Advertisement

Dbait: A New Concept of DNA Repair Pathways Inhibitor from Bench to Bedside

  • Marie Dutreix
  • Flavien Devun
  • Nirmitha Herath
  • Patricia Noguiez-Hellin
Chapter
Part of the Cancer Drug Discovery and Development book series (CDD&D)

Abstract

Biological systems need to be robust, both for survival of individuals under stress and for plasticity required for adaptation and evolution. In principle, networks can achieve robustness through redundancy. The most direct mechanism is simple substitutional redundancy, if a protein or a pathway are inactive another protein or pathway can substitute to perform the same function. Functional plasticity and redundancy are essential mechanisms underlying the ability to survive and maintain genome integrity. However, it is the cause of failure of many targeted therapies as alternative pathways can replace the function inactivated by the hit of the targeted enzyme.

Keywords

Dbait DNA damage repair DT101 AsiDNA Genotoxic drug Radiation 

References

  1. Aly A, Ganesan S (2011) BRCA1, PARP, and 53BP1: conditional synthetic lethality and synthetic viability. J Mol Cell Biol 3(1):66–74CrossRefPubMedPubMedCentralGoogle Scholar
  2. Anai H, Maehara Y, Sugimachi K (1988) In situ nick translation method reveals DNA strand scission in HeLa cells following heat treatment. Cancer Lett 40(1):33–38CrossRefPubMedGoogle Scholar
  3. Beck C, Robert I, Reina-San-Martin B, Schreiber V, Dantzer F (2014) Poly(ADP-ribose) polymerases in double-strand break repair: focus on PARP1, PARP2 and PARP3. Exp Cell Res 329(1):18–25CrossRefPubMedGoogle Scholar
  4. Begg AC, Stewart FA, Vens C (2011) Strategies to improve radiotherapy with targeted drugs. Nat Rev Cancer 11(4):239–253CrossRefGoogle Scholar
  5. Berthault N, Maury B, Agrario C et al (2011) Comparison of distribution and activity of nanoparticles with short interfering DNA (Dbait) in various living systems. Cancer Gene Ther 18(10):695–706CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bhardwaj N, Dormer J, Ahmad F et al (2012) Heat shock protein 70 expression following hepatic radiofrequency ablation is affected by adjacent vasculature. J Surg Res 173(2):249–257CrossRefPubMedGoogle Scholar
  7. Bianchi V, Pontis E, Reichard P (1986) Changes of deoxyribonucleoside triphosphate pools induced by hydroxyurea and their relation to DNA synthesis. J Biol Chem 261(34):16037–16042PubMedGoogle Scholar
  8. Biau J, Devun F, Jdey W et al (2014) A preclinical study combining the DNA repair inhibitor Dbait with radiotherapy for the treatment of melanoma. Neoplasia 16(10):835–844CrossRefPubMedPubMedCentralGoogle Scholar
  9. Braun J, Hahn GM (1975) Enhanced cell killing by bleomycin and 43 degrees hyperthermia and the inhibition of recovery from potentially lethal damage. Cancer Res 35(11 Pt 1):2921–2927PubMedGoogle Scholar
  10. Caldecott KW (2008) Single-strand break repair and genetic disease. Nat Rev Genet 9(8):619–631CrossRefPubMedGoogle Scholar
  11. Chikamori K, Grozav AG, Kozuki T, Grabowski D, Ganapathi R, Ganapathi MK (2010) DNA topoisomerase II enzymes as molecular targets for cancer chemotherapy. Curr Cancer Drug Targets 10(7):758–771CrossRefPubMedGoogle Scholar
  12. Coquery N, Pannetier N, Farion R et al (2012) Distribution and radiosensitizing effect of cholesterol-coupled Dbait molecule in rat model of glioblastoma. PLoS One 7(7):e40567CrossRefPubMedPubMedCentralGoogle Scholar
  13. Croset A, Cordelieres FP, Berthault N et al (2013) Inhibition of DNA damage repair by artificial activation of PARP with siDNA. Nucleic Acids Res 41(15):7344–7355CrossRefPubMedPubMedCentralGoogle Scholar
  14. De Haas-Kock DF, Buijsen J, Pijls-Johannesma M et al (2009) Concomitant hyperthermia and radiation therapy for treating locally advanced rectal cancer. Cochrane Database Syst Rev 3:CD006269Google Scholar
  15. Devun F, Bousquet G, Biau J et al (2012) Preclinical study of the DNA repair inhibitor Dbait in combination with chemotherapy in colorectal cancer. J Gastroenterol 47(3):266–275CrossRefPubMedGoogle Scholar
  16. Durocher D, Jackson SP (2001) DNA-PK, ATM and ATR as sensors of DNA damage: variations on a theme? Curr Opin Cell Biol 13(2):225–231CrossRefPubMedGoogle Scholar
