Advertisement

Two-Photon Polymerization in Tissue Engineering

  • Anastasia Shpichka
  • Anastasia Koroleva
  • Daria Kuznetsova
  • Vitaliy Burdukovskii
  • Boris Chichkov
  • Viktor Bagratashvilі
  • Peter Timashev
Part of the Micro- and Opto-Electronic Materials, Structures, and Systems book series (MOEM)

Abstract

In tissue engineering, three-dimensional scaffolds, which should ensure necessary mechanical and biological microenvironment and nutrient, oxygen and grow factor delivery to proliferating cells, are an essential element. They can be formed from polymeric, ceramic and hybrid materials via different techniques. Modern laser fabrication methods, which provide high accuracy of positioning and energy focusing and allow the precise porous scaffold formation, are particularly interesting. Two-photon polymerization is one of the most promising laser-based techniques and permits the use of a large material variety for scaffold fabrication with the possibility of controlling accurately their microarchitecture. While the number of studies on two-photon polymerization is constantly growing, it is crucial to provide a framework of its application in tissue engineering. Therefore, this chapter aims to describe recent achievements and examples of two-photon polymerization application in tissue engineering and to reveal the main trends in this field.

Abbreviations

2PP

Two-photon polymerization

3D

Three-dimensional

ECM

Extracellular matrix

TE

Tissue engineering

TPA

Two-photon absorption

References

  1. 1.
    A.C. Allori, A.M. Sailon, S.M. Warren, Biological basis of bone formation, remodeling, and repair-part I: Biochemical signaling molecules. Tissue Eng. Part B Rev. 14(3), 259–273 (2008)CrossRefGoogle Scholar
  2. 2.
    J.P. Santerre, K. Woodhouse, G. Laroched, et al., Understanding the biodegradation of polyurethanes: From classical implants to tissue engineering materials. Biomaterials 26, 7457–7470 (2005)CrossRefGoogle Scholar
  3. 3.
    H. Li, K. Xue, N. Konga, et al., Silicate bioceramics enhanced vascularization and osteogenesis through stimulating interactions between endothelia cells and bone marrow stromal cells. Biomaterials 35, 3803–3818 (2014)CrossRefGoogle Scholar
  4. 4.
    W. Liu, J. Wei, Y. Chen, et al., Electrospinning of poly(l-lactide) nanofibers encapsulated with water-soluble fullerenes for bioimaging application. ACS Appl. Mater. Interfaces 5(3), 680–685 (2013a)CrossRefGoogle Scholar
  5. 5.
    Y. Liu, J. Lim, S.-H. Teoh, Review: Development of clinically relevant scaffolds for vascularised bone tissue engineering. Biotechnol. Adv. 31(5), 688–705 (2013b)CrossRefGoogle Scholar
  6. 6.
    M.M. Nava, M.T. Raimondi, R. Pietrabissa, Controlling self-renewal and differentiation of stem cells via mechanical cues. J Biomed Biotechnol 2012, 1 (2012).  https://doi.org/10.1155/2012/797410 CrossRefGoogle Scholar
  7. 7.
    P. Timashev, D. Kuznetsova, A. Koroleva, et al., Novel biodegradable star-shaped polylactide scaffolds for bone regeneration fabricated by two-photon polymerization. Nanomedicine 11, 1041 (2016a).  https://doi.org/10.2217/nnm-2015-0022 CrossRefGoogle Scholar
  8. 8.
    P.J.S. Bártolo, H. Almeida, Rapid prototyping and manufacturing for tissue engineering scaffolds. Int J Comput Appl Technology 36(1), 1–9 (2009)CrossRefGoogle Scholar
