Advertisement

Metabolic Complications, Nutritional Deficiencies, and Medication Management Following Metabolic Surgery

  • Christopher D. StillEmail author
  • Peter Benotti
  • Daniela Hangan
  • Fahad Zubair
Chapter

Abstract

Metabolic surgery has emerged as the preferred sustainable treatment for the disease of obesity and its formidable health comorbidities. This evolution has resulted from major advances in surgical quality care including minimally invasive techniques and the introduction of accredited multidisciplinary centers of excellence. Multidisciplinary care including obesity medicine specialists, certified bariatric nurses, dietitians, and behavioral medicine professionals has improved perioperative care and helped to identify many early and late metabolic as well as nutritional complications of these procedures.

The prompt recognition of nutritional and metabolic complications and the establishment of definitive guidelines for their prevention constitute an unmet need and a major quality improvement challenge for the future of metabolic surgery. The purpose of this chapter is to provide current information about the pathogenesis, management, and strategies for prevention of the metabolic and nutritional complications of metabolic surgery as well as recommendations for proper medication management during surgical weight loss.

Keywords

Metabolic bone disease Nephrolithiasis Hypoglycemia Nutrient deficiency Neurological complications 

References

  1. 1.
    Mehaffey J, Michaels A, Mullen M, Meneveau M, Pender J, Hallowell P. Patient travel for bariatric surgery: does distance matter? Surg Obes Rel Dis. 2016. (in press) Dec 28. pii: S1550-7289(16)30889-9.  https://doi.org/10.1016/j.soard.2016.12.025.
  2. 2.
    Gregory NS. The effects of bariatric surgery on bone metabolism. Endocrinol Metab Clin N Am. 2017;46(1):105–16.CrossRefGoogle Scholar
  3. 3.
    Wortsman J, et al. Decreased bioavailability of vitamin D in obesity. Am J Clin Nutr. 2000;72(3):690–3.CrossRefGoogle Scholar
  4. 4.
    Bell NH, et al. Evidence for alteration of the vitamin D-endocrine system in obese subjects. J Clin Investig. 1985;76(1):370.CrossRefGoogle Scholar
  5. 5.
    Bredella MA, et al. Effects of Roux-en-Y gastric bypass and sleeve gastrectomy on bone mineral density and marrow adipose tissue. Bone. 2017;95:85–90.CrossRefGoogle Scholar
  6. 6.
    Olbers T, et al. Body composition, dietary intake, and energy expenditure after laparoscopic Roux-en-Y gastric bypass and laparoscopic vertical banded gastroplasty: a randomized clinical trial. Ann Surg. 2006;244(5):715–22.CrossRefGoogle Scholar
  7. 7.
    Carrasco F, et al. Changes in bone mineral density after sleeve gastrectomy or gastric bypass: relationships with variations in vitamin D, ghrelin, and adiponectin levels. Obes Surg. 2014;24(6):877–84.CrossRefGoogle Scholar
  8. 8.
    Hsin M-C, et al. A case-matched study of the differences in bone mineral density 1 year after 3 different bariatric procedures. Surg Obes Relat Dis. 2015;11(1):181–5.CrossRefGoogle Scholar
  9. 9.
    Maghrabi AH, et al. Two-year outcomes on bone density and fracture incidence in patients with T2DM randomized to bariatric surgery versus intensive medical therapy. Obesity. 2015;23(12):2344–8.CrossRefGoogle Scholar
  10. 10.
    Muschitz C, et al. Sclerostin levels and changes in bone metabolism after bariatric surgery. J Clin Endocrinol Metabol. 2014;100(3):891–901.CrossRefGoogle Scholar
  11. 11.
    Nogués X, et al. Bone mass loss after sleeve gastrectomy: a prospective comparative study with gastric bypass. Cirugía Española (English Edition). 2010;88(2):103–9.CrossRefGoogle Scholar
  12. 12.
