar
  238. Topping JF, Lindsey K (1997) Promoter trap markers differentiate structural and positional components of polar development in Arabidopsis. Plant Cell 9:1713–1725PubMedPubMedCentralCrossRefGoogle Scholar
  239. Truernit E, Siemering KR, Hodge S, Grbic V, Haseloff J (2006) A map of KNAT gene expression in the Arabidopsis root. Plant Mol Biol 60:1–20PubMedCrossRefGoogle Scholar
  240. Tsurumi S, Wada S (1980) Transport of shoot- and cotyledon-applied indole-3-acetic acid to Vicia faba root. Plant Cell Physiol 21:803–816CrossRefGoogle Scholar
  241. Ubeda-Tomas S, Beemster GTS, Bennett MJ (2012) Hormonal regulation of root growth: integrating local activities into global behaviour. Trends Plant Sci 17:326–331PubMedCrossRefGoogle Scholar
  242. van den Berg C, Willemsen V, Hendriks G, Weisbeek P, Scheres B (1997) Short-range control of cell differentiation in the Arabidopsis root meristem. Nature 390:287–289PubMedCrossRefPubMedCentralGoogle Scholar
  243. Vanneste S, Friml J (2009) Auxin: a trigger for change in plant development. Cell 136:1005–1016PubMedCrossRefGoogle Scholar
  244. Vanneste S, De Rybel B, Beemster GT, Ljung K, De Smet I, Van Isterdael G, Naudts M, Iida R, Gruissem W, Tasaka M, Inzé D, Fukaki H, Beeckman T (2005) Cell cycle progression in the pericycle is not sufficient for SOLITARY ROOT/IAA14-mediated lateral root initiation in Arabidopsis thaliana. Plant Cell 17:3035–3050PubMedPubMedCentralCrossRefGoogle Scholar
  245. Vellosillo T, Martinez M, Lopez MA, Vicente J, Cascon T, Dolan L, Hamberg M, Castresana C (2007) Oxylipins produced by the 9-lipoxygenase pathway in Arabidopsis regulate lateral root development and defence responses through a specific signalling cascade. Plant Cell 19:831–846PubMedPubMedCentralCrossRefGoogle Scholar
  246. Verstraeten I, Schotte S, Geelen D (2014) Hypocotyl adventitious root organogenesis differs from lateral root development. Front Plant Sci 5:495PubMedPubMedCentralCrossRefGoogle Scholar
  247. Vieten A, Vanneste S, Wisniewska J, Benkova E, Benjamins R, Beeckman T, Luschnig C, Friml J (2005) Functional redundancy of PIN proteins is accompanied by auxin-dependent cross-regulation of PIN expression. Development 132:4521–4531PubMedCrossRefGoogle Scholar
  248. Voegele A, Linkies A, Muller K, Leubner-Metzger G (2011) Members of the gibberellin receptor gene family GID1 (GIBBERELLININSENSITIVE DWARF1) play distinct roles during Lepidium sativum and Arabidopsis thaliana seed germination. J Exp Bot 62:5131–5147PubMedPubMedCentralCrossRefGoogle Scholar
  249. Wabnik K, Kleine-Vehn J, Balla J, Sauer M, Naramoto S, Reinohl V, Merks RMH, Govaerts W, Friml J (2010) Emergence of tissue polarization from synergy of intracellular and extracellular auxin signaling. Mol Syst Biol 6:447PubMedPubMedCentralCrossRefGoogle Scholar
  250. Wang JW, Wang LJ, Mao YB, Cai WJ, Xue HW, Chen XY (2005a) Control of root cap formation by Micro RNA targeted auxin response factors in Arabidopsis. Plant Cell 17:2204–2216PubMedPubMedCentralCrossRefGoogle Scholar
  251. Wang X, Goshe MB, Soderblom EJ, Phinney BS, Kuchar JA, Li J, Asami T, Yoshida S, Huber SC, Clouse SD (2005b) Identification and functional analysis of in vivo phosphorylation sites of the Arabidopsis BRASSINOSTEROID INSENSITIVE1 receptor kinase. Plant Cell 17:1685–1703PubMedPubMedCentralCrossRefGoogle Scholar