  9. 9.
    M.T. Raimondi, S.M. Eaton, M.M. Nava, et al., Two-photon laser polymerization: From fundamentals to biomedical application in tissue engineering and regenerative medicine. J. Appl. Biomater. Biomech. 10(1), 55–65 (2012)Google Scholar
  10. 10.
    S. Farid, S. Shirazi, S. Gharehkhani, et al., A review on powder-based additive manufacturing for tissue engineering: Selective laser sintering and inkjet 3D printing. Sci. Technol. Adv. Mater. 16, 033502 (2015)CrossRefGoogle Scholar
  11. 11.
    K. Singh, B.R. Singh, H. Singh, Development of rapid tooling using fused deposition modeling: A review. Rapid Prototyping J. 22(2), 281 (2016).  https://doi.org/10.1108/RPJ-04-2014-0048 CrossRefGoogle Scholar
  12. 12.
    S.V. Murphy, A. Atala, 3D bioprinting of tissues and organs. Nat. Biotechnol. 32, 773 (2014).  https://doi.org/10.1038/nbt.2958 CrossRefGoogle Scholar
  13. 13.
    Carvalho C (2017) .There’s only one 3D–bioplotter. https://envisiontec.com/3d-printers/3d-bioplotter/. Accessed 26 Apr 2017
  14. 14.
    BioBot (2017) What will you build. https://www.biobots.io/biobot-1/. Accessed 26 Apr 2017
  15. 15.
    M. Malinauskas, M. Farsari, A. Piskarskas, et al., Ultrafast laser nanostructuring of photopolymers: A decade of advances. Phys. Rep. 533(1), 1–31 (2013)CrossRefGoogle Scholar
  16. 16.
    A. Koroleva, A.A. Gill, I. Ortega, et al., Two-photon polymerization-generated and micromolding-replicated 3D scaffolds for peripheral neural tissue engineering applications. Biofabrication 4, 025005 (2012a)CrossRefGoogle Scholar
  17. 17.
    A. Koroleva, S. Gittard, S. Schlie, et al., Fabrication of fibrin scaffolds with controlled microscale architecture by a two-photon polymerization–micromolding technique. Biofabrication 4, 015001 (2012b)CrossRefGoogle Scholar
  18. 18.
    J. Serbin, A. Egbert, A. Ostendorf, et al., Femtosecond laser-induced two-photon polymerization of organic-inorganic hybrid materials for applications in photonics. Opt. Lett. 28(5), 301–303 (2003)CrossRefGoogle Scholar
  19. 19.
    M. Emons, K. Obata, T. Binhammer, et al., Two-photon polymerization technique with sub-50 nm resolution by sub-10 fs laser pulses. Opt. Mater. Express 2(7), 942–947 (2012)CrossRefGoogle Scholar
  20. 20.
    A. Ovsianikov, A. Ostendorf, B. Chichkov, Three-dimensional photofabrication with femtosecond lasers for applications in photonics and biomedicine. Appl. Surf. Sci. 253(15), 6599–6602 (2007)CrossRefGoogle Scholar
  21. 21.
    A. Koroleva, A. Deiwick, A. Nguyen, et al., Osteogenic differentiation of human mesenchymal stem cells in 3-D Zr-Si organic- inorganic scaffolds produced by two-photon polymerization technique. PLoS One 10(2), e0118164 (2015)CrossRefGoogle Scholar
  22. 22.
    F. Jipa, M. Zamfirescu, A. Velea, et al., Femtosecond laser lithography in organic and non-organic materials, in Updates in Advanced Lithography, ed. by S. Hosaka (Ed), (InTech, 2013).  https://doi.org/10.5772/56579
  23. 23.
    P. Saeta, J.K. Wang, Y. Siegal, et al., Ultrafast electronic disordering during femtosecond laser melting of GaAs. Phys. Rev. Lett. 67, 1023–1026 (1991)CrossRefGoogle Scholar
  24. 24.
    C. Heller, N. Pucher, B. Seidl, et al., One- and two-photon activity of cross-conjugated photoinitiators with bathochromic shift. J. Polym. Sci. A Polym. Chem. 45, 3280–3291 (2007)CrossRefGoogle Scholar
