Advertisement

The DNA Damage Response: Roles in Cancer Etiology and Treatment

  • Laura R. Butler
  • Oren Gilad
  • Eric J. Brown
Chapter
Part of the Cancer Drug Discovery and Development book series (CDD&D)

Abstract

Cancer is one of the highest causes of morbidity and mortality worldwide. Traditional chemotherapeutics are associated with toxic side effects due to a lack of specificity for cancer cells. A new and rapidly expanding class of drugs known as targeted therapeutics are being developed that have high therapeutic potential with less severe side effects in comparison to conventional chemotherapeutics. Targeted therapeutics are aimed at defects found in cancer cells that are not present in the highly-proliferative cells of normal tissues. These defects include dys regulated oncogenes and DNA repair defects that cause cells to rely heavily on the DNA damage response (DDR) and checkpoint signaling. This association indicates that the DDR may include promising targets for targeted therapeutics. Examples of such therapeutics currently under investigation and in clinical use are described here, including inhibitors of PARP, DNA-PKcs and the ATR-CHK1 signaling pathway. Targeted therapeutics not only offer the promise of killing cancers with reduced side effects, but are well suited to use in combination with other therapeutics to increase efficacy and kill cancers before drug-resistance can occur.

Keywords

Targeted therapeutics Synthetic lethality DNA damage response HR deficiency Chemotherapeutic resistance Oncogenic stress Checkpoint inhibition Replication stress ATR/ATM/DNA-PK/PARP/p53/BRCA 

Notes

Acknowledgments

We would like to thank our support from the National Cancer Institute of the National Institutes of Health under award numbers: R41CA203436 (LB, OG, EJB) and 1R01CA189743 (EJB). Additional funding was provided through the Ben Franklin Technology Partners of Southeastern PA, an initiative of the Pennsylvania Department of Community and Economic Development funded by the Ben Franklin Technology Development Authority (LB, OG), the Pennsylvania Department of Health (EJB), The Basser Center for BRCA Research (EJB), and the Abramson Family Cancer Research Institute (EJB).

References

  1. American Cancer Society 2014 Second cancers in adults. 12/11/14 [cited 2016 11/14/16]; Available from: http://www.cancer.org/acs/groups/cid/documents/webcontent/002043-pdf.pdf
  2. An X et al (2010) BCR-ABL tyrosine kinase inhibitors in the treatment of Philadelphia chromosome positive chronic myeloid leukemia: a review. Leuk Res 34(10):1255–1268PubMedCrossRefGoogle Scholar
  3. Andreassen PR, D'Andrea AD, Taniguchi T (2004) ATR couples FANCD2 monoubiquitination to the DNA-damage response. Genes Dev 18(16):1958–1963PubMedPubMedCentralCrossRefGoogle Scholar
  4. Anglian Breast Cancer Study Group (2000) Prevalence and penetrance of BRCA1 and BRCA2 mutations in a population-based series of breast cancer cases. Br J Cancer 83(10):1301–1308PubMedCentralCrossRefGoogle Scholar
  5. Atherton-Fessler S et al (1994) Cell cycle regulation of the p34cdc2 inhibitory kinases. Mol Biol Cell 5(9):989–1001PubMedPubMedCentralCrossRefGoogle Scholar
  6. Audeh MW et al (2010) Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial. Lancet 376(9737):245–251PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bartkova J et al (2005) DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434(7035):864–870PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bartkova J et al (2006) Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 444(7119):633–637PubMedPubMedCentralCrossRefGoogle Scholar
