Clinical Manifestations

  • Alen Bišćanin
Part of the Clinical Gastroenterology book series (CG)


Gastrointestinal complications of diabetes mellitus are common if diabetes is not treated properly. About 30% of patients with long-standing diabetes and chronic hyperglycemia have diabetic autonomic neuropathy, which can affect the enteric nervous system. In addition to diabetic autonomic neuropathy with sensory-motor disturbances, diabetes causes histomorphological and biomechanical gastrointestinal tract remodeling that affects all layers of the colon wall. Proposed mechanisms are hyperglycemia-induced increased expression of advanced glycation end-products (AGE) and their receptors (RAGE) in the intestinal wall, and oxidative stress. The whole gastrointestinal tract may be affected, and we can expect motility disorder, abnormal secretion, absorption, and transportation. Clinical consequences of colon engagement are diarrhea, constipation, fecal incontinence, and alternation, or a combination of these symptoms. Although gastrointestinal complications of diabetes mellitus are common, physicians still do not think enough about them.


Diabetic autonomic enteropathy Enteric nervous system Intestine remodeling Diabetic diarrhea Constipation Fecal incontinence 


  1. 1.
    Drewes AM, Søfteland E, Dimcevski G, Farmer AD, Brock C, Frøkjær JB, et al. Brain changes in diabetes mellitus patients with gastrointestinal symptoms. World J Diabetes. 2016;7:14–26.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Maisey A. A practical approach to gastrointestinal complications of diabetes. Diabetes Ther. 2016;7:379.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Gould M, Sellin JH. Diabetic diarrhea. Curr Gastroenterol Rep. 2009;11:354.CrossRefGoogle Scholar
  4. 4.
    Shakil A, Church RJ, Rao SS. Gastrointestinal complications of diabetes. Am Fam Physician. 2008;77:1697–702.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Frokjaer JB, Andersen SD, Ejskjaer N, Funch-Jensen P, Drewes AM, Gregersen H. Impaired contractility and remodeling of the upper gastrointestinal tract in diabetes mellitus type-1. World J Gastroenterol. 2007;13:4881–90.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Brock C, Søfteland E, Gunterberg V, Frøkjær JB, Lelic D, Brock B, et al. Diabetic autonomic neuropathy affects symptom generation and brain–gut axis. Diabetes Care. 2013;36:3698–705.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Yarandi SS, Srinivasan S. Diabetic gastrointestinal motility disorders and the role of enteric nervous system: current status and future directions. Neurogastroenterol Motil. 2014;26:611–24.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Zhao J, Frøkjaer JB, Drewes AM, Ejskjaer N. Upper gastrointestinal sensory-motor dysfunction in diabetes mellitus. World J Gastroenterol. 2006;12:2846–57.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Zhao J, Nakaguchi T, Gregersen H. Biomechanical and histomorphometric colon remodelling in STZ-induced diabetic rats. Dig Dis Sci. 2009;54:1636–42.CrossRefGoogle Scholar
  10. 10.
    Furness JB, Callaghan BP, Rivera LR, Cho HJ. The enteric nervous system and gastrointestinal innervation: integrated local and central control. Adv Exp Med Biol. 2014;817:39–71.CrossRefPubMedGoogle Scholar
  11. 11.
    Rumessen JJ. Identification of interstitial cells of Cajal. Significance for studies of human small intestine and colon. Dan Med Bull. 1994;41:275–93.PubMedGoogle Scholar
  12. 12.
    Wang XY, Huizinga JD, Diamond J, Liu LW. Loss of intramuscular and submuscular interstitial cells of Cajal and associated enteric nerves is related to decreased gastric emptying in streptozotocin-induced diabetes. Neurogastroenterol Motil. 2009;21:1095–e92.CrossRefPubMedGoogle Scholar
  13. 13.
