Cardiovascular Monitoring in Postoperative Care of Adult Cardiac Surgical Patients

  • Ali DabbaghEmail author


One of the fundamental functions in each intensive care unit is monitoring, while we can consider respiratory monitoring, cardiovascular monitoring, and cerebral monitoring as the main three monitoring functions of ICU. Though, in the current world of increasing health technology, the sophisticated bedside examinations of the clinicians could not be replaced by any of these technologic improvements. On the other hand, continuous hemodynamic assessments after cardiac operations are the cornerstone of postoperative cardiac surgeries. The main cardiovascular monitoring methods involve—but are not confined to—the following pages, though more detailed explanations could be found in details in related texts. Noninvasive and invasive blood pressure, central venous and pulmonary artery pressure, cardiac output monitoring modalities, and the normal range for measured hemodynamic variables are among the main topics that the reader could be familiar with after reading this chapter.


Noninvasive Blood pressure Monitoring Automated blood pressure measurement Riva-Rocci Korotkoff Mean arterial pressure Compartment syndrome Invasive blood pressure monitoring Radial artery Complications Femoral artery Axillary artery Brachial artery Dorsalis pedis artery Posterior tibialis Superficial temporal artery Zeroing Calibration Central venous pressure Central venous pressure curves Sedillot’s triangle Ultrasound-guided CVC insertion Complications of central venous catheter Pulmonary artery pressure monitoring Pulmonary artery catheter Swan-Ganz Complications of pulmonary artery catheter Cardiac output monitoring Fick principle Transpulmonary lithium indicator dilution Partial carbon dioxide (CO2) rebreathing Esophageal Doppler Pulse contour analysis Bioimpedance and bioreactance Ultrasonic cardiac output monitor Other noninvasive systems Transpulmonary lithium indicator dilution Partial carbon dioxide (CO2) rebreathing FloTrac/Vigileo LiDCO® system PiCCO® system PRAM Bioimpedance and Bioreactance® USCOM ClearSight system Normal values for hemodynamic parameters 


  1. ANON. French Society of Anesthesia and Intensive Care. Arterial catheterization and invasive measurement of blood pressure in anesthesia and intensive care in adults. Ann Fr Anesth Reanim. 1995;14:444–53.CrossRefGoogle Scholar
  2. American Society of Anesthesiologists Task Force on Pulmonary Artery Catheterization. Practice guidelines for pulmonary artery catheterization: an updated report by the American Society of Anesthesiologists Task Force on Pulmonary Artery Catheterization. Anesthesiology. 2003;99:988–1014.CrossRefGoogle Scholar
  3. Ahmad RA, Ahmad S, Naveed A, Baig MAR. Peripheral arterial blood pressure versus central arterial blood pressure monitoring in critically ill patients after cardio-pulmonary bypass. Pak J Med Sci. 2017;33:310–4.PubMedPubMedCentralGoogle Scholar
  4. Akima T, Takase B, Kosuda S, Ohsuzu F, Kawai T, Ishihara M, Akira K. Systemic peripheral vascular resistance as a determinant of functional cardiac reserve in response to exercise in patients with heart disease. Angiology. 2007;58:463–71.PubMedCrossRefPubMedCentralGoogle Scholar
  5. Alhashemi JA, Cecconi M, Hofer CK. Cardiac output monitoring: an integrative perspective. Crit Care. 2011;15:214.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Alonso-Inigo JM, Escriba FJ, Carrasco JI, Fas MJ, Argente P, Galvis JM, Llopis JE. Measuring cardiac output in children undergoing cardiac catheterization: comparison between the Fick method and PRAM (pressure recording analytical method). Paediatr Anaesth. 2016;26:1097–105.PubMedCrossRefPubMedCentralGoogle Scholar
  7. Anderson JS. Arterial cannulation: how to do it. Br J Hosp Med. 1997;57:497–9.PubMedPubMedCentralGoogle Scholar