  9. Baumann P, West SC (1998) Role of the human RAD51 protein in homologous recombination and double-stranded-break repair. Trends Biochem Sci 23(7):247–251PubMedCrossRefPubMedCentralGoogle Scholar
  10. Beck H et al (2012) Cyclin-dependent kinase suppression by WEE1 kinase protects the genome through control of replication initiation and nucleotide consumption. Mol Cell Biol 32(20):4226–4236PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bester AC et al (2011) Nucleotide deficiency promotes genomic instability in early stages of cancer development. Cell 145(3):435–446PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bignell GR et al (2010) Signatures of mutation and selection in the cancer genome. Nature 463(7283):893–898PubMedPubMedCentralCrossRefGoogle Scholar
  13. Booher RN, Holman PS, Fattaey A (1997) Human Myt1 is a cell cycle-regulated kinase that inhibits Cdc2 but not Cdk2 activity. J Biol Chem 272(35):22300–22306PubMedCrossRefPubMedCentralGoogle Scholar
  14. Bouwman P et al (2010) 53BP1 loss rescues BRCA1 deficiency and is associated with triple-negative and BRCA-mutated breast cancers. Nat Struct Mol Biol 17(6):688–695PubMedPubMedCentralCrossRefGoogle Scholar
  15. Boyer AS et al (2013) The human specialized DNA polymerases and non-B DNA: vital relationships to preserve genome integrity. J Mol Biol 425(23):4767–4781PubMedCrossRefPubMedCentralGoogle Scholar
  16. Branzei D, Foiani M (2008) Regulation of DNA repair throughout the cell cycle. Nat Rev Mol Cell Biol 9(4):297–308PubMedCrossRefPubMedCentralGoogle Scholar
  17. Branzei D, Foiani M (2010) Maintaining genome stability at the replication fork. Nat Rev Mol Cell Biol 11(3):208–219PubMedCrossRefPubMedCentralGoogle Scholar
  18. Brown EJ, Baltimore D (2000) ATR disruption leads to chromosomal fragmentation and early embryonic lethality. Genes Dev 14(4):397–402PubMedPubMedCentralGoogle Scholar
  19. Brown EJ, Baltimore D (2003) Essential and dispensable roles of ATR in cell cycle arrest and genome maintenance. Genes Dev 17(5):615–628PubMedPubMedCentralCrossRefGoogle Scholar
  20. Bryant HE et al (2005) Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434(7035):913–917PubMedPubMedCentralCrossRefGoogle Scholar
  21. Bunting SF et al (2010) 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks. Cell 141(2):243–254PubMedPubMedCentralCrossRefGoogle Scholar
  22. Cancer Genome Atlas Research Network (2011) Integrated genomic analyses of ovarian carcinoma. Nature 474(7353):609–615CrossRefGoogle Scholar
  23. Casper AM et al (2002) ATR regulates fragile site stability. Cell 111(6):779–789PubMedCrossRefPubMedCentralGoogle Scholar
  24. Chang HHY et al (2017) Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat Rev Mol Cell Biol 18(8):495–506PubMedCrossRefPubMedCentralGoogle Scholar
  25. Chanoux RA et al (2009) ATR and H2AX cooperate in maintaining genome stability under replication stress. J Biol Chem 284(9):5994–6003PubMedPubMedCentralCrossRefGoogle Scholar
  26. Chen MS, Ryan CE, Piwnica-Worms H (2003) Chk1 kinase negatively regulates mitotic function of Cdc25A phosphatase through 14-3-3 binding. Mol Cell Biol 23(21):7488–7497PubMedPubMedCentralCrossRefGoogle Scholar
  27. Chen L et al (2008) Cell cycle-dependent complex formation of BRCA1.CtIP.MRN is important for DNA double-strand break repair. J Biol Chem 283(12):7713–7720PubMedPubMedCentralCrossRefGoogle Scholar