    Zhao M, Liao D, Zhao J. Diabetes-induced mechanophysiological changes in the small intestine and colon. World J Diabetes. 2017;8(6):249–69.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Bierhaus A, Humpert PM, Morcos M, Wendt T, Chavakis T, Arnold B, Stern DM, Nawroth PP. Understanding RAGE, the receptor for advanced glycation end products. J Mol Med (Berl). 2005;83:876–86.CrossRefGoogle Scholar
  15. 15.
    Yamagishi S, Fukami K, Matsui T. Crosstalk between advanced glycation end products (AGEs)-receptor RAGE axis and dipeptidyl peptidase-4-incretin system in diabetic vascular complications. Cardiovasc Diabetol. 2015;14:2.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Monnier VM, Sell DR, Nagaraj RH, Miyata S, Grandhee S, Odetti P, Ibrahim SA. Maillard reaction-mediated molecular damage to extracellular matrix and other tissue proteins in diabetes, aging, and uremia. Diabetes. 1992;41(Suppl 2):36–41.CrossRefPubMedGoogle Scholar
  17. 17.
    Reddy GK. AGE-related cross-linking of collagen is associated with aortic wall matrix stiffness in the pathogenesis of drug-induced diabetes in rats. Microvasc Res. 2004;68:132–42.CrossRefPubMedGoogle Scholar
  18. 18.
    Siegman MJ, Eto M, Butler TM. Remodeling of the rat distal colon in diabetes: function and ultrastructure. Am J Physiol Cell Physiol. 2016;310:151–60.CrossRefGoogle Scholar
  19. 19.
    Vlassara H, Brownlee M, Cerami A. Nonenzymatic glycosylation of peripheral nerve protein in diabetes mellitus. Proc Natl Acad Sci U S A. 1981;78:5190–2.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Piper MS, Saad RJ. Diabetes mellitus and the colon. Curr Treat Options Gastroenterol. 2017;15(4):460–74.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Chen P, Zhao J, Gregersen H. Up-regulated expression of advanced glycation end-products and their receptor in the small intestine and colon of diabetic rats. Dig Dis Sci. 2012;57:48–57.CrossRefGoogle Scholar
  22. 22.
    Zoubi SA, Mayhew TM, Sparrow RA. The small intestine in experimental diabetes: cellular adaptation in crypts and villi at different longitudinal sites. Virchows Arch. 1995;426:501–7.CrossRefGoogle Scholar
  23. 23.
    Chandrasekharan B, Anitha M, Blatt R, et al. Colonic motor dysfunction in human diabetes is associated with enteric neuronal loss and increased oxidative stress. Neurogastroenterology and motility : the official journal of the European Gastrointestinal Motility Society. 2011;23(2):131–e26.CrossRefGoogle Scholar
  24. 24.
    Sekido H, Suzuki T, Jomori T, Takeuchi M, Yabe-Nishimura C, Yagihashi S. Reduced cell replication and induction of apoptosis by advanced glycation end products in rat Schwann cells. Biochem Biophys Res Commun. 2004;320:241–8.CrossRefPubMedGoogle Scholar
  25. 25.
    A G, Papanas N, Maltezos E. Diabetic gastrointestinal autonomic neuropathy: current status and new achievements for everyday clinical practice. Eur J Intern Med. 2012;23(6):499–505.CrossRefGoogle Scholar
  26. 26.
    Iber FL, Parveen S, Vandrunen M, Sood KB, Reza F, Serlovsky R, Reddy S. Relation of symptoms to impaired stomach, small bowel, and colon motility in long-standing diabetes. Dig Dis Sci. 1993;38:45–50.CrossRefPubMedGoogle Scholar
  27. 27.
    Sims MA, Hasler WL, Chey WD, Kim MS, Owyang C. Hyperglycemia inhibits mechanoreceptor-mediated gastrocolonic responses and colonic peristaltic reflexes in healthy humans. Gastroenterology. 1995;108:350–9.CrossRefGoogle Scholar
  28. 28.