  17. Fenech M (1993) The cytokinesis-block micronucleus technique and its application to genotoxicity studies in human populations. Environ Health Perspect 101(Suppl 3):101–107CrossRefPubMedPubMedCentralGoogle Scholar
  18. Fortini P, Dogliotti E (2007) Base damage and single-strand break repair: mechanisms and functional significance of short- and long-patch repair subpathways. DNA Repair (Amst) 6(4):398–409CrossRefGoogle Scholar
  19. Franckena M, van der Zee J (2010) Use of combined radiation and hyperthermia for gynecological cancer. Curr Opin Obstet Gynecol 22(1):9–14CrossRefPubMedGoogle Scholar
  20. Hazan G, Lurie H, Yerushalmi A (1984) Sensitization of combined cis-platinum and cyclophosphamide by local hyperthermia in mice bearing the Lewis lung carcinoma. Oncology 41(1):68–69CrossRefPubMedGoogle Scholar
  21. Helleday T, Petermann E, Lundin C, Hodgson B, Sharma RA (2008) DNA repair pathways as targets for cancer therapy. Nat Rev Cancer 3(8):193–204CrossRefGoogle Scholar
  22. Herath NI, Devun F, Lienafa MC et al (2016) The DNA repair inhibitor DT01 as a novel therapeutic strategy for chemosensitization of colorectal liver metastasis. Mol Cancer Ther 15(1):15–22CrossRefPubMedGoogle Scholar
  23. Herath NI, Devun F, Herbette A et al (2017) Potentiation of doxorubicin efficacy in hepatocellular carcinoma by the DNA repair inhibitor DT01 in preclinical models. Eur Radiol 27(10):4435–4444CrossRefPubMedGoogle Scholar
  24. Hill SA, Denekamp J (1979) The response of six mouse tumours to combined heat and X rays: implications for therapy. Br J Radiol 52(615):209–218CrossRefPubMedGoogle Scholar
  25. Hurwitz MD, Hansen JL, Prokopios-Davos S et al (2011) Hyperthermia combined with radiation for the treatment of locally advanced prostate cancer: long-term results from Dana-Farber Cancer Institute study 94-153. Cancer 117(3):510–516CrossRefPubMedGoogle Scholar
  26. Itoh T, Orba Y, Takei H et al (2002) Immunohistochemical detection of hepatocellular carcinoma in the setting of ongoing necrosis after radiofrequency ablation. Mod Pathol 15(2):110–115CrossRefPubMedGoogle Scholar
  27. Jadhav K, Gupta N, Ahmed MB (2011) Micronuclei: an essential biomarker in oral exfoliated cells for grading of oral squamous cell carcinoma. J Cytol 28(1):7–12CrossRefPubMedPubMedCentralGoogle Scholar
  28. Jalal S, Earley JN, Turchi JJ (2011) DNA repair: from genome maintenance to biomarker and therapeutic target. Clin Cancer Res 17(22):6973–6984CrossRefPubMedPubMedCentralGoogle Scholar
  29. Jdey W, Thierry S, Russo C et al (2017) Drug-driven synthetic lethality: bypassing tumor cell genetics with a combination of AsiDNA and PARP inhibitors. Clin Cancer Res 23(4):1001–1011CrossRefPubMedGoogle Scholar
  30. Kim C, Lee CW, Kovacic L, Shah A, Klasa R, Savage KJ (2010) Long-term survival in patients with metastatic melanoma treated with DTIC or temozolomide. Oncologist 15(7):765–771CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kirkwood JM, Bastholt L, Robert C et al (2012) Phase II, open-label, randomized trial of the MEK1/2 inhibitor selumetinib as monotherapy versus temozolomide in patients with advanced melanoma. Clin Cancer Res 18(2):555–567CrossRefPubMedGoogle Scholar
  32. Konefal JB, Emami B, Pilepich MV (1987) Malignant melanoma: analysis of dose fractionation in radiation therapy. Radiology 164(3):607–610CrossRefPubMedGoogle Scholar
  33. Krawczyk PM, Eppink B, Essers J et al (2011) Mild hyperthermia inhibits homologous recombination, induces BRCA2 degradation, and sensitizes cancer cells to poly (ADP-ribose) polymerase-1 inhibition. Proc Natl Acad Sci U S A 108(24):9851–9856CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kuzminov A (2001) Single-strand interruptions in replicating chromosomes cause double-strand breaks. Proc Natl Acad Sci U S A 98(15):8241–8246CrossRefPubMedPubMedCentralGoogle Scholar
  35. Le Tourneau C, Dreno B, Kirova Y et al (2016) First-in-human phase i study of the DNA-repair inhibitor DT101 in combination with radiotherapy in patients with skin metastases from melanoma. Brit J Cancer 114:1199–1205CrossRefPubMedGoogle Scholar