  28. Chiarugi A (2012) A snapshot of chemoresistance to PARP inhibitors. Trends Pharmacol Sci 33(1):42–48PubMedCrossRefPubMedCentralGoogle Scholar
  29. Cortez D (2015) Preventing replication fork collapse to maintain genome integrity. DNA Repair (Amst) 32:149–157CrossRefGoogle Scholar
  30. Couch FB et al (2013) ATR phosphorylates SMARCAL1 to prevent replication fork collapse. Genes Dev 27(14):1610–1623PubMedPubMedCentralCrossRefGoogle Scholar
  31. Couedel C et al (2004) Collaboration of homologous recombination and nonhomologous end-joining factors for the survival and integrity of mice and cells. Genes Dev 18(11):1293–1304PubMedPubMedCentralCrossRefGoogle Scholar
  32. Curtis RE, Freedman DM, Ron E, LAG R, Hacker DG, Edwards BK, Tucker MA, Fraumeni JF Jr (2006) New malignancies among cancer survivors: SEER cancer registries, 1973–2000. NIH: National Cancer Institute, Bethesda, MDGoogle Scholar
  33. Denko NC et al (1994) The human Ha-ras oncogene induces genomic instability in murine fibroblasts within one cell cycle. Proc Natl Acad Sci U S A 91(11):5124–5128PubMedPubMedCentralCrossRefGoogle Scholar
  34. Di Micco R et al (2006) Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 444(7119):638–642PubMedPubMedCentralCrossRefGoogle Scholar
  35. Dillon LW, Burrow AA, Wang YH (2010) DNA instability at chromosomal fragile sites in cancer. Curr Genomics 11(5):326–337PubMedPubMedCentralCrossRefGoogle Scholar
  36. Dominguez-Kelly R et al (2011) Wee1 controls genomic stability during replication by regulating the Mus81-Eme1 endonuclease. J Cell Biol 194(4):567–579PubMedPubMedCentralCrossRefGoogle Scholar
  37. Duda H et al (2016) A mechanism for controlled breakage of under-replicated chromosomes during mitosis. Dev Cell 39(6):740–755PubMedCrossRefPubMedCentralGoogle Scholar
  38. Falck J et al (2001) The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature 410(6830):842–847PubMedPubMedCentralCrossRefGoogle Scholar
  39. Farmer H et al (2005) Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434(7035):917–921PubMedPubMedCentralCrossRefGoogle Scholar
  40. Feijoo C et al (2001) Activation of mammalian Chk1 during DNA replication arrest: a role for Chk1 in the intra-S phase checkpoint monitoring replication origin firing. J Cell Biol 154(5):913–923PubMedPubMedCentralCrossRefGoogle Scholar
  41. Felsher DW, Bishop JM (1999) Transient excess of MYC activity can elicit genomic instability and tumorigenesis. Proc Natl Acad Sci U S A 96(7):3940–3944PubMedPubMedCentralCrossRefGoogle Scholar
  42. Fernandez-Medarde A, Santos E (2011) Ras in cancer and developmental diseases. Genes Cancer 2(3):344–358PubMedPubMedCentralCrossRefGoogle Scholar
  43. Ferrao PT et al (2012) Efficacy of CHK inhibitors as single agents in MYC-driven lymphoma cells. Oncogene 31(13):1661–1672PubMedCrossRefPubMedCentralGoogle Scholar
  44. Flaherty KT et al (2010) Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med 363(9):809–819PubMedPubMedCentralCrossRefGoogle Scholar
  45. Fokas E et al (2012) Targeting ATR in vivo using the novel inhibitor VE-822 results in selective sensitization of pancreatic tumors to radiation. Cell Death Dis 3:e441PubMedPubMedCentralCrossRefGoogle Scholar
  46. Gilad O et al (2010) Combining ATR suppression with oncogenic Ras synergistically increases genomic instability, causing synthetic lethality or tumorigenesis in a dosage-dependent manner. Cancer Res 70(23):9693–9702PubMedPubMedCentralCrossRefGoogle Scholar
  47. Glover TW et al (1984) DNA polymerase alpha inhibition by aphidicolin induces gaps and breaks at common fragile sites in human chromosomes. Hum Genet 67(2):136–142PubMedCrossRefPubMedCentralGoogle Scholar
