In Situ Spectroscopic Ellipsometry in the Field of Industrial Membranes

  • Wojciech OgiegloEmail author
Part of the Springer Series in Surface Sciences book series (SSSUR, volume 52)


Industrial membranes are playing an ever increasing role in the ongoing and necessary transition of our society towards more sustainable growth and development. Already today membranes offer more energy efficient alternatives to the traditional often very energy intensive industrial separation processes such as (cryogenic) distillation or crystallization. For many years reverse osmosis membranes have offered a viable method for the production of potable water via desalination processes and their significance continuously increases. Recently, membrane technology has been demonstrated to play a significant role in potential methods to generate or store energy on an industrial scale. For molecular separations often the key for an efficient membrane operation often lies in the application of an (ultra-) thin organic polymer, inorganic or hybrid selective layer whose interaction with the separated mixture defines the membrane performance. Ellipsometry has started gaining increasing attention in this area due to its large potential to conduct in-situ, non-destructive and very precise analysis of the film-fluid interactions. In this chapter, we aim to review the important recent developments in the application of ellipsometry in industrial membrane-related studies. We briefly introduce the basics of membrane science and discuss the used experimental setups and optical models. Further we focus on fundamental studies of sorption, transport and penetrant-induced phenomena in thin films exposed to organic solvents or high pressure gases. The application of in-situ ellipsometry is discussed for studies of new, promising membrane materials and the use of the technique for emerging direct studies of operating membranes is highlighted.


In-situ ellipsometry Industrial membranes Ultra-thin polymer films Nanoconfinement effects 


  1. 1.
    W.L. McCabe, J.C. Smith, P. Harriott, Unit Operations of Chemical Engineering (McGraw-Hill, New York, 1993)Google Scholar
  2. 2.
    R.W. Baker, Membrane Technology and Applications (Wiley, New York, 2004)CrossRefGoogle Scholar
  3. 3.
    J.G. Wijmans, R.W. Baker, J. Memb. Sci. 107, 1–21 (1995)Google Scholar
  4. 4.
    I. Pinnau, J. Memb. Sci. 37, 81–88 (1988)Google Scholar
  5. 5.
    R. Bounaceur, N. Lape, D. Roizard, C. Vallieres, E. Favre, Energy 31, 2556–2570 (2006)CrossRefGoogle Scholar
  6. 6.
    L.M. Robeson, J. Memb. Sci. 320, 390–400 (2008)Google Scholar
  7. 7.
    A.O. Yazaydin, R.Q. Snurr, T.-H. Park, K. Koh, J. Liu, M.D. Levan, A.I. Benin, P. Jakubczak, M. Lanuza, D.B. Galloway, J.J. Low, R.R. Willis, J. Am. Chem. Soc. 131, 18198–9 (2009)CrossRefGoogle Scholar
  8. 8.
    J. Yang, 782–835 (2012)Google Scholar
  9. 9.
    R.B. Getman, Y. Bae, C.E. Wilmer, R.Q. Snurr, Chem. Rev. 112, 703–23 (2012)Google Scholar
  10. 10.
    D.E. Jiang, V.R. Cooper, S. Dai, Nano Lett. 9, 4019–4024 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    J. Spiece, D.E. Martinez-Tong, M. Sferrazza, A. Nogales, S. Napolitano, Soft Matter. 11, 6179–6186 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    J.L. Keddie, R.A.L. Jones, R.A. Cory, Faraday Discuss 98, 219–230 (1994)Google Scholar
  13. 13.
    R.a L. Jones, Curr. Opin. Colloid Interface Sci. 4, 153–158 (1999)Google Scholar
  14. 14.
    N.R. Horn, D.R. Paul, Macromolecules 45, 2820–2834 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    N.R. Horn, D.R. Paul, Polymer 52, 1619–1627 (2011)CrossRefGoogle Scholar
  16. 16.