    Vilarrasa N, et al. Effect of bariatric surgery on bone mineral density: comparison of gastric bypass and sleeve gastrectomy. Obes Surg. 2013;23(12):2086–91.CrossRefGoogle Scholar
  13. 13.
    Kushner RF, Still CD. Nutrition and bariatric surgery. CRC Press, Boca Raton, London, New York; 2014.CrossRefGoogle Scholar
  14. 14.
    Ohlsson C, et al. Growth hormone and bone 1. Endocr Rev. 1998;19(1):55–79.PubMedGoogle Scholar
  15. 15.
    Fukushima N, et al. Ghrelin directly regulates bone formation. J Bone Miner Res. 2005;20(5):790–8.CrossRefGoogle Scholar
  16. 16.
    Tsukiyama K, et al. Gastric inhibitory polypeptide as an endogenous factor promoting new bone formation after food ingestion. Mol Endocrinol. 2006;20(7):1644–51.CrossRefGoogle Scholar
  17. 17.
    Rao RS, Kini S. GIP and bariatric surgery. Obes Surg. 2011;21(2):244–52.CrossRefGoogle Scholar
  18. 18.
    Dirksen C, et al. Mechanisms of improved glycaemic control after Roux-en-Y gastric bypass. Diabetologia. 2012;55(7):1890–901.CrossRefGoogle Scholar
  19. 19.
    Carrasco F, et al. Changes in bone mineral density, body composition and adiponectin levels in morbidly obese patients after bariatric surgery. Obes Surg. 2009;19(1):41–6.CrossRefGoogle Scholar
  20. 20.
    Karsenty G. Convergence between bone and energy homeostases: leptin regulation of bone mass. Cell Metab. 2006;4(5):341–8.CrossRefGoogle Scholar
  21. 21.
    Biagioni MFG, et al. Bariatric Roux-En-Y gastric bypass surgery: adipocyte proteins involved in increased bone remodeling in humans. Obes Surg. 2017;27(7):1789–96.CrossRefGoogle Scholar
  22. 22.
    Balsa JA, et al. The role of serum osteoprotegerin and receptor–activator of nuclear factor-κB ligand in metabolic bone disease of women after obesity surgery. J Bone Miner Metab. 2016;34(6):655–61.CrossRefGoogle Scholar
  23. 23.
    Organization, W.H. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: report of a WHO study group [meeting held in Rome from 22 to 25 June 1992]. 1994.Google Scholar
  24. 24.
    Cosman F, et al. Clinician’s guide to prevention and treatment of osteoporosis. Osteoporos Int. 2014;25(10):2359–81.CrossRefGoogle Scholar
  25. 25.
    Mechanick JI, et al. American Association of Clinical Endocrinologists, the Obesity Society, and American Society for Metabolic & bariatric surgery medical guidelines for clinical practice for the perioperative nutritional, metabolic, and nonsurgical support of the bariatric surgery patient. Surg Obes Relat Dis. 2008;4(5):S109–84.CrossRefGoogle Scholar
  26. 26.
    Parrott J, et al. American Society for Metabolic and Bariatric Surgery Integrated Health Nutritional Guidelines for the Surgical Weight Loss Patient 2016 Update: micronutrients. Surgery for Obesity and Related Diseases; 2017.CrossRefGoogle Scholar
  27. 27.
    Mechanick JI, et al. Clinical practice guidelines for the perioperative nutritional, metabolic, and nonsurgical support of the bariatric surgery patient—2013 update: cosponsored by American Association of Clinical Endocrinologists, the Obesity Society, and American Society for Metabolic & Bariatric Surgery. Obesity. 2013;21:S1.CrossRefGoogle Scholar
  28. 28.
    Espino-Grosso PM, Canales BK. Kidney stones after bariatric surgery: risk assessment and mitigation. Bariatric Surg Pract Patient Care. 2017;12(1):3–9.CrossRefGoogle Scholar
  29. 29.
    Chang AR, Grams ME, Navaneethan SD. Bariatric surgery and kidney-related outcomes. Kidney Int Rep. 2017;2(2):261–70.CrossRefGoogle Scholar
  30. 30.