    Battle WM, Snape WJ, Alavi A, Cohen S, Braunstein S. Colonic dysfunction in diabetes mellitus. Gastroenterology. 1980;79:1217–21.PubMedGoogle Scholar
  29. 29.
    Malago JJ. Contribution of microbiota to the intestinal physicochemical barrier. Benef Microbes. 2015;6(3):295–311.CrossRefGoogle Scholar
  30. 30.
    Dooley CP, Bargen JA, Bellman JL, et al. The “diarrhea of diabetes” and steatorrhea of pancreatic insufficiency. Mayo Clin Proc. 1936;11:737–42.Google Scholar
  31. 31.
    Krentz AJ, Bailey CJ. Oral antidiabetic agents: current role in type 2 diabetes mellitus. Drugs. 2005;65(3):385–411.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Lysy J, Israeli E, Goldin E. The prevalence of chronic diarrhea among diabetic patients. Am J Gastroenterol. 1999;94:2165–70.CrossRefGoogle Scholar
  33. 33.
    Schiller RL, Sellin HJ. Diarrhea. In: Lawrence RS, Sleisenger MH, Feldman M, editors. Sleisenger and Fordtran’s gastrointestinal and liver disease: pathophysiology, diagnosis, management. Philadelphia: Saunders/Elsevier; 2010. p. 211–232.Google Scholar
  34. 34.
    S S. Evaluating the patient with diarrhea: a case-based approach. Mayo Clin Proc. 2012;87(6):596–602.CrossRefGoogle Scholar
  35. 35.
    Vanner S. The lactulose breath test for diagnosing SIBO in IBS patients: another nail in the coffin. Am J Gastroenterol. 2008;103:96465.CrossRefGoogle Scholar
  36. 36.
    Ritz V, Alfalah M, Zimmer KP, Schmitz J, Jacob R, Naim HY. Congenital sucrase–isomaltase deficiency because of an accumulation of the mutant enzyme in the endoplasmic reticulum. Gastroenterology. 2003;125(6):1678–85.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Cézard JP, Broyart JP, Cuisinier-Gleizes P, Mathieu H. Sucrase–isomaltase regulation by dietary sucrose in the rat. Gastroenterology. 1983;84(1):18–25.PubMedGoogle Scholar
  38. 38.
    Rodolosse A, Chantret I, Lacasa M, Chevalier G, Zweibaum A, Swallow D, et al. A limited upstream region of the human sucrase–isomaltase gene confers glucose-regulated expression on a heterologous gene. Biochem J. 1996;315(Pt 1):301–6.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Lee TH, Lee JS. Ramosetron might be useful for treating diabetic diarrhea with a rapid small bowel transit time. Korean J Intern Med. 2013;28:106–7.CrossRefPubMedGoogle Scholar
  40. 40.
    Chandran M, Chu NV, Edelman SV. Gastrointestinal disturbances in diabetes. Curr Diab Rep. 2003;3(1):43–8.CrossRefPubMedGoogle Scholar
  41. 41.
    Brandt LJ, Prather CM, Quigley EM, Schiller LR, Schoenfeld P, Talley NJ. Systematic review on the management of chronic constipation in North America. Am J Gastroenterol. 2005;100(Suppl 1):S5–S21.CrossRefPubMedGoogle Scholar
  42. 42.
    Sandler RS, Drossman DA. Bowel habits in young adults not seeking health care. Dig Dis Sci. 1987;32(8):841–5.CrossRefPubMedGoogle Scholar
  43. 43.
    Wald A. Etiology and evaluation of chronic constipation in adults. Talley NJ, ed. UpToDate Inc. Accessed May 2016.
  44. 44.
    Drossman DA, Hasler WL. Rome IV—functional GI disorders: disorders of gut-brain interaction. Gastroenterology. 2016;150(6):1257–1261.Google Scholar
  45. 45.