  25. 25.
    S. Maruo, O. Nakamura, S. Kawata, Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Opt. Lett. 22(2), 132–134 (1997)CrossRefGoogle Scholar
  26. 26.
    S. Turunen, E. Käpylä, M. Lähteenmäki, et al., Direct laser writing of microstructures for the growth guidance of human pluripotent stem cell derived neuronal cells. Opt. Lasers Eng. 55, 197–204 (2014)CrossRefGoogle Scholar
  27. 27.
    M.M. Nava, N. Di Maggio, T. Zandrini, et al., Synthetic niche substrates engineered via two-photon laser polymerization for the expansion of human mesenchymal stromal cells. J. Tissue Eng. Regen. Med. 11, 2836 (2016).  https://doi.org/10.1002/term.2187 CrossRefGoogle Scholar
  28. 28.
    S.J. Jhaveri, J.D. McMullen, R. Sijbesma, et al., Direct three-dimensional microfabrication of hydrogels via two-photon lithography in aqueous solution. Chem. Mater. 21(10), 2003–2006 (2009)CrossRefGoogle Scholar
  29. 29.
    J. Heitz, C. Plamadeala, M. Wiesbauer, et al., Bone-forming cells with pronounced spread into the third dimension in polymer scaffolds fabricated by two-photon polymerization. J. Biomed. Mater. Res. A 105, 891 (2016).  https://doi.org/10.1002/jbm.a.35959 CrossRefGoogle Scholar
  30. 30.
    S. Engelhardt, E. Hoch, K. Borchers, et al., Fabrication of 2D protein microstructures and 3D polymer–protein hybrid microstructures by two-photon polymerization. Biofabrication 3, 025003 (2011)CrossRefGoogle Scholar
  31. 31.
    B. Kaehr, R. Allen, D.J. Javier, et al., Guiding neuronal development with in situ microfabrication. PNAS 101(46), 16104–16108 (2004)CrossRefGoogle Scholar
  32. 32.
    S.K. Seidlits, C.E. Schmidt, J.B. Shear, High-resolution patterning of hydrogels in three dimensions using direct-write photofabrication for cell guidance. Adv. Funct. Mater. 19, 3543–3551 (2009)CrossRefGoogle Scholar
  33. 33.
    A.K. Nguyen, S.D. Gittard, A. Koroleva, et al., Two-photon polymerization of polyethylene glycol diacrylate scaffolds with riboflavin and triethanolamine used as a water-soluble photoinitiator. Regen. Med. 8(6), 725–738 (2013)CrossRefGoogle Scholar
  34. 34.
    S. Huang, A.A. Heikal, W.W. Webb, Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein. Biophys. J. 82, 2811–2825 (2002)CrossRefGoogle Scholar
  35. 35.
    J. Torgersen, X.-H. Qin, Z. Li, et al., Hydrogels for two-photon polymerization: A toolbox for mimicking the extracellular matrix. Adv. Funct. Mater. 23, 4542 (2013).  https://doi.org/10.1002/adfm.201203880 CrossRefGoogle Scholar
  36. 36.
    A. Cataldi, A.E. Corcione, M. Frigione, et al., Photocurable resin/microcrystalline cellulose composites for wood protection: Physical-mechanical characterization. Prog. Org. Coat. 99, 230–239 (2016)CrossRefGoogle Scholar
  37. 37.
    J.-S. Choi, J. Seo, S.B. Khanc, et al., Effect of acrylic acid on the physical properties of UV-cured poly(urethane acrylate-co-acrylic acid) films for metal coating. Prog. Org. Coat. 71, 110–116 (2011)CrossRefGoogle Scholar
  38. 38.
    P. Kiruthika, R. Subasri, A. Jyothirmayi, et al., Effect of plasma surface treatment on mechanical and corrosion protection properties of UV-curable sol-gel based GPTS-ZrO2 coatings on mild steel. Surf. Coat. Technol. 204, 270–1276 (2010)CrossRefGoogle Scholar
  39. 39.