    M. Erber, M. Tress, E.U. Mapesa, A. Serghei, K.-J. Eichhorn, B. Voit, F. Kremer, Macromolecules 43, 7729–7733 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    M. Erber, U. Georgi, J. Müller, K.-J. Eichhorn, B. Voit, Eur. Polym. J. 46, 2240–2246 (2010)CrossRefGoogle Scholar
  18. 18.
    M. Erber, A. Khalyavina, K.-J. Eichhorn, B.I. Voit, Polymer 51, 129–135 (2010)CrossRefGoogle Scholar
  19. 19.
    H. Fujiwara, Spectroscopic Ellipsometry Principles and Applications (Wiley, NJ, 2007)CrossRefGoogle Scholar
  20. 20.
    W. Ogieglo, H. Wormeester, K.-J. Eichhorn, M. Wessling, N.E. Benes, Prog. Polym. Sci. 42, 42–78 (2015)CrossRefGoogle Scholar
  21. 21.
    K. Tempelman, E.J. Kappert, M.J.T. Raaijmakers, H. Wormeester, N.E. Benes, Surf. Interface Anal. 49, 538–547 (2017)CrossRefGoogle Scholar
  22. 22.
    S.M. Sirard, P.F. Green, K.P. Johnston, J. Phys. Chem. B 105, 766–772 (2001)CrossRefGoogle Scholar
  23. 23.
    W. Ogieglo, H. Wormeester, M. Wessling, N.E. Benes, Polymer 54, 341–348 (2013)CrossRefGoogle Scholar
  24. 24.
    W. Ogieglo, H. van der Werf, K. Tempelman, H. Wormeester, M. Wessling, A. Nijmeijer, N.E. Benes, J. Memb. Sci. 437, 313–323 (2013)CrossRefGoogle Scholar
  25. 25.
    M.J.T. Raaijmakers, W. Ogieglo, M. Wiese, M. Wessling, A. Nijmeijer, N.E. Benes, A.C.S. Appl, Mater. Interfaces 7, 26977–26988 (2015)CrossRefGoogle Scholar
  26. 26.
    Y. Yampolskii, I. Pinnau, B.D. Freeman, Materials Science of Membranes for Gas and Vapor Separation (Wiley, New York, 2006)CrossRefGoogle Scholar
  27. 27.
    J. de Grooth, W. Ogieglo, W.M. de Vos, M. Gironès, K. Nijmeijer, N.E. Benes, Eur. Polym. J. 55, 57–65 (2014)CrossRefGoogle Scholar
  28. 28.
    W. Ogieglo, J. de Grooth, H. Wormeester, M. Wessling, K. Nijmeijer, N.E. Benes, Thin Solid Films 545, 320–326 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    W. Ogieglo, H. Wormeester, M. Wessling, N.E. Benes, ACS Appl. Mater. Interfaces. 4, 935–943 (2012)CrossRefGoogle Scholar
  30. 30.
    S.M. Sirard, H. Castellanos, P.F. Green, K.P. Johnston, J. Supercrit. Fluids 32, 265–273 (2004)CrossRefGoogle Scholar
  31. 31.
    W. Ogieglo, B. Ghanem, X. Ma, I. Pinnau, M. Wessling, J. Phys. Chem. B (2016)Google Scholar
  32. 32.
    W. Ogieglo, L. Upadhyaya, M. Wessling, A. Nijmeijer, N.E. Benes, J. Memb. Sci. 464, 80–85 (2014)CrossRefGoogle Scholar
  33. 33.
    W. Ogieglo, H. Wormeester, M. Wessling, N.E. Benes, Macromol. Chem. Phys. 214, 2480–2488 (2013)CrossRefGoogle Scholar
  34. 34.
    A.R. Berens, Polymer 18, 697–704 (1977)CrossRefGoogle Scholar
  35. 35.
    A.R. Berens, H.B. Hopfenberg, Polymer 19, 489–496 (1978)CrossRefGoogle Scholar
  36. 36.