  8. Aouad-Maroun M, Raphael CK, Sayyid SK, Farah F, Akl EA. Ultrasound-guided arterial cannulation for paediatrics. Cochrane Database Syst Rev. 2016;9:Cd011364.PubMedPubMedCentralGoogle Scholar
  9. Arai T, Yamashita M. Central venous catheterization in infants and children—small caliber audio-Doppler probe versus ultrasound scanner. Paediatr Anaesth. 2005;15:858–61.PubMedCrossRefPubMedCentralGoogle Scholar
  10. Ash SR. Fluid mechanics and clinical success of central venous catheters for dialysis—answers to simple but persisting problems. Semin Dial. 2007;20:237–56.PubMedCrossRefPubMedCentralGoogle Scholar
  11. Asheim P, Mostad U, Aadahl P. Ultrasound-guided central venous cannulation in infants and children. Acta Anaesthesiol Scand. 2002;46:390–2.PubMedCrossRefPubMedCentralGoogle Scholar
  12. Augusto JF, Teboul JL, Radermacher P, Asfar P. Interpretation of blood pressure signal: physiological bases, clinical relevance, and objectives during shock states. Intensive Care Med. 2011;37:411–9.PubMedCrossRefPubMedCentralGoogle Scholar
  13. Bajorat J, Hofmockel R, Vagts DA, Janda M, Pohl B, Beck C, Noeldge-Schomburg G. Comparison of invasive and less-invasive techniques of cardiac output measurement under different haemodynamic conditions in a pig model. Eur J Anaesthesiol. 2006;23:23–30.PubMedCrossRefPubMedCentralGoogle Scholar
  14. Barmparas G, Inaba K, Georgiou C, Hadjizacharia P, Chan LS, Demetriades D, Friese R, Rhee P. Swan-Ganz catheter use in trauma patients can be reduced without negatively affecting outcomes. World J Surg. 2011;35:1809–17.PubMedCrossRefPubMedCentralGoogle Scholar
  15. Berghella S, Tempo B, Bernocco A, Neri G, Fiorucci G. Indications, methods and results of bacteriological examinations of central venous catheters in patients admitted to a polyvalent resuscitation center. Minerva Anestesiol. 1979;45:379–86.PubMedPubMedCentralGoogle Scholar
  16. Berton C, Cholley B. Equipment review: new techniques for cardiac output measurement—oesophageal Doppler, Fick principle using carbon dioxide, and pulse contour analysis. Crit Care. 2002;6:216–21.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Binanay C, Califf RM, Hasselblad V, O’Connor CM, Shah MR, Sopko G, Stevenson LW, Francis GS, Leier CV, Miller LW. Evaluation study of congestive heart failure and pulmonary artery catheterization effectiveness: the ESCAPE trial. JAMA. 2005;294:1625–33.PubMedCrossRefPubMedCentralGoogle Scholar
  18. Booth KL, Mercer-Smith G, McConkey C, Parissis H. Catheter-induced pulmonary artery rupture: haemodynamic compromise necessitates surgical repair. Interact Cardiovasc Thorac Surg. 2012;15:531–3.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Botha R, van Schoor AN, Boon JM, Becker JH, Meiring JH. Anatomical considerations of the anterior approach for central venous catheter placement. Clin Anat. 2006;19:101–5.PubMedCrossRefPubMedCentralGoogle Scholar
  20. Boyce JM. Prevention of central line-associated bloodstream infections in hemodialysis patients. Infect Control Hosp Epidemiol. 2012;33:936–44.PubMedCrossRefPubMedCentralGoogle Scholar
  21. Broch O, Bein B, Gruenewald M, Masing S, Huenges K, Haneya A, Steinfath M, Renner J. Accuracy of cardiac output by nine different pulse contour algorithms in cardiac surgery patients: a comparison with transpulmonary thermodilution. Biomed Res Int. 2016;2016:3468015.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Brusasco C, Corradi F, Zattoni PL, Launo C, Leykin Y, Palermo S. Ultrasound-guided central venous cannulation in bariatric patients. Obes Surg. 2009;19:1365–70.PubMedCrossRefPubMedCentralGoogle Scholar
  23. Brzezinski M, Luisetti T, London MJ. Radial artery cannulation: a comprehensive review of recent anatomic and physiologic investigations. Anesth Analg. 2009;109:1763–81.PubMedCrossRefPubMedCentralGoogle Scholar
  24. Bubenek-Turconi SI, Craciun M, Miclea I, Perel A. Noninvasive continuous cardiac output by the Nexfin before and after preload-modifying maneuvers: a comparison with intermittent thermodilution cardiac output. Anesth Analg. 2013;117:366–72.PubMedCrossRefPubMedCentralGoogle Scholar