    Duffey BG, et al. Roux-en-Y gastric bypass is associated with early increased risk factors for development of calcium oxalate nephrolithiasis. J Am Coll Surg. 2008;206(6):1145–53.CrossRefGoogle Scholar
  31. 31.
    Hatch M, et al. Oxalobacter sp. reduces urinary oxalate excretion by promoting enteric oxalate secretion. Kidney Int. 2006;69(4):691–8.CrossRefGoogle Scholar
  32. 32.
    Borghi L, et al. Comparison of two diets for the prevention of recurrent stones in idiopathic hypercalciuria. N Engl J Med. 2002;346(2):77–84.CrossRefGoogle Scholar
  33. 33.
    El-Nahas AR, et al. A prospective multivariate analysis of factors predicting stone disintegration by extracorporeal shock wave lithotripsy: the value of high-resolution noncontrast computed tomography. Eur Urol. 2007;51(6):1688–94.CrossRefGoogle Scholar
  34. 34.
    Kazemi A, Frazier T, Cave M. Micronutrient-related neurologic complications following bariatric surgery. Curr Gastroenterol Rep. 2010;12(4):288–95.CrossRefGoogle Scholar
  35. 35.
    Clements RH, et al. Incidence of vitamin deficiency after laparoscopic Roux-en-Y gastric bypass in a university hospital setting. Am Surg. 2006;72(12):1196–204.PubMedGoogle Scholar
  36. 36.
    Thomson AD, Marshall EJ. The natural history and pathophysiology of Wernicke’s encephalopathy and Korsakoff's psychosis. Alcohol Alcohol. 2006;41(2):151–8.CrossRefGoogle Scholar
  37. 37.
    Green R, Kinsella LJ. Current concepts in the diagnosis of cobalamin deficiency. Neurology. 1995;45(8):1435–40.CrossRefGoogle Scholar
  38. 38.
    Amaral JF, et al. Prospective hematologic evaluation of gastric exclusion surgery for morbid obesity. Ann Surg. 1985;201(2):186.CrossRefGoogle Scholar
  39. 39.
    Provenzale D, et al. Evidence for diminished B12 absorption after gastric bypass: oral supplementation does not prevent low plasma B12 levels in bypass patients. J Am Coll Nutr. 1992;11(1):29–35.CrossRefGoogle Scholar
  40. 40.
    Nagarur A, Fenves AZ. Late presentation of fatal hyperammonemic encephalopathy after Roux-en-Y gastric bypass. Proc (Bayl Univ Med Cent). 2017;30(1):41.CrossRefGoogle Scholar
  41. 41.
    Estrella J, et al. Hyperammonemic encephalopathy complicating bariatric surgery: a case study and review of the literature. Surg Obes Relat Dis. 2014;10(3):e35–8.CrossRefGoogle Scholar
  42. 42.
    Longmuir R, Lee AG, Rouleau J. Visual loss due to Wernicke syndrome following gastric bypass. in Seminars in ophthalmology. Taylor & Francis, Boca Raton, London, New York; 2007.Google Scholar
  43. 43.
    Zuccoli G, Motti L. Atypical Wernicke's encephalopathy showing lesions in the cranial nerve nuclei and cerebellum. J Neuroimaging. 2008;18(2):194–7.CrossRefGoogle Scholar
  44. 44.
    Carmel R. Current concepts in cobalamin deficiency. Annu Rev Med. 2000;51(1):357–75.CrossRefGoogle Scholar
  45. 45.
    Solomon LR. Cobalamin-responsive disorders in the ambulatory care setting: unreliability of cobalamin, methylmalonic acid, and homocysteine testing. Blood. 2005;105(3):978–85.CrossRefGoogle Scholar
  46. 46.
    Saperstein DS, et al. Challenges in the identification of cobalamin-deficiency polyneuropathy. Arch Neurol. 2003;60(9):1296–301.CrossRefGoogle Scholar
  47. 47.