    J. Potreck, F. Uyar, H. Sijbesma, K. Nijmeijer, D. Stamatialis, M. Wessling, Phys. Chem. Chem. Phys. 11, 298–308 (2009)CrossRefGoogle Scholar
  37. 37.
    M. Koenig, T. Kasputis, D. Schmidt, K.B. Rodenhausen, K.J. Eichhorn, A.K. Pannier, M. Schubert, M. Stamm, P. Uhlmann, Anal. Bioanal. Chem. (2014)Google Scholar
  38. 38.
    W. Ogieglo, H. Wormeester, M. Wessling, N.E. Benes, Polymer 55, 1737–1744 (2014)CrossRefGoogle Scholar
  39. 39.
    S. Kim, S.a Hewlett, C.B. Roth, J.M. Torkelson, Eur. Phys. J. E 30, 83–92 (2009)Google Scholar
  40. 40.
    C.B. Roth, J.R. Dutcher, J. Electroanal. Chem. 584, 13–22 (2005)CrossRefGoogle Scholar
  41. 41.
    E.A. Baker, P. Rittigstein, J.M. Torkelson, C.B. Roth, J. Polym. Sci. Part B Polym. Phys. 47, 2509–2519 (2009)ADSCrossRefGoogle Scholar
  42. 42.
    J.L. Keddie, Curr. Opin. Colloid Interface Sci. 6, 102–110 (2001)CrossRefGoogle Scholar
  43. 43.
    H. Richardson, I. López-García, M. Sferrazza, J.L. Keddie, Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 70, 51805 (2004)Google Scholar
  44. 44.
    P.J. Flory, M. Volkenstein, Biopolymers 8, 699–700 (1969)CrossRefGoogle Scholar
  45. 45.
    P.J. Flory, J.J. Rehner, J. Chem. Phys. 11, 521–526 (1943)ADSCrossRefGoogle Scholar
  46. 46.
    I.C. Sanchez, R.H. Lacombe, Macromolecules 11, 1145–1156 (1978)ADSCrossRefGoogle Scholar
  47. 47.
    M. Minelli, S. Campagnoli, M.G. De Angelis, F. Doghieri, G.C. Sarti, Macromolecules 44, 4852–4862 (2011)ADSCrossRefGoogle Scholar
  48. 48.
    M. Galizia, K.A. Stevens, Z.P. Smith, D.R. Paul, B.D. Freeman (2016)Google Scholar
  49. 49.
    M.Z. Hossain, A.S. Teja, J. Supercrit. Fluids 96, 313–323 (2015)CrossRefGoogle Scholar
  50. 50.
    K. Kezia, J. Lee, W. Ogieglo, A. Hill, N.E. Benes, S.E. Kentish, J. Memb. Sci. 459, 197–206 (2014)CrossRefGoogle Scholar
  51. 51.
    J.D. Wind, S.M. Sirard, D.R. Paul, P.F. Green, K.P. Johnston, W.J. Koros, Macromolecules 36, 6442–6448 (2003)ADSCrossRefGoogle Scholar
  52. 52.
    W. Ogieglo, M. Wessling, N.E. Benes, Macromolecules 47, 3654–3660 (2014)ADSCrossRefGoogle Scholar
  53. 53.
    J.Q. Pham, S.M. Sirard, K.P. Johnston, P.F. Green, Phys. Rev. Lett. 91, 175503 (2003)ADSCrossRefGoogle Scholar
  54. 54.
    J.Q. Pham, K.P. Johnston, P.F. Green, J. Phys. Chem. B 108, 3457–3461 (2004)CrossRefGoogle Scholar
  55. 55.
    Y. Li, E.J. Park, K.T. Lim, K.P. Johnston, P.F. Green, J. Polym. Sci. Part B Polym. Phys. 45, 1313–1324 (2007)ADSCrossRefGoogle Scholar
  56. 56.