  48. Gong Z et al (2010) BACH1/FANCJ acts with TopBP1 and participates early in DNA replication checkpoint control. Mol Cell 37(3):438–446PubMedPubMedCentralCrossRefGoogle Scholar
  49. Gorgoulis VG et al (2005) Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434(7035):907–913PubMedPubMedCentralCrossRefGoogle Scholar
  50. Gottlieb TM, Jackson SP (1993) The DNA-dependent protein kinase: requirement for DNA ends and association with Ku antigen. Cell 72(1):131–142PubMedPubMedCentralCrossRefGoogle Scholar
  51. Graham TG, Walter JC, Loparo JJ (2016) Two-stage synapsis of DNA ends during non-homologous end joining. Mol Cell 61(6):850–858PubMedPubMedCentralCrossRefGoogle Scholar
  52. Gumy-Pause F, Wacker P, Sappino AP (2004) ATM gene and lymphoid malignancies. Leukemia 18(2):238–242PubMedCrossRefGoogle Scholar
  53. Gurley KE, Kemp CJ (2001) Synthetic lethality between mutation in Atm and DNA-PK(cs) during murine embryogenesis. Curr Biol 11(3):191–194PubMedCrossRefGoogle Scholar
  54. Halazonetis TD, Gorgoulis VG, Bartek J (2008) An oncogene-induced DNA damage model for cancer development. Science 319(5868):1352–1355PubMedPubMedCentralCrossRefGoogle Scholar
  55. Harper JW et al (1995) Inhibition of cyclin-dependent kinases by p21. Mol Biol Cell 6(4):387–400PubMedPubMedCentralCrossRefGoogle Scholar
  56. Hollstein M et al (1991) p53 mutations in human cancers. Science 253(5015):49–53CrossRefPubMedGoogle Scholar
  57. Hurley LH (2002) DNA and its associated processes as targets for cancer therapy. Nat Rev Cancer 2(3):188–200PubMedCrossRefGoogle Scholar
  58. Ishiai M et al (2008) FANCI phosphorylation functions as a molecular switch to turn on the Fanconi anemia pathway. Nat Struct Mol Biol 15(11):1138–1146PubMedPubMedCentralCrossRefGoogle Scholar
  59. Kakarougkas A, Jeggo PA (2014) DNA DSB repair pathway choice: an orchestrated handover mechanism. Br J Radiol 87(1035):20130685PubMedPubMedCentralCrossRefGoogle Scholar
  60. Kastan MB, Bartek J (2004) Cell-cycle checkpoints and cancer. Nature 432(7015):316–323PubMedCrossRefGoogle Scholar
  61. Kim H et al (2016) Targeting the ATR/CHK1 Axis with PARP inhibition results in tumor regression in BRCA-mutant ovarian cancer models. Clin Cancer Res 23(12):3097–3108PubMedCrossRefPubMedCentralGoogle Scholar
  62. Kiraz Y et al (2016) Major apoptotic mechanisms and genes involved in apoptosis. Tumour Biol 37(7):8471–8486PubMedCrossRefGoogle Scholar
  63. Kolas NK et al (2007) Orchestration of the DNA-damage response by the RNF8 ubiquitin ligase. Science 318(5856):1637–1640PubMedPubMedCentralCrossRefGoogle Scholar
  64. Krajewska M et al (2015) ATR inhibition preferentially targets homologous recombination-deficient tumor cells. Oncogene 34(26):3474–3481PubMedPubMedCentralCrossRefGoogle Scholar
  65. Kwak EL et al (2010) Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med 363(18):1693–1703PubMedPubMedCentralCrossRefGoogle Scholar
  66. Lavin MF (2007) ATM and the Mre11 complex combine to recognize and signal DNA double-strand breaks. Oncogene 26(56):7749–7758PubMedCrossRefGoogle Scholar
  67. Lee J, Kumagai A, Dunphy WG (2001) Positive regulation of Wee1 by Chk1 and 14-3-3 proteins. Mol Biol Cell 12(3):551–563PubMedPubMedCentralCrossRefGoogle Scholar
  68. Leung M et al (2011) Poly(ADP-ribose) polymerase-1 inhibition: preclinical and clinical development of synthetic lethality. Mol Med 17(7–8):854–862PubMedPubMedCentralGoogle Scholar