    Savage DG, et al. Sensitivity of serum methylmalonic acid and total homocysteine determinations for diagnosing cobalamin and folate deficiencies. Am J Med. 1994;96(3):239–46.CrossRefGoogle Scholar
  48. 48.
    Service G, Thompson G, Service F, Andrews J, Collazo-Clavell M, Lloyd R. Hyperinsulinemic hypoglycemia with nesidioblastosis after gastric bypass surgery. New Engl J Med. 2005;353:249–54.CrossRefGoogle Scholar
  49. 49.
    Meier J, Butler A, Galasso R, Butler P. Hyperinsulinemic hypoglycemia after gastric bypass surgery is not accompanied by islet hyperplasia or increased β-cell turnover. Diabetes Care. 2006;29:1554–9.CrossRefGoogle Scholar
  50. 50.
    Shantavasinkul P, Torquati A, Corsino L. Post gastric bypass hypoglycaemia: a review. Clin Endocrinol. 2016;85:3–9.CrossRefGoogle Scholar
  51. 51.
    Abrahamsson N, Engstrom B, Sundbom M, Karlsson F. Hypoglycemia in everyday life after gastric bypass and duodenal switch. Eur J Endocrinol Eur Fed Endocr Soc. 2014;173:91–100.CrossRefGoogle Scholar
  52. 52.
    Lee C, Clark J, Schweitzer M, Magnuson T, Steele K, Koerner O, Brown T. Prevalence of and risk factors for hypoglycemia symptoms after gastric bypass and sleeve gastrectomy. Obesity. 2015;23:1079–84.CrossRefGoogle Scholar
  53. 53.
    Marsk R, Jonas E, Rasmussen F, Naslund E. Nationwide cohort study of post-gastric bypass Hypoglycemia including 5040 patients undergoing surgery for obesity in 1986–2006 in Sweden. Diabetologia. 2010;53:2307–11.CrossRefGoogle Scholar
  54. 54.
    Sarwar H, Chapman W, Pender J, Ivanescu A, Drake A, Pories W, Dar M. Hypoglycemia after Roux-en-Y gastric bypass: the BOLD experience. Obes Surg. 2014;24:1120–4.CrossRefGoogle Scholar
  55. 55.
    Lee C, Wood G, Lazo M, Brown T, Clark J, Still C, Benotti P. Risk of post-gastric bypass hypoglycemia in nondiabetic individuals: a single center experience. Obesity. 2016;24:1342–8.CrossRefGoogle Scholar
  56. 56.
    Seaquist E, Anderson J, Childs B, Cryer P, Dagogo-Jack S, Fish L, Heller S, Rodriguez H, Rosenzweig J, Vigersky R. Hypoglycemia and diabetes: a report of a workgroup of the American Diabetes Association and the Endocrine Society. Diabetes Care. 2013;36:1384–95.CrossRefGoogle Scholar
  57. 57.
    Kellog T, Bantle J, Leslie D, Redmond J, Slusarek B, Swan T, Buchwald H, Ikramuddin S. Postgastric bypass hyperinsulinemic hypoglycemia syndrome: characterization and response to a modified diet. Surg Obese Rel Dis. 2008;4:492–9.CrossRefGoogle Scholar
  58. 58.
    Vella A, Service J. Incretin hypersecretion in post-gastric bypass hypoglycemia-primary problem or red herring. J Clin Endocrinol Metab. 2007;92:4563–5.CrossRefGoogle Scholar
  59. 59.
    Mordes J, Alonso L. Evaluation, medical therapy, and course of adult persistent hyperinsulinemic hypoglycemia after Roux-en-Y gastric bypass surgery: a case series. Encocrin Pract. 2015;21:237–46.CrossRefGoogle Scholar
  60. 60.
    Pigeyre M, Vaurs C, Raverdy V, Hnaire H, Ritz P, Pattou F. Increased risk of OGTT-induced hypoglycemia after gastric bypass in severely obese patients with normal glucose tolerance. Surg Obes Rel Dis. 2015;11:573–7.CrossRefGoogle Scholar
  61. 61.