  25. Bur A, Hirschl MM, Herkner H, Oschatz E, Kofler J, Woisetschlager C, Laggner AN. Accuracy of oscillometric blood pressure measurement according to the relation between cuff size and upper-arm circumference in critically ill patients. Crit Care Med. 2000;28:371–6.PubMedCrossRefPubMedCentralGoogle Scholar
  26. Bussieres JS. Iatrogenic pulmonary artery rupture. Curr Opin Anaesthesiol. 2007;20:48–52.PubMedCrossRefPubMedCentralGoogle Scholar
  27. Calabria M, Zamboli P, D’Amelio A, Granata A, Di Lullo L, Floccari F, Logias F, Fiorini F. Use of ECG-EC in the positioning of central venous catheters. G Ital Nefrol. 2012;29:49–57.PubMedPubMedCentralGoogle Scholar
  28. Campbell NR, Berbari AE, Cloutier L, Gelfer M, Kenerson JG, Khalsa TK, Lackland DT, Lemogoum D, Mangat BK, Mohan S, Myers MG, Niebylski ML, O’Brien E, Stergiou GS, VeIga EV, Zhang XH. Policy statement of the world hypertension league on noninvasive blood pressure measurement devices and blood pressure measurement in the clinical or community setting. J Clin Hypertens (Greenwich). 2014;16:320–2.CrossRefGoogle Scholar
  29. Chatti R, de Rudniki S, Marque S, Dumenil AS, Descorps-Declere A, Cariou A, Duranteau J, Aout M, Vicaut E, Cholley BP. Comparison of two versions of the Vigileo-FloTrac system (1.03 and 1.07) for stroke volume estimation: a multicentre, blinded comparison with oesophageal Doppler measurements. Br J Anaesth. 2009;102:463–9.PubMedCrossRefPubMedCentralGoogle Scholar
  30. Chee BC, Baldwin IC, Shahwan-Akl L, Fealy NG, Heland MJ, Rogan JJ. Evaluation of a radial artery cannulation training program for intensive care nurses: a descriptive, explorative study. Aust Crit Care. 2011;24:117–25.PubMedCrossRefPubMedCentralGoogle Scholar
  31. Chen CK, Tan PP, Lee HC. Sternocleidomastoid muscle length predicts depth of central venous catheter insertion. Acta Anaesthesiol Taiwanica. 2007;45:211–5.Google Scholar
  32. Chong SW, Peyton PJ. A meta-analysis of the accuracy and precision of the ultrasonic cardiac output monitor (USCOM). Anaesthesia. 2012;67:1266–71.PubMedCrossRefPubMedCentralGoogle Scholar
  33. Chopra V, Anand S, Krein SL, Chenoweth C, Saint S. Bloodstream infection, venous thrombosis, and peripherally inserted central catheters: reappraising the evidence. Am J Med. 2012;125:733–41.PubMedCrossRefPubMedCentralGoogle Scholar
  34. Clark VL, Kruse JA. Arterial catheterization. Crit Care Clin. 1992;8:687–97.PubMedCrossRefPubMedCentralGoogle Scholar
  35. Cockings JG, Webb RK, Klepper ID, Currie M, Morgan C. The Australian Incident Monitoring Study. Blood pressure monitoring—applications and limitations: an analysis of 2000 incident reports. Anaesth Intensive Care. 1993;21:565–9.PubMedPubMedCentralGoogle Scholar
  36. Compton F, Schafer JH. Noninvasive cardiac output determination: broadening the applicability of hemodynamic monitoring. Semin Cardiothorac Vasc Anesth. 2009;13:44–55.PubMedCrossRefPubMedCentralGoogle Scholar
  37. Compton F, Wittrock M, Schaefer JH, Zidek W, Tepel M, Scholze A. Noninvasive cardiac output determination using applanation tonometry-derived radial artery pulse contour analysis in critically ill patients. Anesth Analg. 2008a;106:171–4; table of contents.PubMedCrossRefPubMedCentralGoogle Scholar
  38. Compton FD, Zukunft B, Hoffmann C, Zidek W, Schaefer JH. Performance of a minimally invasive uncalibrated cardiac output monitoring system (Flotrac/Vigileo) in haemodynamically unstable patients. Br J Anaesth. 2008b;100:451–6.PubMedCrossRefPubMedCentralGoogle Scholar
  39. Connors AF Jr, Speroff T, Dawson NV, Thomas C, Harrell FE Jr, Wagner D, Desbiens N, Goldman L, Wu AW, Califf RM, Fulkerson WJ Jr, Vidaillet H, Broste S, Bellamy P, Lynn J, Knaus WA. The effectiveness of right heart catheterization in the initial care of critically ill patients. SUPPORT Investigators. JAMA. 1996;276:889–97.CrossRefPubMedGoogle Scholar