    S. Papilloud, D. Baudraz, Migration tests for substrates printed with UV ink systems in aqueous simulants. Prog. Org. Coat. 45, 231–237 (2002)CrossRefGoogle Scholar
  40. 40.
    C. Sow, B. Riedl, P. Blanchet, UV-waterborne polyurethane-acrylate nanocomposite coatings containing alumina and silica nanoparticles for wood: Mechanical, optical, and thermal properties assessment. J. Coat. Technol. Res. 8, 211–221 (2011)CrossRefGoogle Scholar
  41. 41.
    A. Ovsianikov, V. Mironov, J. Stampfl, et al., Engineering 3D cell-culture matrices: Multiphoton processing technologies for biological and tissue engineering applications. Expert Rev. Med. Devices 9(6), 613–633 (2012)CrossRefGoogle Scholar
  42. 42.
    F. Hao, Z. Liu, M. Zhang, et al., Four new two-photon polymerization initiators with varying donor and conjugated bridge: Synthesis and two-photon activity. Spectrochim. Acta A Mol. Biomol. Spectrosc. 118, 538–542 (2014)CrossRefGoogle Scholar
  43. 43.
    K.J. Schafer, J.M. Hales, M. Balu, et al., Two-photon absorption cross-sections of common photoinitiators. J. Photochem. Photobiol. 162, 497–502 (2004)CrossRefGoogle Scholar
  44. 44.
    A. Ovsianikov, A. Deiwick, S. Van Vlierberghe, et al., Laser fabrication of 3D gelatin scaffolds for the generation of bioartificial tissues. Materials 4, 288–299 (2011a)CrossRefGoogle Scholar
  45. 45.
    P.J. Campagnola, D.M. Delguidice, G.A. Epling, et al., 3-dimensional submicron polymerization of acrylamide by multiphoton excitation of xanthene dyes. Macromolecules 33, 1511–1513 (2000)CrossRefGoogle Scholar
  46. 46.
    M. Farsari, G. Filippidis, K. Sambani, et al., Two-photon polymerization of an eosin Y-sensitized acrylate composite. J. Photochem. Photobiol. A Chem. 181, 132–135 (2006)CrossRefGoogle Scholar
  47. 47.
    S. Li, L. Li, F. Wu, et al., A water-soluble two-photon photopolymerization initiation system: Methylated--cyclodextrin complex of xanthene dye/aryliodonium salt. J. Photochem. Photobiol. A Chem. 203, 211–215 (2009)CrossRefGoogle Scholar
  48. 48.
    M. Malinauskas, P. Danilevicius, D. Baltriukiene˙, et al., 3D artificial polymeric scaffolds for stem cell growth fabricated by femtosecond laser. Lithuanian J. Phys. 50(1), 75–82 (2010)CrossRefGoogle Scholar
  49. 49.
    P. Danilevičius, A. Žukauskas, G. Bičkauskaitė, et al., Laser-micro/nanofabricated 3D polymers for tissue engineering applications. Lat. J. Phys. Tech. Sci. 2, 32–43 (2011)Google Scholar
  50. 50.
    A. Doraiswamy, C. Jin, R.J. Narayan, et al., Two photon induced polymerization of organic–inorganic hybrid biomaterials for microstructured medical devices. Acta Biomater. 2, 267–275 (2006)CrossRefGoogle Scholar
  51. 51.
    A. Doraiswamy, A. Ovsianikov, S.D. Gittard, et al., Fabrication of microneedles using two photon polymerization for transdermal delivery of nanomaterials. J. Nanosci. Nanotechnol. 10, 6305–6312 (2010)CrossRefGoogle Scholar
  52. 52.
    K. Terzaki, M. Kissamitaki, A. Skarmoutsou, et al., Pre-osteoblastic cell response on three-dimensional, organic-inorganic hybrid material scaffolds for bone tissue engineering. J. Biomed. Mater. Res. Part A 101A, 2283 (2013).  https://doi.org/10.1002/jbm.a.34516 CrossRefGoogle Scholar
  53. 53.