    N. Nijem, H. Wu, P. Canepa, A. Marti, K.J. Balkus, T. Thonhauser, J. Li, Y.J. Chabal, J. Am. Chem. Soc. 134, 15201–15204 (2012)CrossRefGoogle Scholar
  57. 57.
    G. Lu, O.K. Farha, W. Zhang, F. Huo, J.T. Hupp, Adv. Mater. 24, 3970–3974 (2012)CrossRefGoogle Scholar
  58. 58.
    M.R. Khdhayyer, E. Esposito, A. Fuoco, M. Monteleone, L. Giorno, J.C. Jansen, M.P. Attfield, P.M. Budd, Sep. Purif. Technol. 173, 304–313 (2017)CrossRefGoogle Scholar
  59. 59.
    C. Liu, C. Zeng, T.Y. Luo, A.D. Merg, R. Jin, N.L. Rosi, J. Am. Chem. Soc. 138, 12045–12048 (2016)CrossRefGoogle Scholar
  60. 60.
    S. Harms, K. Rätzke, F. Faupel, N. Chaukura, P.M. Budd, W. Egger, L. Ravelli, J. Adhes. 88, 608–619 (2012)CrossRefGoogle Scholar
  61. 61.
    N.B. McKeown, P.M. Budd, Macromolecules 43, 5163–5176 (2010)ADSCrossRefGoogle Scholar
  62. 62.
    A.F. Bushell, M.P. Attfield, C.R. Mason, P.M. Budd, Y. Yampolskii, L. Starannikova, A. Rebrov, F. Bazzarelli, P. Bernardo, J. Carolus Jansen, M. Lanč, K. Friess, V. Shantarovich, V. Gustov, V. Isaeva, J. Memb. Sci. (2013)Google Scholar
  63. 63.
    T. Emmler, K. Heinrich, D. Fritsch, P.M. Budd, N. Chaukura, D. Ehlers, K. Rätzke, F. Faupel, Macromolecules 43, 6075–6084 (2010)ADSCrossRefGoogle Scholar
  64. 64.
    N. Alaslai, B. Ghanem, F. Alghunaimi, I. Pinnau, Polymer 91, 128–135 (2016)CrossRefGoogle Scholar
  65. 65.
    B.S. Ghanem, R. Swaidan, E. Litwiller, I. Pinnau, Adv. Mater. 26, 3688–3692 (2014)CrossRefGoogle Scholar
  66. 66.
    J. Cookney, W. Ogieglo, P. Hrabanek, I. Vankelecom, V. Fila, N.E. Benes, Chem. Commun. 50, 11698–11700 (2014)CrossRefGoogle Scholar
  67. 67.
    N.B. McKeown, P.M. Budd, Chem. Soc. Rev. 35, 675–683 (2006)CrossRefGoogle Scholar
  68. 68.
    D.A.G. Bruggeman, Ann. Phys. 24, 636–664 (1935)CrossRefGoogle Scholar
  69. 69.
    I.S. Chae, T. Luo, G.H. Moon, W. Ogieglo, Y.S. Kang, M. Wessling, Adv. Energy Mater. 6, 1600517 (2016)CrossRefGoogle Scholar
  70. 70.
    H. Wormeester, N.E. Benes, G.I. Spijksma, H. Verweij, B. Poelsema, Thin Solid Films 455–456, 747–751 (2004)CrossRefGoogle Scholar
  71. 71.
    N.E. Benes, G. Spijksma, H. Verweij, H. Wormeester, B. Poelsema, AIChE J. 47, 1212–1218 (2001)CrossRefGoogle Scholar
  72. 72.
    W. Ogieglo, I. Pinnau, M. Wessling, J. Membr. Sci. 546, 206–214 (2018).

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Advanced Membranes and Porous Materials Center4700 King Abdullah University of Science and Technology (KAUST)ThuwalKingdom of Saudi Arabia

Personalised recommendations