  40. Cotter G, Williams SG, Vered Z, Tan LB. Role of cardiac power in heart failure. Curr Opin Cardiol. 2003;18:215–22.PubMedCrossRefPubMedCentralGoogle Scholar
  41. Cousins TR, O’Donnell JM. Arterial cannulation: a critical review. AANA J. 2004;72:267–71.PubMedPubMedCentralGoogle Scholar
  42. Critchley LA, Huang L. USCOM-window to the circulation: utility of supra-sternal Doppler in an elderly anaesthetized patient for a robotic cystectomy. J Clin Monit Comput. 2014;28:83–93.PubMedCrossRefPubMedCentralGoogle Scholar
  43. Dabbagh A. Cardiovascular monitoring. In: Dabbagh A, Esmailian F, Aranki S, editors. Postoperative critical care for cardiac surgical patients. 1st ed. Berlin: Springer; 2014. p. 77–127.CrossRefGoogle Scholar
  44. Daily PO, Griepp RB, Shumway NE. Percutaneous internal jugular vein cannulation. Arch Surg. 1970;101:534–6.PubMedCrossRefPubMedCentralGoogle Scholar
  45. Dark PM, Singer M. The validity of trans-esophageal Doppler ultrasonography as a measure of cardiac output in critically ill adults. Intensive Care Med. 2004;30:2060–6.PubMedCrossRefPubMedCentralGoogle Scholar
  46. de Waal EE, Wappler F, Buhre WF. Cardiac output monitoring. Curr Opin Anaesthesiol. 2009;22:71–7.PubMedCrossRefPubMedCentralGoogle Scholar
  47. Di Iorio BR, Mondillo F, Bortone S, Nargi P, Capozzi M, Spagnuolo T, Cucciniello E, Bellizzi V. Fourteen years of hemodialysis with a central venous catheter: mechanical long-term complications. J Vasc Access. 2006;7:60–5.PubMedCrossRefPubMedCentralGoogle Scholar
  48. Doherty A, El-Khuffash A, Monteith C, McSweeney L, Breatnach C, Kent E, Tully E, Malone F, Thornton P. Comparison of bioreactance and echocardiographic non-invasive cardiac output monitoring and myocardial function assessment in primagravida women. Br J Anaesth. 2017;118:527–32.PubMedCrossRefPubMedCentralGoogle Scholar
  49. Domino KB, Bowdle TA, Posner KL, Spitellie PH, Lee LA, Cheney FW. Injuries and liability related to central vascular catheters: a closed claims analysis. Anesthesiology. 2004;100:1411–8.PubMedCrossRefPubMedCentralGoogle Scholar
  50. Donati A, Carsetti A, Tondi S, Scorcella C, Domizi R, Damiani E, Gabbanelli V, Munch C, Adrario E, Pelaia P, Cecconi M. Thermodilution vs pressure recording analytical method in hemodynamic stabilized patients. J Crit Care. 2014;29:260–4.PubMedCrossRefPubMedCentralGoogle Scholar
  51. Drawz P. Clinical implications of different blood pressure measurement techniques. Curr Hypertens Rep. 2017;19:54.PubMedCrossRefPubMedCentralGoogle Scholar
  52. Durbin CG Jr. The range of pulmonary artery catheter balloon inflation pressures. J Cardiothorac Anesth. 1990;4:39–42.PubMedCrossRefPubMedCentralGoogle Scholar
  53. Elgendy A, Seppelt IM, Lane AS. Comparison of continuous-wave Doppler ultrasound monitor and echocardiography to assess cardiac output in intensive care patients. Crit Care Resusc. 2017;19:222–9.PubMedPubMedCentralGoogle Scholar
  54. Elliott CG, Zimmerman GA, Clemmer TP. Complications of pulmonary artery catheterization in the care of critically ill patients. A prospective study. Chest. 1979;76:647–52.PubMedCrossRefPubMedCentralGoogle Scholar
  55. Elwan MH, Hue J, Green SJ, Eltahan SM, Sims MR, Coats TJ. Thoracic electrical bioimpedance versus suprasternal Doppler in emergency care. Emerg Med Australas. 2017;29:391–3.PubMedCrossRefPubMedCentralGoogle Scholar
  56. English IC, Frew RM, Pigott JF, Zaki M. Percutaneous catheterisation of the internal jugular vein. 1969. Anaesthesia. 1995;50:1071–6; discussion 1070.PubMedCrossRefPubMedCentralGoogle Scholar
  57. Fagnoul D, Vincent JL, Backer DD. Cardiac output measurements using the bioreactance technique in critically ill patients. Crit Care. 2012;16:460.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Fakler U, Pauli C, Balling G, Lorenz HP, Eicken A, Hennig M, Hess J. Cardiac index monitoring by pulse contour analysis and thermodilution after pediatric cardiac surgery. J Thorac Cardiovasc Surg. 2007;133:224–8.PubMedCrossRefPubMedCentralGoogle Scholar