  69. Li J, Stern DF (2005) Regulation of CHK2 by DNA-dependent protein kinase. J Biol Chem 280(12):12041–12050PubMedCrossRefGoogle Scholar
  70. Litman R et al (2005) BACH1 is critical for homologous recombination and appears to be the Fanconi anemia gene product FANCJ. Cancer Cell 8(3):255–265PubMedCrossRefGoogle Scholar
  71. Liu Q et al (2000) Chk1 is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint. Genes Dev 14(12):1448–1459PubMedPubMedCentralGoogle Scholar
  72. Lord CJ, Ashworth A (2016) BRCAness revisited. Nat Rev Cancer 16(2):110–120PubMedCrossRefPubMedCentralGoogle Scholar
  73. Ma Y et al (2002) Hairpin opening and overhang processing by an Artemis/DNA-dependent protein kinase complex in nonhomologous end joining and V(D)J recombination. Cell 108(6):781–794PubMedPubMedCentralCrossRefGoogle Scholar
  74. Mailand N et al (2000) Rapid destruction of human Cdc25A in response to DNA damage. Science 288(5470):1425–1429PubMedPubMedCentralCrossRefGoogle Scholar
  75. Mailand N et al (2007) RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins. Cell 131(5):887–900PubMedCrossRefGoogle Scholar
  76. Malkin D et al (1990) Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 250(4985):1233–1238PubMedCrossRefGoogle Scholar
  77. Malone KE et al (2006) Prevalence and predictors of BRCA1 and BRCA2 mutations in a population-based study of breast cancer in white and black American women ages 35 to 64 years. Cancer Res 66(16):8297–8308PubMedCrossRefGoogle Scholar
  78. Marsit CJ et al (2004) Inactivation of the Fanconi anemia/BRCA pathway in lung and oral cancers: implications for treatment and survival. Oncogene 23(4):1000–1004PubMedCrossRefGoogle Scholar
  79. Matos J, West SC (2014) Holliday junction resolution: regulation in space and time. DNA Repair (Amst) 19:176–181CrossRefGoogle Scholar
  80. Matsuoka S et al (2007) ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316(5828):1160–1166PubMedPubMedCentralCrossRefGoogle Scholar
  81. Mazin AV et al (2010) Rad54, the motor of homologous recombination. DNA Repair (Amst) 9(3):286–302CrossRefGoogle Scholar
  82. Mendes-Pereira AM et al (2009) Synthetic lethal targeting of PTEN mutant cells with PARP inhibitors. EMBO Mol Med 1(6–7):315–322PubMedPubMedCentralCrossRefGoogle Scholar
  83. Merrick CJ, Jackson D, Diffley JF (2004) Visualization of altered replication dynamics after DNA damage in human cells. J Biol Chem 279(19):20067–20075PubMedCrossRefPubMedCentralGoogle Scholar
  84. Mohni KN et al (2015) A synthetic lethal screen identifies DNA repair pathways that sensitize cancer cells to combined ATR inhibition and cisplatin treatments. PLoS One 10(5):e0125482PubMedPubMedCentralCrossRefGoogle Scholar
  85. Mueller PR et al (1995) Myt1: a membrane-associated inhibitory kinase that phosphorylates Cdc2 on both threonine-14 and tyrosine-15. Science 270(5233):86–90PubMedCrossRefPubMedCentralGoogle Scholar
  86. Murai J et al (2012) Trapping of PARP1 and PARP2 by Clinical PARP Inhibitors. Cancer Res 72(21):5588–5599PubMedPubMedCentralCrossRefGoogle Scholar
  87. Murga M et al (2011) Exploiting oncogene-induced replicative stress for the selective killing of Myc-driven tumors. Nat Struct Mol Biol 18(12):1331–1335PubMedPubMedCentralCrossRefGoogle Scholar
  88. NIH 2015 National cancer institite–side effects. 04/29/15 [cited 2016 11/14/16]; Available from: https://www.cancer.gov/about-cancer/treatment/side-effects
  89. Nilsson JA, Cleveland JL (2003) Myc pathways provoking cell suicide and cancer. Oncogene 22(56):9007–9021PubMedCrossRefPubMedCentralGoogle Scholar