    S.A. Skoog, A.K. Nguyen, G. Kumar, et al., Two-photon polymerization of 3-D zirconium oxide hybrid scaffolds for long-term stem cell growth. Biointerphases 9(2), 029014 (2014)CrossRefGoogle Scholar
  54. 54.
    P.S. Timashev, K.N. Bardakova, N.V. Minaeva, et al., Compatibility of cells of the nervous system with structured biodegradable chitosan-based hydrogel matrices. Appl. Biochem. Microbiol. 52(5), 508–514 (2016b)CrossRefGoogle Scholar
  55. 55.
    M.V. Vedunova, P.S. Timashev, T.A. Mishchenko, et al., Formation of neural networks in 3D scaffolds fabricated by means of laser microstereolithography. Bull. Exp. Biol. Med. 161(4), 616–621 (2016)CrossRefGoogle Scholar
  56. 56.
    T. Weiß, R. Schade, T. Laube, et al., Two-photon polymerization of biocompatible photopolymers for microstructured 3D biointerfaces. Adv. Eng. Mater. 13(9), 264–273 (2011)CrossRefGoogle Scholar
  57. 57.
    A. Ovsianikov, M. Gruene, M. Pflaum, et al., Laser printing of cells into 3D scaffolds. Biofabrication 2, 014104 (2010)CrossRefGoogle Scholar
  58. 58.
    V. Melissinaki, A.A. Gill, I. Ortega, et al., Direct laser writing of 3D scaffolds for neural tissue engineering applications. Biofabrication 3, 045005 (2011)CrossRefGoogle Scholar
  59. 59.
    A.A. Gill, Í. Ortega, S. Kelly, et al., Towards the fabrication of artificial 3D microdevices for neural cell networks. Biomed. Microdevices 17, 27–37 (2015)CrossRefGoogle Scholar
  60. 60.
    F. Claeyssens, E.A. Hasan, A. Gaidukeviciute, et al., Three-dimensional biodegradable structures fabricated by two-photon polymerization. Langmuir 25(5), 3219–3223 (2009)CrossRefGoogle Scholar
  61. 61.
    O. Kufelt, A. El-Tamer, C. Sehring, et al., Hyaluronic acid based materials for scaffolding via two-photon polymerization. Biomacromolecules 15(2), 650–659 (2014)CrossRefGoogle Scholar
  62. 62.
    J.D. Pitts, P.J. Campagnola, G.A. Epling, et al., Submicron multiphoton free-form fabrication of proteins and polymers: Studies of reaction efficiencies and applications in sustained release. Macromolecules 33, 1514–1523 (2000)CrossRefGoogle Scholar
  63. 63.
    J.D. Pitts, A.R. Howell, R. Taboada, et al., New photoactivators for multiphoton excited three-dimensional submicron cross-linking of proteins: Bovine serum albumin and type 1 collagen. Photochem. Photobiol. 76(2), 135–144 (2002)CrossRefGoogle Scholar
  64. 64.
    R. Allen, R. Nielson, D.D. Wise, et al., Catalytic three-dimensional protein architectures. Anal. Chem. 77, 5089–5095 (2005)CrossRefGoogle Scholar
  65. 65.
    J.C. Harper, S.M. Brozik, C.J. Brinker, et al., Biocompatible microfabrication of 3D isolation chambers for targeted confinement of individual cells and their progeny. Anal. Chem. 84(21), 8985–8989 (2012)CrossRefGoogle Scholar
  66. 66.
    E.C. Spivey, E.T. Ritschdorff, J.L. Connell, et al., Multiphoton lithography of unconstrained three-dimensional protein microstructures. Adv. Funct. Mater. 23(3), 333–339 (2012)CrossRefGoogle Scholar
  67. 67.
    K. Kuetemeyer, G. Kensah, M. Heidrich, et al., Two-photon induced collagen cross-linking in bioartificial cardiac tissue. Opt. Express 19(17), 15996–16007 (2011)CrossRefGoogle Scholar
  68. 68.
    S. Basu, V. Rodionov, M. Terasaki, et al., Multiphoton-excited microfabrication in live cells via rose Bengal cross-linking of cytoplasmic proteins. Opt. Lett. 30(2), 159–161 (2005)CrossRefGoogle Scholar