    Higgins PD, Johanson JF. Epidemiology of constipation in North America: a systematic review. Am J Gastroenterol. 2004;99(4):750–9.CrossRefPubMedGoogle Scholar
  46. 46.
    Feldman M, Schiller LR. Disorders of gastrointestinal motility associated with diabetes mellitus. Ann Intern Med. 1983;98(3):378–84.CrossRefPubMedGoogle Scholar
  47. 47.
    Mjornheim AC, Finizia C, Blohme G, Attvall S, Lundell L, Ruth M. Gastrointestinal symptoms in type 1 diabetic patients, as compared to a general population. A questionnaire-based study. Digestion. 2003;68:102–8.CrossRefPubMedGoogle Scholar
  48. 48.
    Sellin JH, Chang EB. Therapy insight: gastrointestinal complications of diabetes—pathophysiology and management. Nat Clin Pract Gastroenterol Hepatol. 2008;5(3):162–71.CrossRefPubMedGoogle Scholar
  49. 49.
    Talley NJ, Fleming KC, Evans JM, O'Keefe EA, Weaver AL, Zinsmeister AR, Melton LJ 3rd. Constipation in an elderly community: a study of prevalence and potential risk factors. Am J Gastroenterol. 1996;91(1):19–25.PubMedGoogle Scholar
  50. 50.
    Clouse RE, Lustman PJ. Gastrointestinal symptoms in diabetic patients: lack of association with neuropathy. Am J Gastroenterol. 1989;84:868–72.Google Scholar
  51. 51.
    Maleki D, Locke GR, Camilleri M, Zinsmeister AR, Yawn BP, Leibson C, et al. Gastrointestinal tract symptoms among persons with diabetes mellitus in the community. Arch Intern Med. 2000;160:2808–16.CrossRefGoogle Scholar
  52. 52.
    Andrews CN, Storr M. The pathophysiology of chronic constipation. Can J Gastroenterol. 2011;25(Suppl B):16B–21B.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Consoli A. Potential side effects to GLP-1 agonists: understanding their safety and tolerability. Expert Opin Drug Saf. 2015;14(2):207–18.CrossRefPubMedGoogle Scholar
  54. 54.
    Fenofibrate 267 mg Capsules—summary of product characteristics. Accessed May 2016
  55. 55.
    Robson KM, Lembo AJ. Fecal incontinence in adults: etiology and evaluation. Talley NJ, ed. UpToDate Inc. Accessed 6 Sept 2017
  56. 56.
    Nelson RL. Epidemiology of fecal incontinence. Gastroenterology. 2004;126(1 Suppl):S3–7.CrossRefPubMedGoogle Scholar
  57. 57.
    Deffieux X, Raibaut P, Rene-Corail P, Katz R, Perrigot M, Ismael SS, et al. External anal sphincter contraction during cough: not a simple spinal reflex. Neurourol Urodyn. 2006;25(7):782–7.CrossRefPubMedGoogle Scholar
  58. 58.
    Krishnan B, Babu S, Walker J, Walker AB, Pappachan JM. Gastrointestinal complications of diabetes mellitus. World J Diabetes. 2013;4(3):51–63. Scholar
  59. 59.
    Zhao J, Chen P, Gregersen H. Morpho-mechanical intestinal remodeling in type 2 diabetic GK rats—is it related to advanced glycation end product formation? J Biomech. 2013;46:1128–34.CrossRefPubMedGoogle Scholar
  60. 60.
    Schiller LR, Santa Ana CA, Schmulen AC, Hendler RS, Harford WV, Fordtran JS. Pathogenesis of fecal incontinence in diabetes mellitus: evidence for internal-anal-sphincter dysfunction. N Engl J Med. 1982;307(27):1666–71.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Alen Bišćanin
    • 1
    • 2
  1. 1.Department of Gastroenterology and HepatologySestre milosrdnice University Hospital CenterZagrebCroatia
  2. 2.School of MedicineUniversity of ZagrebZagrebCroatia

Personalised recommendations