    Goldfine A, Mun E, Devine E, Bernier R, Baz-Hect M, Jones D, Schneider B, Holst J, Patti M. Patients with Neuroglycopenia after gastric bypass surgery have exaggerated incretin and insulin secretory Response to a mixed meal. J Clin Endocrinol Metab. 2007;92:4678–85.CrossRefGoogle Scholar
  62. 62.
    Salehi M, Gastaldelli A, D’Alessio D. Altered islet function and insulin clearance cause hyperinsulinemia in gastric bypass patients with symptoms of postprandial hypoglycemia. J Clin Endocrinol Metab. 2008;99:2008–17.CrossRefGoogle Scholar
  63. 63.
    McLaughlin T, Peck M, Deacon C. Reversible hyperinsulinemic hypoglycemia after gastric bypass: a consequence of altered nutrient delivery. J Clin Endocrinol Metab. 2010;95:1851–5.CrossRefGoogle Scholar
  64. 64.
    Frnkhouser S, Ahmad A, Perilli G, Quintana B, Vengrove M. Post-gastric bypass hypoglycemia successfully treated with alpha-glucosidase inhibitor therapy. Endocr Pract. 2013;19:511–4.CrossRefGoogle Scholar
  65. 65.
    Spanakis E, Gragnoli C. Successful medical management of status post-Roux-En-Y Gastric bypass Hyperinsulinemic hypoglycemia. Obes Surg. 2009;19:1333–4.CrossRefGoogle Scholar
  66. 66.
    Moreira R, Moreira R, Machado N, Goncalves T, Coutinho W. Post-prandial hypoglycemia after bariatric surgery: pharmacological treatment with verapamil and acarbose. Obes Surg. 2008;18:1618–21.CrossRefGoogle Scholar
  67. 67.
    Myint K, Greenfield J, Farooqi I, Henning E, Holst J, Finer N. Prolonged Suddessful therapy for hyperinsulinemic hypoglycemia after gastric bypass: the pathophysical role of GLP-1 and its response to a somatostatin analogue. Eur J Endocrinol. 2012;166:951–5.CrossRefGoogle Scholar
  68. 68.
    Salehi M, Gastaldelli A, D’Alessio D. Blockade of glucagon-like peptide 1 receptor corrects postprandial hypoglycemia after gastric bypass. Gastroenterology. 2014;46:669–80.CrossRefGoogle Scholar
  69. 69.
    Vanderveen K, Grant C, Thompson G, Farley D, Richards M, Vella A, Vollrath B, Service J. Outcomes and quality of life after partial pancreatectomy for noninsulinoma pancreatogenous hypoglycemia from diffuse islet cell disease. Surgery. 2010;148:1237–46.CrossRefGoogle Scholar
  70. 70.
    Ohrstrom C, Worm D, Hansen D. Postprandial hyperinsulinemic hypoglycemia after Roux-en-Y gastric bypass: An Update. Surg Obes Rel Dis.  https://doi.org/10.1016/j.soard.2016.09.025.
  71. 71.
    Eisenberg D, Azagury D, Ghiassi S, Grover B, Kim J. ASMBS position statement on postprandial hyperinsulinemic hypoglycemia after bariatric surgery. Surg Obes Rel Dis. 2017;13:371–378. Service G, Thompson G, Service F, Andrews J, Collazo-Clavell M, Lloyd R. Hyperinsulinemic Hypoglycemia with Nesidioblastosis after Gastric Bypass Surgery. New Engl J Med. 2005;353:249–54.CrossRefGoogle Scholar
  72. 72.
    Bal B, Finelli F, Shope T, Koch T. Nutritional deficiencies after bariatric surgery. Nat Rev Endocrinol. 2012;8:544–56.CrossRefGoogle Scholar
  73. 73.