  69. 69.
    L.P. Cunningham, M.P. Veilleux, P.J. Campagnola, Freeform multiphoton excited microfabrication for biological applications using a rapid prototyping CAD-based approach. Opt. Express 14(19), 8613–8621 (2006)CrossRefGoogle Scholar
  70. 70.
    T.M. Hsieh, C.W.B. Ng, K. Narayanan, et al., Three-dimensional microstructured tissue scaffolds fabricated by two-photon laser scanning photolithography. Biomaterials 31, 7648–7652 (2010)CrossRefGoogle Scholar
  71. 71.
    A. Marino, C. Filippeschi, G.G. Genchi, et al., The osteoprint: A bioinspired two-photon polymerized 3-D structure for the enhancement of bone-like cell differentiation. Acta Biomater. 10, 4304–4313 (2014)CrossRefGoogle Scholar
  72. 72.
    T. Weiss, G. Hildebrand, R. Schade, et al., Two-photon polymerization for microfabrication of three-dimensional scaffolds for tissue engineering application. Eng. Life Sci. 9(5), 384–390 (2009)CrossRefGoogle Scholar
  73. 73.
    A. Ovsianikov, M. Malinauskas, S. Schlie, et al., Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications. Acta Biomater. 7, 967–974 (2011b)CrossRefGoogle Scholar
  74. 74.
    A.R. Amini, C.T. Laurencin, S.P. Nukavarapu, Bone tissue engineering: Recent advances and challenges. Crit. Rev. Biomed. Eng. 40(5), 363–408 (2012)CrossRefGoogle Scholar
  75. 75.
    C. Szpalski, M. Wetterau, J. Barr, et al., Bone tissue engineering: Current strategies and techniques—Part I: Scaffolds. Tissue Eng. Part B 18(4), 246–256 (2012)CrossRefGoogle Scholar
  76. 76.
    K.H. Choi, B.H. Choi, S.R. Park, et al., The chondrogenic differentiation of mesenchymal stem cells on an extracellular matrix scaffold derived from porcine chondrocytes. Biomaterials 31, 5355–5365 (2010)CrossRefGoogle Scholar
  77. 77.
    K. Narayanan, K.J. Leck, S. Gao, et al., Three- dimensional reconstituted extracellular matrix scaffolds for tissue engineering. Biomaterials 30, 4309–4317 (2009)CrossRefGoogle Scholar
  78. 78.
    A.J. Engler, S. Sen, H.L. Sweeney, et al., Matrix elasticity directs stem cell lineage specification. Cell 126(4), 677–689 (2006)CrossRefGoogle Scholar
  79. 79.
    C.B. Khatiwala, P.D. Kim, S.R. Peyton, et al., ECM compliance regulates osteogenesis by influencing MAPK signaling downstream of RhoA and ROCK. J. Bone Miner. Res. 24(5), 886–898 (2009)CrossRefGoogle Scholar
  80. 80.
    E. Engel, E. Martínez, C.A. Mills, et al., Mesenchymal stem cell differentiation on microstructured poly (methyl methacrylate) substrates. Ann. Anat. 191(1), 136–144 (2009)CrossRefGoogle Scholar
  81. 81.
    E. Martinez, E. Engel, J.A. Planell, et al., Effects of artificial micro- and nano-structured surfaces on cell behavior. Ann. Anat. 191, 126–135 (2009)CrossRefGoogle Scholar
  82. 82.
    S. Martino, F. D'Angelo, I. Armentano, et al., Hydrogenated amorphous carbon nanopatterned film designs drive human bone marrow mesenchymal stem cell cytoskeleton architecture. Tissue Eng. Part A 15(10), 3139–3149 (2009)CrossRefGoogle Scholar
  83. 83.
    V.T. Shashkova, I.A. Matveeva, N.N. Glagolev, et al., Synthesis of polylactide acrylate derivatives for the preparation of 3D structures by photo-curing. Mendeleev Commun. 26, 418–420 (2016)CrossRefGoogle Scholar
  84. 84.