  59. Fanari Z, Grove M, Rajamanickam A, Hammami S, Walls C, Kolm P, Saltzberg M, Weintraub WS, Doorey AJ. Cardiac output determination using a widely available direct continuous oxygen consumption measuring device: a practical way to get back to the gold standard. Cardiovasc Revasc Med. 2016;17:256–61.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Feldman LS, Anidjar M, Metrakos P, Stanbridge D, Fried GM, Carli F. Optimization of cardiac preload during laparoscopic donor nephrectomy: a preliminary study of central venous pressure versus esophageal Doppler monitoring. Surg Endosc. 2004;18:412–6.PubMedCrossRefPubMedCentralGoogle Scholar
  61. Ferguson M, Max MH, Marshall W. Emergency department infraclavicular subclavian vein catheterization in patients with multiple injuries and burns. South Med J. 1988;81:433–5.PubMedCrossRefPubMedCentralGoogle Scholar
  62. Fick A. Über die Messung des Blutquantums in der Herzventrikeln. Stahelschen Universitats-Buch Kunsthandlung: Sitzungsberichte der physikalisch-medicinischen Gesellschaftzu Würzburg; 1870. p. XVI–XVII.Google Scholar
  63. Figueiredo A, Germano N, Guedes P, Marcelino P. The evolving concepts of haemodynamic support: from pulmonary artery catheter to echocardiography and theragnostics. Curr Cardiol Rev. 2011;7:136–45.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Franklin C. The technique of radial artery cannulation. Tips for maximizing results while minimizing the risk of complications. J Crit Illn. 1995a;10:424–32.PubMedPubMedCentralGoogle Scholar
  65. Franklin CM. The technique of dorsalis pedis cannulation. An overlooked option when the radial artery cannot be used. J Crit Illn. 1995b;10:493–8.PubMedPubMedCentralGoogle Scholar
  66. Frazier SK, Skinner GJ. Pulmonary artery catheters: state of the controversy. J Cardiovasc Nurs. 2008;23:113–21; quiz 122-113.PubMedCrossRefPubMedCentralGoogle Scholar
  67. Freed MD, Keane JF. Cardiac output measured by thermodilution in infants and children. J Pediatr. 1978;92:39–42.PubMedCrossRefPubMedCentralGoogle Scholar
  68. Fuda G, Denault A, Deschamps A, Bouchard D, Fortier A, Lambert J, Couture P. Risk factors involved in central-to-radial arterial pressure gradient during cardiac surgery. Anesth Analg. 2016;122:624–32.PubMedCrossRefPubMedCentralGoogle Scholar
  69. Furuya EY, Dick A, Perencevich EN, Pogorzelska M, Goldmann D, Stone PW. Central line bundle implementation in US intensive care units and impact on bloodstream infections. PLoS One. 2011;6:e15452.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Gan TJ, Arrowsmith JE. The oesophageal Doppler monitor. BMJ. 1997;315:893–4.PubMedPubMedCentralCrossRefGoogle Scholar
  71. Ge X, Cavallazzi R, Li C, Pan SM, Wang YW, Wang FL. Central venous access sites for the prevention of venous thrombosis, stenosis and infection. Cochrane Database Syst Rev. 2012;3:CD004084.Google Scholar
  72. Geerts BF, Aarts LP, Jansen JR. Methods in pharmacology: measurement of cardiac output. Br J Clin Pharmacol. 2011;71:316–30.PubMedPubMedCentralCrossRefGoogle Scholar
  73. Gibson DG, Francis DP. Clinical assessment of left ventricular diastolic function. Heart. 2003;89:231–8.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Gibson F, Bodenham A. Misplaced central venous catheters: applied anatomy and practical management. Br J Anaesth. 2013;110:333–46.PubMedCrossRefPubMedCentralGoogle Scholar
  75. Godoy MC, Leitman BS, de Groot PM, Vlahos I, Naidich DP. Chest radiography in the ICU: Part 2: Evaluation of cardiovascular lines and other devices. AJR Am J Roentgenol. 2012;198:572–81.PubMedCrossRefPubMedCentralGoogle Scholar
  76. Goepfert MS, Richter HP, Zu Eulenburg C, Gruetzmacher J, Rafflenbeul E, Roeher K, von Sandersleben A, Diedrichs S, Reichenspurner H, Goetz AE, Reuter DA. Individually optimized hemodynamic therapy reduces complications and length of stay in the intensive care unit: a prospective, randomized controlled trial. Anesthesiology. 2013;119:824–36.PubMedCrossRefPubMedCentralGoogle Scholar