  36. Lord CJ, Ashworth A (2012) The DNA damage response and cancer therapy. Nature 481(7381):287–294CrossRefPubMedGoogle Scholar
  37. Lundin C, Erixon K, Arnaudeau C et al (2002) Different roles for nonhomologous end joining and homologous recombination following replication arrest in mammalian cells. Mol Cell Biol 22(16):5869–5878CrossRefPubMedPubMedCentralGoogle Scholar
  38. Moding EJ, Kastan MB, Kirsch DG (2013) Strategies for optimizing the response of cancer and normal tissues to radiation. Nat Rev Drug Discov 12(7):526–542CrossRefPubMedPubMedCentralGoogle Scholar
  39. Oliver TG, Mercer KL, Sayles LC et al (2010) Chronic cisplatin treatment promotes enhanced damage repair and tumor progression in a mouse model of lung cancer. Genes Dev 24(8):837–852CrossRefPubMedPubMedCentralGoogle Scholar
  40. Olivier KR, Schild SE, Morris CG, Brown PD, Markovic SN (2007) A higher radiotherapy dose is associated with more durable palliation and longer survival in patients with metastatic melanoma. Cancer 110(8):1791–1795CrossRefPubMedGoogle Scholar
  41. Paques F, Haber JE (1999) Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 63(2):349–404PubMedPubMedCentralGoogle Scholar
  42. Peng G, Chun-Jen Lin C, Mo W et al (2014) Genome-wide transcriptome profiling of homologous recombination DNA repair. Nat Commun 5:3361CrossRefPubMedPubMedCentralGoogle Scholar
  43. Quanz M, Chassoux D, Berthault N, Agrario C, Sun JS, Dutreix M (2009a) Hyperactivation of DNA-PK by double-strand break mimicking molecules disorganizes DNA damage response. PLoS One 4(7):e6298CrossRefPubMedPubMedCentralGoogle Scholar
  44. Quanz M, Berthault N, Roulin C et al (2009b) Small-molecule drugs mimicking DNA damage: a new strategy for sensitizing tumors to radiotherapy. Clin Cancer Res 15(4):1308–1316CrossRefPubMedGoogle Scholar
  45. Rogakou EP, Boon C, Redon C, Bonner WM (1999) Megabase chromatin domains involved in DNA double-strand breaks in vivo. J Cell Biol 146(5):905–916CrossRefPubMedPubMedCentralGoogle Scholar
  46. Schlegel A, Buhler C, Devun F et al (2012) Pharmacokinetics and toxicity in rats and monkeys of coDbait: a therapeutic double-stranded DNA oligonucleotide conjugated to cholesterol. Mol Ther Nucleic Acids 1:e33CrossRefPubMedPubMedCentralGoogle Scholar
  47. Shaheen M, Allen C, Nickoloff JA, Hromas R (2011) Synthetic lethality: exploiting the addiction of cancer to DNA repair. Blood 117(23):6074–6082CrossRefPubMedGoogle Scholar
  48. Thoms J, Bristow RG (2010) DNA repair targeting and radiotherapy: a focus on the therapeutic ratio. Semin Radiat Oncol 20(4):217–222CrossRefPubMedGoogle Scholar
  49. Viallard C, Chezal JM, Mishellany F et al (2016) Targeting DNA repair by coDbait enhances melanoma targeted radionuclide therapy. Oncotarget 7(11):12927–12936CrossRefPubMedPubMedCentralGoogle Scholar
  50. Warters RL, Henle KJDNA (1982) degradation in chinese hamster ovary cells after exposure to hyperthermia. Cancer Res 42(11):4427–4432PubMedGoogle Scholar
  51. West SC (2003) Molecular views of recombination proteins and their control. Nat Rev Mol Cell Biol 4(6):435–445CrossRefPubMedGoogle Scholar
  52. Willers H, Azzoli CG, Santivasi WL, Xia F (2013) Basic mechanisms of therapeutic resistance to radiation and chemotherapy in lung cancer. Cancer J 19(3):200–207CrossRefPubMedPubMedCentralGoogle Scholar
  53. Wong RS, Dynlacht JR, Cedervall B, Dewey WC (1995) Analysis by pulsed-field gel electrophoresis of DNA double-strand breaks induced by heat and/or X-irradiation in bulk and replicating DNA of CHO cells. Int J Radiat Biol 68(2):141–152CrossRefPubMedGoogle Scholar
  54. Wyman C, Kanaar R (2006) DNA double-strand break repair: all's well that ends well. Annu Rev Genet 40:363–383CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Marie Dutreix
    • 1
    • 2
  • Flavien Devun
    • 1
    • 2
    • 3
  • Nirmitha Herath
    • 1
    • 2
    • 3
  • Patricia Noguiez-Hellin
    • 1
    • 2
    • 3
  1. 1.Institut Curie, PSL Research University, CNRS, INSERM, UMR 3347OrsayFrance
  2. 2.Université Paris Sud, Université Paris-Saclay, CNRS, INSERM, UMR 3347OrsayFrance
  3. 3.DNA Therapeutics, GenopoleEvryFrance

Personalised recommendations