    M. Mihailescu, R.C. Popescu, A. Matei, Investigation of osteoblast cells behavior in polymeric 3D micropatterned scaffolds using digital holographic microscopy. Appl. Opt. 53(22), 4850–4858 (2014)CrossRefGoogle Scholar
  85. 85.
    M. Chatzinikolaidou, C. Pontikoglou, K. Terzaki, et al., Recombinant human bone morphogenetic protein 2 (rhBMP-2) immobilized on laser-fabricated 3D scaffolds enhance osteogenesis. Colloids Surf. B Biointerfaces 149(1), 233–242 (2017)CrossRefGoogle Scholar
  86. 86.
    A.V. Koroleva, D.S. Guseva, N.A. Konovalov, et al., Polylactide-based biodegradable scaffolds fabricated by two-photon polymerization for neurotransplantation. CTM 8(4), 23–28 (2016)Google Scholar
  87. 87.
    A. Marino, G. Ciofani, C. Filippeschi, et al., Two-photon polymerization of sub-micrometric patterned surfaces: Investigation of cell-substrate interactions and improved differentiation of neuron-like cells. ACS Appl. Mater. Interfaces 5, 13012–13021 (2013)CrossRefGoogle Scholar
  88. 88.
    P.S. Timashev, M.V. Vedunova, D. Guseva, et al., 3D in vitro platform produced by two-photon polymerization for the analysis of neural network formation and function. Biomed. Phys. Eng. Express 2(3), 1–8 (2016c)CrossRefGoogle Scholar
  89. 89.
    H. Hidai, H. Jeon, D.J. Hwang, et al., Self-standing aligned fiber scaffold fabrication by two photon photopolymerization. Biomed. Microdevices 11, 643–652 (2009)CrossRefGoogle Scholar
  90. 90.
    H. Jeon, E. Kim, C.P. Grigoropoulos, Measurement of contractile forces generated by individual fibroblasts on self-standing fiber scaffolds. Biomed. Microdevices 13, 107–115 (2011)CrossRefGoogle Scholar
  91. 91.
    A. Marino, J. Barsotti, G. de Vito, et al., Two-photon lithography of 3D nanocomposite piezoelectric scaffolds for cell stimulation. ACS Appl. Mater. Interfaces 7, 25574–25579 (2015)CrossRefGoogle Scholar
  92. 92.
    C.M. Cowan, Y.Y. Shi, O.O. Aalami, et al., Adipose-derived adult stromal cells heal critical-size mouse calvarial defects. Nat. Biotechnol. 22(5), 560–567 (2004)CrossRefGoogle Scholar
  93. 93.
    A. Banerjee, M. Arha, S. Choudhary, et al., The influence of hydrogel modulus on the proliferation and differentiation of encapsulated neural stem cells. Biomaterials 30(27), 4695–4699 (2009)CrossRefGoogle Scholar
  94. 94.
    N.D. Leipzig, M.S. Shoichet, The effect of substrate stiffness on adult neural stemcell behavior. Biomaterials 30(36), 6867–6878 (2009)CrossRefGoogle Scholar
  95. 95.
    K. Saha, A.J. Keung, E.F. Irwin, Y. Li, et al., Substrate modulus directs neural stem cell behavior. Biophys. J. 95(9), 4426–4438 (2008)CrossRefGoogle Scholar
  96. 96.
    E.K.F. Yim, S.W. Pang, K.W. Leong, Synthetic nanostructures inducing differentiation of human mesenchymal stem cells into neuronal lineage. Exp. Cell Res. 313(9), 1820–1829 (2007)CrossRefGoogle Scholar
  97. 97.
    L. Binan, C. Tendey, G. De Crescenzo, et al., Differentiation of neuronal stem cells into motor neurons using electrospun poly-L-lactic acid/gelatin scaffold. Biomaterials 35, 664–674 (2014)CrossRefGoogle Scholar
  98. 98.
    J. Mačiulaitis, M. Deveikytė, S. Rekštytė, et al., Preclinical study of SZ2080 material 3D microstructured scaffolds for cartilage tissue engineering made by femtosecond direct laser writing lithography. Biofabrication 7, 015015 (2015)CrossRefGoogle Scholar
  99. 99.