  77. Gologorsky E, Gologorsky A, Barron ME. Pulmonary artery catheter in cardiac surgery revisited. Anesth Analg. 2012;114:1368; author reply 1369.PubMedCrossRefPubMedCentralGoogle Scholar
  78. Gueret G, Kiss G, Rossignol B, Bezon E, Wargnier JP, Miossec A, Corre O, Arvieux CC. Cardiac output measurements in off-pump coronary surgery: comparison between NICO and the swan-Ganz catheter. Eur J Anaesthesiol. 2006;23:848–54.PubMedCrossRefPubMedCentralGoogle Scholar
  79. Guleri A, Kumar A, Morgan RJ, Hartley M, Roberts DH. Anaphylaxis to chlorhexidine-coated central venous catheters: a case series and review of the literature. Surg Infect. 2012;13:171–4.CrossRefGoogle Scholar
  80. Gurgel ST, do Nascimento P Jr. Maintaining tissue perfusion in high-risk surgical patients: a systematic review of randomized clinical trials. Anesth Analg. 2011;112:1384–91.PubMedCrossRefPubMedCentralGoogle Scholar
  81. Hardy JF, Morissette M, Taillefer J, Vauclair R. Pathophysiology of rupture of the pulmonary artery by pulmonary artery balloon-tipped catheters. Anesth Analg. 1983;62:925–30.PubMedPubMedCentralGoogle Scholar
  82. Harrigan RA, Chan TC, Moonblatt S, Vilke GM, Ufberg JW. Temporary transvenous pacemaker placement in the emergency department. J Emerg Med. 2007;32:105–11.PubMedCrossRefPubMedCentralGoogle Scholar
  83. Harvey S, Harrison DA, Singer M, Ashcroft J, Jones CM, Elbourne D, Brampton W, Williams D, Young D, Rowan K. Assessment of the clinical effectiveness of pulmonary artery catheters in management of patients in intensive care (PAC-Man): a randomised controlled trial. Lancet. 2005;366:472–7.PubMedPubMedCentralCrossRefGoogle Scholar
  84. Harvey S, Stevens K, Harrison D, Young D, Brampton W, McCabe C, Singer M, Rowan K. An evaluation of the clinical and cost-effectiveness of pulmonary artery catheters in patient management in intensive care: a systematic review and a randomised controlled trial. Health Technol Assess. 2006;10:1–133; iii–iv, ix–xi.CrossRefGoogle Scholar
  85. Haryadi DG, Orr JA, Kuck K, McJames S, Westenskow DR. Partial CO2 rebreathing indirect Fick technique for non-invasive measurement of cardiac output. J Clin Monit Comput. 2000;16:361–74.PubMedCrossRefPubMedCentralGoogle Scholar
  86. Hayashi S, Hayase T, Shirai A, Maruyama M. Numerical simulation of noninvasive blood pressure measurement. J Biomech Eng. 2006;128:680–7.PubMedCrossRefPubMedCentralGoogle Scholar
  87. Heiss HW. Werner Forssmann: a German problem with the Nobel Prize. Clin Cardiol. 1992;15:547–9.PubMedCrossRefPubMedCentralGoogle Scholar
  88. Heresi GA, Arroliga AC, Wiedemann HP, Matthay MA. Pulmonary artery catheter and fluid management in acute lung injury and the acute respiratory distress syndrome. Clin Chest Med. 2006;27:627–35; abstract ix.PubMedCrossRefPubMedCentralGoogle Scholar
  89. Hessel EA, Apostolidou I. Pulmonary artery catheter for coronary artery bypass graft: does it harm our patients? Primum non nocere. Anesth Analg. 2011;113:987–9.PubMedCrossRefPubMedCentralGoogle Scholar
  90. Hewlett AL, Rupp ME. New developments in the prevention of intravascular catheter associated infections. Infect Dis Clin N Am. 2012;26:1–11.CrossRefGoogle Scholar
  91. Hida S, Ohashi S, Kinoshita H, Honda T, Yamamoto S, Kazama J, Endoh H. Knotting of two central venous catheters: a rare complication of pulmonary artery catheterization. J Anesth. 2010;24:486–7.PubMedCrossRefPubMedCentralGoogle Scholar
  92. Himpe D. New approach to systemic vascular resistance calculation and clinical decision making. Acta Anaesthesiol Belg. 1990;41:291–5.PubMedPubMedCentralGoogle Scholar
  93. Hind D, Calvert N, McWilliams R, Davidson A, Paisley S, Beverley C, Thomas S. Ultrasonic locating devices for central venous cannulation: meta-analysis. BMJ. 2003;327:361.PubMedPubMedCentralCrossRefGoogle Scholar