  90. Norbury C, Blow J, Nurse P (1991) Regulatory phosphorylation of the p34cdc2 protein kinase in vertebrates. EMBO J 10(11):3321–3329PubMedPubMedCentralCrossRefGoogle Scholar
  91. Parker LL, Piwnica-Worms H (1992) Inactivation of the p34cdc2-cyclin B complex by the human WEE1 tyrosine kinase. Science 257(5078):1955–1957PubMedCrossRefPubMedCentralGoogle Scholar
  92. Patel AG, Sarkaria JN, Kaufmann SH (2011) Nonhomologous end joining drives poly(ADP-ribose) polymerase (PARP) inhibitor lethality in homologous recombination-deficient cells. Proc Natl Acad Sci U S A 108(8):3406–3411PubMedPubMedCentralCrossRefGoogle Scholar
  93. Prevo R et al (2012) The novel ATR inhibitor VE-821 increases sensitivity of pancreatic cancer cells to radiation and chemotherapy. Cancer Biol Ther 13(11):1072–1081PubMedPubMedCentralCrossRefGoogle Scholar
  94. Ragland RL et al (2013) RNF4 and PLK1 are required for replication fork collapse in ATR-deficient cells. Genes Dev 27(20):2259–2273PubMedPubMedCentralCrossRefGoogle Scholar
  95. Reaper PM et al (2011) Selective killing of ATM- or p53-deficient cancer cells through inhibition of ATR. Nat Chem Biol 7(7):428–430PubMedPubMedCentralCrossRefGoogle Scholar
  96. Regal JA et al (2013) Disease-associated MRE11 mutants impact ATM/ATR DNA damage signaling by distinct mechanisms. Hum Mol Genet 22(25):5146–5159PubMedPubMedCentralCrossRefGoogle Scholar
  97. Riabinska A et al (2013) Therapeutic targeting of a robust non-oncogene addiction to PRKDC in ATM-defective tumors. Sci Transl Med 5(189):189ra78PubMedCrossRefPubMedCentralGoogle Scholar
  98. Rogakou EP et al (1998) DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273(10):5858–5868PubMedCrossRefPubMedCentralGoogle Scholar
  99. Santocanale C, Diffley JF (1998) A Mec1- and Rad53-dependent checkpoint controls late-firing origins of DNA replication. Nature 395(6702):615–618PubMedCrossRefPubMedCentralGoogle Scholar
  100. Schoppy DW et al (2012) Oncogenic stress sensitizes murine cancers to hypomorphic suppression of ATR. J Clin Invest 122(1):241–252PubMedPubMedCentralCrossRefGoogle Scholar
  101. Shiloh Y, Ziv Y (2013) The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nat Rev Mol Cell Biol 14(4):197–210PubMedPubMedCentralCrossRefGoogle Scholar
  102. Siddick ZH (2002) The cancer handbook. In: Mechanisms of action of cancerchemotherapeutic agents: DNA-interactive alkylating agents and antitumour platinum-based drugs, 1st edn. John Wiley & Sons, Ltd, Hoboken, New JerseyGoogle Scholar
  103. Sorensen CS et al (2003) Chk1 regulates the S phase checkpoint by coupling the physiological turnover and ionizing radiation-induced accelerated proteolysis of Cdc25A. Cancer Cell 3(3):247–258PubMedPubMedCentralCrossRefGoogle Scholar
  104. Sorensen CS et al (2005) The cell-cycle checkpoint kinase Chk1 is required for mammalian homologous recombination repair. Nat Cell Biol 7(2):195–201PubMedCrossRefPubMedCentralGoogle Scholar
  105. Sosman JA et al (2012) Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. N Engl J Med 366(8):707–714PubMedPubMedCentralCrossRefGoogle Scholar
  106. Stewart GS et al (2003) MDC1 is a mediator of the mammalian DNA damage checkpoint. Nature 421(6926):961–966PubMedCrossRefPubMedCentralGoogle Scholar
  107. Stiff T et al (2004) ATM and DNA-PK function redundantly to phosphorylate H2AX after exposure to ionizing radiation. Cancer Res 64(7):2390–2396PubMedCrossRefPubMedCentralGoogle Scholar
  108. Strausfeld U et al (1991) Dephosphorylation and activation of a p34cdc2/cyclin B complex in vitro by human CDC25 protein. Nature 351(6323):242–245PubMedCrossRefPubMedCentralGoogle Scholar