    A.R. Costa-Pinto, A.M. Martins, M.J. Castelhano-Carlos, et al., In vitro degradation and in vivo biocompatibility of chitosan–poly (butylene succinate) fiber mesh scaffolds. J. Bioactive Compatible Polym.: Biomed. Appl. 29(2), 137–151 (2014)CrossRefGoogle Scholar
  100. 100.
    C. de Oliveira Renó, N.C. Pereta, C.A. Bertran, et al., Study of in vitro degradation of brushite cements scaffolds. J. Mater. Sci. Mater. Med. 25, 2297–2303 (2014)CrossRefGoogle Scholar
  101. 101.
    N. Zhu, D. Cooper, X.B. Chen, et al., A study on the in vitro degradation of poly(l-lactide)/chitosan microspheres scaffolds. Front. Mater. Sci. 7, 76–82 (2013)CrossRefGoogle Scholar
  102. 102.
    Y. He, Y. Dong, F. Cui, et al., Ectopic osteogenesis and scaffold biodegradation of nano-hydroxyapatite-chitosan in a rat model. PLoS One 10(8), e0135366 (2015)CrossRefGoogle Scholar
  103. 103.
    S.-H. Park, E.S. Gil, H. Shi, et al., Relationships between degradability of silk scaffolds and osteogenesis. Biomaterials 31(24), 6162–6172 (2010)CrossRefGoogle Scholar
  104. 104.
    J. Kim, K.S. Kim, G. Jiang, et al., In vivo real-time bioimaging of hyaluronic acid derivatives using quantum dots. Biopolymers 89(12), 1144–1153 (2008)CrossRefGoogle Scholar
  105. 105.
    S.H. Kim, J.H. Lee, H. Hyun, et al., Near-infrared fluorescence imaging for noninvasive trafficking of scaffold degradation. Sci. Rep. 3, 1198 (2013).  https://doi.org/10.1038/srep01198 CrossRefGoogle Scholar
  106. 106.
    J. Yang, Y. Zhang, S. Gautam, et al., Development of aliphatic biodegradable photoluminescent polymers. PNAS 106(25), 10086–10091 (2009)CrossRefGoogle Scholar
  107. 107.
    H.J. Kim, S. Lee, H.-W. Yun, et al., In vivo degradation profile of porcine cartilage-derived extracellular matrix powder scaffolds using a non-invasive fluorescence imaging method. J. Biomater. Sci. Polym. Ed. 27(2), 177–190 (2016)CrossRefGoogle Scholar
  108. 108.
    Y. Zhang, J. Yang, Design strategies for fluorescent biodegradable polymeric biomaterials. J. Mater. Chem. B 1, 132–148 (2013)CrossRefGoogle Scholar
  109. 109.
    Y. Zhang, F. Rossi, S. Papa, et al., Non-invasive in vitro and in vivo monitoring of degradation of fluorescently labeled hyaluronan hydrogels for tissue engineering applications. Acta Biomater. 30, 188–198 (2016)CrossRefGoogle Scholar
  110. 110.
    S. Duan, S. Ma, Z. Huang, et al., Visualization of in vivo degradation of aliphatic polyesters by a fluorescent dendritic star macromolecule. Biomed. Mater. 10(6), 065003 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Anastasia Shpichka
    • 1
  • Anastasia Koroleva
    • 2
  • Daria Kuznetsova
    • 3
  • Vitaliy Burdukovskii
    • 4
  • Boris Chichkov
    • 5
  • Viktor Bagratashvilі
    • 6
  • Peter Timashev
    • 1
    • 6
  1. 1.Sechenov First Moscow State Medical University, Institute for Regenerative MedicineMoscowRussia
  2. 2.Laser Zentrum Hannover e.VHannoverGermany
  3. 3.Nizhny Novgorod State Medical Academy, Institute of Biomedical TechnologiesNizhny NovgorodRussia
  4. 4.Baikal Institute of Nature Management, Siberian Branch of the Russian Academy of SciencesUlan-UdeRussia
  5. 5.Leibniz Universität Hannover, Institute of Quantum OpticsHannoverGermany
  6. 6.Research Center “Crystallography and Photonics” RAS, Institute of Photonic TechnologiesMoscowRussia

Personalised recommendations