  94. Hodgson LE, Forni LG, Venn R, Samuels TL, Wakeling HG. A comparison of the non-invasive ultrasonic cardiac output monitor (USCOM) with the oesophageal Doppler monitor during major abdominal surgery. J Intensive Care Soc. 2016;17:103–10.PubMedCrossRefPubMedCentralGoogle Scholar
  95. Holmes SJ, Kiely EM, Spitz L. Vascular access. Prog Pediatr Surg. 1989;22:133–9.PubMedCrossRefPubMedCentralGoogle Scholar
  96. Horlocker TT, Bishop AT. Compartment syndrome of the forearm and hand after brachial artery cannulation. Anesth Analg. 1995;81:1092–4.PubMedPubMedCentralGoogle Scholar
  97. Htet N, Vaughn J, Adigopula S, Hennessey E, Mihm F. Needle-guided ultrasound technique for axillary artery catheter placement in critically ill patients: a case series and technique description. J Crit Care. 2017;41:194–7.PubMedCrossRefPubMedCentralGoogle Scholar
  98. Huygh J, Peeters Y, Bernards J, Malbrain ML. Hemodynamic monitoring in the critically ill: an overview of current cardiac output monitoring methods. F1000Res. 2016;5:F1000 Faculty Rev-2855.PubMedPubMedCentralCrossRefGoogle Scholar
  99. Ikeda S, Yagi K, Schweiss JF, Homan SM. In vitro reappraisal of the pulmonary artery catheter balloon volume-pressure relationship: comparison of four different catheters. Can J Anaesth. 1991;38:648–53.PubMedCrossRefPubMedCentralGoogle Scholar
  100. Imhoff M. Alea iacta est: a new approach to cardiac output monitoring? Anesth Analg. 2013;117:295–6.PubMedCrossRefPubMedCentralGoogle Scholar
  101. Ishizuka M, Nagata H, Takagi K, Kubota K. Right internal jugular vein is recommended for central venous catheterization. J Investig Surg. 2010;23:110–4.CrossRefGoogle Scholar
  102. Jakovljevic DG, Moore S, Hallsworth K, Fattakhova G, Thoma C, Trenell MI. Comparison of cardiac output determined by bioimpedance and bioreactance methods at rest and during exercise. J Clin Monit Comput. 2012;26:63–8.PubMedCrossRefPubMedCentralGoogle Scholar
  103. Jegatheswaran J, Ruzicka M, Hiremath S, Edwards C. Are automated blood pressure monitors comparable to ambulatory blood pressure monitors? A systematic review and meta-analysis. Can J Cardiol. 2017;33:644–52.PubMedCrossRefPubMedCentralGoogle Scholar
  104. Jo YY, Song JW, Yoo YC, Park JY, Shim JK, Kwak YL. The uncalibrated pulse contour cardiac output during off-pump coronary bypass surgery: performance in patients with a low cardiac output status and a reduced left ventricular function. Korean J Anesthesiol. 2011;60:237–43.PubMedPubMedCentralCrossRefGoogle Scholar
  105. Kalra A, Heitner S, Topalian S. Iatrogenic pulmonary artery rupture during swan-Ganz catheter placement—a novel therapeutic approach. Catheter Cardiovasc Interv. 2013;81:57–9.PubMedCrossRefPubMedCentralGoogle Scholar
  106. Kang M, Ryu HG, Son IS, Bahk JH. Influence of shoulder position on central venous catheter tip location during infraclavicular subclavian approach. Br J Anaesth. 2011;106:344–7.PubMedCrossRefPubMedCentralGoogle Scholar
  107. Kapoor PM, Kakani M, Chowdhury U, Choudhury M, Lakshmy KU. Early goal-directed therapy in moderate to high-risk cardiac surgery patients. Ann Card Anaesth. 2008;11:27–34.PubMedCrossRefPubMedCentralGoogle Scholar
  108. Karakitsos D, Labropoulos N, De Groot E, Patrianakos AP, Kouraklis G, Poularas J, Samonis G, Tsoutsos DA, Konstadoulakis MM, Karabinis A. Real-time ultrasound-guided catheterisation of the internal jugular vein: a prospective comparison with the landmark technique in critical care patients. Crit Care. 2006;10:R162.PubMedPubMedCentralCrossRefGoogle Scholar
  109. Karamanou M, Papaioannou TG, Tsoucalas G, Tousoulis D, Stefanadis C, Androutsos G. Blood pressure measurement: lessons learned from our ancestors. Curr Pharm Des. 2015;21:700–4.PubMedCrossRefPubMedCentralGoogle Scholar
  110. Katsikis A, Karavolias G, Voudris V. Transfemoral percutaneous removal of a knotted swan-Ganz catheter. Catheter Cardiovasc Interv. 2009;74:802–4.PubMedCrossRefPubMedCentralGoogle Scholar