  109. Sy SM, Huen MS, Chen J (2009) PALB2 is an integral component of the BRCA complex required for homologous recombination repair. Proc Natl Acad Sci U S A 106(17):7155–7160PubMedPubMedCentralCrossRefGoogle Scholar
  110. Toledo LI et al (2011) A cell-based screen identifies ATR inhibitors with synthetic lethal properties for cancer-associated mutations. Nat Struct Mol Biol 18(6):721–727PubMedPubMedCentralCrossRefGoogle Scholar
  111. Toledo LI et al (2013) ATR prohibits replication catastrophe by preventing global exhaustion of RPA. Cell 155(5):1088–1103PubMedPubMedCentralCrossRefGoogle Scholar
  112. Turner N, Tutt A, Ashworth A (2004) Hallmarks of ‘BRCAness’ in sporadic cancers. Nat Rev Cancer 4(10):814–819PubMedCrossRefPubMedCentralGoogle Scholar
  113. Varon R et al (2001) Mutations in the nijmegen breakage syndrome gene (NBS1) in childhood acute lymphoblastic leukemia (ALL). Cancer Res 61(9):3570–3572PubMedGoogle Scholar
  114. Vita M, Henriksson M (2006) The Myc oncoprotein as a therapeutic target for human cancer. Semin Cancer Biol 16(4):318–330PubMedCrossRefGoogle Scholar
  115. Waddell N et al (2015) Whole genomes redefine the mutational landscape of pancreatic cancer. Nature 518(7540):495–501PubMedPubMedCentralCrossRefGoogle Scholar
  116. Waters LS et al (2009) Eukaryotic translesion polymerases and their roles and regulation in DNA damage tolerance. Microbiol Mol Biol Rev 73(1):134–154PubMedPubMedCentralCrossRefGoogle Scholar
  117. Welburn JP et al (2007) How tyrosine 15 phosphorylation inhibits the activity of cyclin-dependent kinase 2-cyclin A. J Biol Chem 282(5):3173–3181PubMedCrossRefPubMedCentralGoogle Scholar
  118. Williams JS, Lujan SA, Kunkel TA (2016) Processing ribonucleotides incorporated during eukaryotic DNA replication. Nat Rev Mol Cell Biol 17(6):350–363PubMedPubMedCentralCrossRefGoogle Scholar
  119. Wyatt HD et al (2013) Coordinated actions of SLX1-SLX4 and MUS81-EME1 for Holliday junction resolution in human cells. Mol Cell 52(2):234–247PubMedCrossRefPubMedCentralGoogle Scholar
  120. Xia B et al (2006) Control of BRCA2 cellular and clinical functions by a nuclear partner, PALB2. Mol Cell 22(6):719–729PubMedCrossRefPubMedCentralGoogle Scholar
  121. Yazinski SA et al (2017) ATR inhibition disrupts rewired homologous recombination and fork protection pathways in PARP inhibitor-resistant BRCA-deficient cancer cells. Genes Dev 31(3):318–332PubMedPubMedCentralCrossRefGoogle Scholar
  122. Zamborszky J et al (2017) Loss of BRCA1 or BRCA2 markedly increases the rate of base substitution mutagenesis and has distinct effects on genomic deletions. Oncogene 36(6):746–755PubMedCrossRefPubMedCentralGoogle Scholar
  123. Zeman MK, Cimprich KA (2014) Causes and consequences of replication stress. Nat Cell Biol 16(1):2–9PubMedPubMedCentralCrossRefGoogle Scholar
  124. Zhao H, Watkins JL, Piwnica-Worms H (2002) Disruption of the checkpoint kinase 1/cell division cycle 25A pathway abrogates ionizing radiation-induced S and G2 checkpoints. Proc Natl Acad Sci U S A 99(23):14795–14800PubMedPubMedCentralCrossRefGoogle Scholar
  125. Zou L, Elledge SJ (2003) Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 300(5625):1542–1548PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Atrin Pharmaceuticals, Pennsylvania Biotechnology CenterDoylestownUSA
  2. 2.Department of Cancer Biology, Abramson Family Cancer Research InstitutePerelman School of Medicine, University of PennsylvaniaPhiladelphiaUSA

Personalised recommendations