  252. Wang JR, Hu H, Wang GH, Li J, Chen JY, Wu P (2009) Expression of PIN Genes in Rice (Oryza sativa L.): tissue specificity and regulation by hormones. Mol Plant 2:823–831PubMedCrossRefGoogle Scholar
  253. Wang L, Hua D, He J, Duan Y, Chen Z, Hong X, Gong Z (2011) Auxin Response Factor2 (ARF2) and its regulated homeodomain gene HB33 mediate abscisic acid response in Arabidopsis. PLoS Genet 7:e1002172PubMedPubMedCentralCrossRefGoogle Scholar
  254. Watson G (2004) Effect of transplanting and paclobutrazol on root growth of ’Green Column’ black maple and ’Summit’ green ash. J Environ Hortic 22:209–212Google Scholar
  255. Werner T, Motyka V, Laucou V, Smets R, Onckelen HV, Schmuelling T (2003) Cytokinin-deficient transgenic Arabidopsis plants show functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 15:2532–2550PubMedPubMedCentralCrossRefGoogle Scholar
  256. Willige BC, Isono E, Richter R, Zourelidou M, Schwechheimer C (2011) Gibberellin regulates PIN-FORMED abundance and is required for auxin transport-dependent growth and development in Arabidopsis thaliana. Plant Cell 23:2184–2195PubMedPubMedCentralCrossRefGoogle Scholar
  257. Wilson AK, Pickett FB, Turner JC, Estelle M (1990) A dominant mutation in Arabidopsis confers resistance to auxin, ethylene and abscisic acid. Mol Gen Genet 222:377–383PubMedCrossRefGoogle Scholar
  258. Wu G, Lewis DR, Spalding EP (2007) Mutations in Arabidopsis multidrug resistance-like ABC transporters separate the roles of acropetal and basipetal auxin transport in lateral root development. Plant Cell 19:1826–1837PubMedPubMedCentralCrossRefGoogle Scholar
  259. Wysocka-Diller JW, Helariutta Y, Fukaki H, Malamy JE, Benfey PN (2000) Molecular analysis of SCARECROW function reveals a radial patterning mechanism common to root and shoot. Development 127:595–603PubMedGoogle Scholar
  260. Yamada M, Greenham K, Prigge MJ, Jensen PJ, Estelle M (2009) The TRANSPORT INHIBITOR RESPONSE2 gene is required for auxin synthesis and diverse aspects of plant development. Plant Physiol 151:168–179PubMedPubMedCentralCrossRefGoogle Scholar
  261. Yang CJ, Zhang C, Lu YN, Jin JQ, Wang XL (2011) The mechanisms of brassinosteroids’ action: from signal transduction to plant development. Mol Plant 4:588–600PubMedCrossRefGoogle Scholar
  262. Yuan H, Hao Q, Li W, Yan C, Yan N, Yin P (2014) Identification and characterization of ABA receptors in Oryza sativa. PLoS One 9(4):e95246CrossRefGoogle Scholar
  263. Zazımalova E, Murphy AS, Yang H, Hoyerova K, Hosek P (2010) Auxin transporters-why so many? Cold Spring Harb Perspect Biol 2:a001552PubMedPubMedCentralCrossRefGoogle Scholar
  264. Zhang X, Xiong Y, DeFraia C, Schmelz E, Mou Z (2008) The Arabidopsis MAP kinase kinase 7. A crosstalk point between auxin signaling and defense responses? Plant Signal Behav 3:272–274PubMedPubMedCentralCrossRefGoogle Scholar
  265. Zhang W, Swarup R, Bennett M, Schaller GE, Kieber JJ (2013) Cytokinin induces cell division in the quiescent center of the Arabidopsis root apical meristem. Curr Biol 23:1979–1989PubMedCrossRefGoogle Scholar
  266. Zhao Y, Xing L, Wang X, Hou Y-J, Gao J, Wang P et al (2014) The ABA receptor PYL8 promotes lateral root growth by enhancing MYB77-dependent transcription of auxin-responsive genes. Sci Signal 7:ra53.  https://doi.org/10.1126/scisignal.2005051 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Priyanka Singla
    • 1
  • Surinder Kaur
    • 1
  1. 1.Department of Botany, SGTB Khalsa CollegeUniversity of DelhiDelhiIndia

Personalised recommendations