    Mueller C. The ASPEN adult nutrition support core curriculum. 2nd edn. In: Clark SF, editor. Vitamins and trace elements. American Society for Parenteral and Enteral Nutrition. 2012; 8. p. 121–48.Google Scholar
  74. 74.
    Levinson R, Silverman JB, Catella JG, Rybak I, Jolin H. Isom K pharmacotherapy prevention and management of nutritional deficiencies post roux-en-Y gastric bypass. Obesity Surg. 2013;23:992.CrossRefGoogle Scholar
  75. 75.
    Mueller C. The ASPEN adult nutrition support core curriculum, 2nd edn. In: Colaizzo-Anas T, editor. CDN nutrient intake, digestion, absorption, and excretion. American Society for Parenteral and Enteral Nutrition. 2012;1. p. 16.Google Scholar
  76. 76.
    Moize V, Andreu A, Rodriguez L, Flores L, Ibarzabal A, Lacey A, et al. Protein intake and lean tissue mass retention following bariatric surgery. Clin Nut. 2013;32:550–5.CrossRefGoogle Scholar
  77. 77.
    Mueller C. The ASPEN adult nutrition support core curriculum, 2nd edn. In: Jensen GL, Hsiao PY, Wheeler D, editors. Nutrition screening and assessment. American Society for Parenteral and Enteral Nutrition. 2012; 9. p. 158,163.Google Scholar
  78. 78.
    Benotti P. Patient preparation for bariatric surgery New York: Springer; 2014. Chapter 7.CrossRefGoogle Scholar
  79. 79.
    Ross AC, Caballero B, Cousins RJ, Ticker KL, Ziegler TR. **Modern nutrition in health and disease. 11th edn. In: Heimburger DC, editor. Clinical manifestations of nutrient deficiencies and toxicities. Lipppincot, Williams and Wilkins. 2014; 57. p. 757–66.Google Scholar
  80. 80.
    Parrott J, Frank L, Rabena R, Craggs-Dino L, Isom K, Greiman L. American Society for Metabolic and Bariatric Surgery Integrated Health Nutritional Guidelines for the Surgical Weight Loss Patient 2016 Update: Micronutrients. Surg Obes Rel Dis. 2017;13:727–41.CrossRefGoogle Scholar
  81. 81.
    Heber D, Greenway F, Kaplan L, Livingston E, Salvador J, Still C. Endocrine and nutritional management of the post-bariatric surgery patient: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2010;95:4823–43.CrossRefGoogle Scholar
  82. 82.
    Stabler S. Vitamin B12 deficiency. New Engl J Med. 2013;368:149–60.CrossRefGoogle Scholar
  83. 83.
    Hwang C, Ross V, Mahadevan U. Inflammatory bowel disease, micronutrient deficiencies. Inflamm Bowel Dis A Zinc. 2012;18(10):1966.Google Scholar
  84. 84.
    Toh S, Zaarshenas N, Jorgensen J. Prevalence of nutrient deficiencies in bariatric patients. Surg Obes Rel Dis. 2009;25:1150–6.Google Scholar
  85. 85.
    Valentino D, Sriram K, Shankar P. Update on micronutrients in bariatric surgery. Curr Opin Clin Nutr Metab Care. 2011;14:635–41.CrossRefGoogle Scholar
  86. 86.
    Dolan K, Hatzifotis M, Newbury L, Lowe N, Fielding G. A clinical and nutritional comparison of biliopancreatic diversion with and without duodenal switch. Ann Surg. 2004;240:51–6.CrossRefGoogle Scholar
  87. 87.
    Bacci V, Silecchia G. Vitamin D status and supplementation before and after bariatric surgery. Expert Rev Gastroenteiol Hepatol. 2010;4:781–94.CrossRefGoogle Scholar
  88. 88.
    Bronner F. Mechanisms of intestinal calcium absorption. J Cell Biol. 2003;88:387–93.Google Scholar
  89. 89.
    Homan J, Betzel B, Aarts E, Dogan K, van Laarhoven K, Janssen I, Berends R. Vitamin and mineral deficiencies after biliopancreatic diversion and biliopancreatic diversion with duodenal switch- the rule rather than the exception. Obes Surg. 2015;25:1626–32.CrossRefGoogle Scholar
  90. 90.
    Slater G, Ren C, Siegel N, Williams T, Barr D, Wolfe B, Dolan K, Fielding G. Serum fat-soluble vitamin deficiency and abnormal calcium metabolism after malabsorptive bariatric surgery. J Gastrointest Surg. 2004;8:48–55.CrossRefGoogle Scholar
  91. 91.
    Ruz M, Carrasco F, Rojas P, Codosceo J, Inostroza J, Basfi-fer K, Valencia A, Csendes A, Papapietro K, Pizarro F, Olivares M, Westcott J, Hambridge M, Krebs N. Heme- and Nonheme-iron absorption nd iron status 12 mo after sleeve gastrectomy and roux-en-Y gastric bypass in morbidly obese women. Am J Clin Nut. 2012;96:810–7.CrossRefGoogle Scholar
  92. 92.
    Love A, Billet H. Obesity, bariatric surgery and iron deficiency: true, true. True and Related Am J Hematol. 2008;88:403–9.CrossRefGoogle Scholar
  93. 93.
    Monaco-Ferreira DV, Leandro-Merhi V. Status of iron metabolism 10 years after Roux-en-Y gastric bypass. Obes Surg. 2017.  https://doi.org/10.1007/xs11695-017-2582-0.
  94. 94.
    Salle A, Demarsy D, Poirier A, Lelievre B, Top O, Guilloteau G, et al. Zinc deficiency: a frequent and underestimated complication after bariatric surgery. Obes Surg. 2010;20:1660–70.CrossRefGoogle Scholar
  95. 95.
    Wood GC, Chu X, Manney C, Sgtrodel W, Petrick A, Gabrielsen J, et al. An electronic health record-enabled obesity database. BMC Med Inform Decis Mak. 2012;12:45.  https://doi.org/10.1186/1472-6947-12-45.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Padwal R, Brocks D, Sharma AM. A systemic review of drug absorption following bariatric surgery and its theoretical implications. Obes Rev. 2010;11(1):41–50.CrossRefGoogle Scholar
  97. 97.
    Miller AD, Smith KM. Medication and nutrient administration considerations after bariatric surgery. Am J Health Syst Pharm. 2006;63(19):1852–7.CrossRefGoogle Scholar
  98. 98.
    Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JFE, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375:311–22.CrossRefGoogle Scholar
  99. 99.
    Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, Mattheus M, Devins T, Johansen OE, Woerle HJ, Broedl UC, Inzucchi SE, EMPA-REG OUTCOME Investigators. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373:2117–28.CrossRefGoogle Scholar
  100. 100.
    Neal B, Perkovic V, Mahaffey KW, on behalf of the CANVAS Program Collaborative Group, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med 2017;377:644–57. [Epub ahead of print].CrossRefGoogle Scholar
  101. 101.
    Milone M, Lupoli R, Maietta P, Di Minno A, et al. Lipid profile changes in patients undergoing bariatric surgery: a comparative study between sleeve gastrectomy and mini-gastric bypass. IJOS. 2015;14:28–32.Google Scholar
  102. 102.
    Monson M, Jackson M. Pregnancy after bariatric surgery. Clin Obstet Gynecol. 2016;59(1):158–71.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Christopher D. Still
    • 1
    Email author
  • Peter Benotti
    • 2
  • Daniela Hangan
    • 3
  • Fahad Zubair
    • 3
  1. 1.Department of Nutrition and Weight Management & Geisinger Obesity InstituteGeisinger Health Care SystemDanvilleUSA
  2. 2.Geisinger Medical CenterGeisinger Obesity InstituteDanvilleUSA
  3. 3.Department of Nutrition and Weight ManagementGeisinger Health Care SystemDanvilleUSA

Personalised recommendations