  111. Keenan SP. Use of ultrasound to place central lines. J Crit Care. 2002;17:126–37.PubMedCrossRefPubMedCentralGoogle Scholar
  112. Kelly TF Jr, Morris GC Jr, Crawford ES, Espada R, Howell JF. Perforation of the pulmonary artery with Swan-Ganz catheters: diagnosis and surgical management. Ann Surg. 1981;193:686–92.PubMedPubMedCentralCrossRefGoogle Scholar
  113. Kiefer N, Hofer CK, Marx G, Geisen M, Giraud R, Siegenthaler N, Hoeft A, Bendjelid K, Rex S. Clinical validation of a new thermodilution system for the assessment of cardiac output and volumetric parameters. Crit Care. 2012;16:R98.PubMedPubMedCentralCrossRefGoogle Scholar
  114. Kim MC, Kim KS, Choi YK, Kim DS, Kwon MI, Sung JK, Moon JY, Kang JM. An estimation of right- and left-sided central venous catheter insertion depth using measurement of surface landmarks along the course of central veins. Anesth Analg. 2011;112:1371–4.PubMedCrossRefPubMedCentralGoogle Scholar
  115. Kim WY, Lee CW, Sohn CH, Seo DW, Yoon JC, Koh JW, Kim W, Lim KS, Hong SB, Lim CM, Koh Y. Optimal insertion depth of central venous catheters—is a formula required? A prospective cohort study. Injury. 2012;43:38–41.PubMedCrossRefPubMedCentralGoogle Scholar
  116. Klepper ID, Webb RK, Van der Walt JH, Ludbrook GL, Cockings J. The Australian incident monitoring study. The stethoscope: applications and limitations—an analysis of 2000 incident reports. Anaesth Intensive Care. 1993;21:575–8.PubMedPubMedCentralGoogle Scholar
  117. Knopp R, Dailey RH. Central venous cannulation and pressure monitoring. JACEP. 1977;6:358–66.PubMedCrossRefPubMedCentralGoogle Scholar
  118. Kolodzik PW. Guide wire embolization as a potential complication of central line placement. J Emerg Med. 1989;7:291.PubMedCrossRefPubMedCentralGoogle Scholar
  119. Kuhn CWK. Hemodynamic monitoring. In: Holzheimer RG, Mannick JA, editors. Surgical treatment: evidence-based and problem-oriented. Munich: Zuckschwerdt; 2001.Google Scholar
  120. Kujur R, Rao MS, Mrinal M. How correct is the correct length for central venous catheter insertion. Indian J Crit Care Med. 2009;13:159–62.PubMedPubMedCentralCrossRefGoogle Scholar
  121. Kunizawa A, Fujioka M, Mink S, Keller E. Central venous catheter-induced delayed hydrothorax via progressive erosion of central venous wall. Minerva Anestesiol. 2010;76:868–71.PubMedPubMedCentralGoogle Scholar
  122. Laher AE, Watermeyer MJ, Buchanan SK, Dippenaar N, Simo NCT, Motara F, Moolla M. A review of hemodynamic monitoring techniques, methods and devices for the emergency physician. Am J Emerg Med. 2017;35:1335–47.PubMedCrossRefPubMedCentralGoogle Scholar
  123. Lamia B, Kim HK, Severyn DA, Pinsky MR. Cross-comparisons of trending accuracies of continuous cardiac-output measurements: pulse contour analysis, bioreactance, and pulmonary-artery catheter. J Clin Monit Comput. 2018;32(1):33–43.PubMedCrossRefPubMedCentralGoogle Scholar
  124. Langesaeter E, Rosseland LA, Stubhaug A. Continuous invasive blood pressure and cardiac output monitoring during cesarean delivery: a randomized, double-blind comparison of low-dose versus high-dose spinal anesthesia with intravenous phenylephrine or placebo infusion. Anesthesiology. 2008;109:856–63.PubMedCrossRefPubMedCentralGoogle Scholar
  125. Lategola M, Rahn H. A self-guiding catheter for cardiac and pulmonary arterial catheterization and occlusion. Proc Soc Exp Biol Med. 1953;84:667–8.PubMedCrossRefPubMedCentralGoogle Scholar
  126. Lavine SJ, Lavine JA. The effect of acute hypertension on left ventricular diastolic pressures in a canine model of left ventricular dysfunction with a preserved ejection fraction and elevated left ventricular filling pressures. J Am Soc Echocardiogr. 2006;19:1350–8.PubMedCrossRefPubMedCentralGoogle Scholar
  127. Lechner E, Hofer A, Leitner-Peneder G, Freynschlag R, Mair R, Weinzettel R, Rehak P, Gombotz H. Levosimendan versus milrinone in neonates and infants after corrective open-heart surgery: a pilot study. Pediatr Crit Care Med. 2012;13:542–8.PubMedCrossRefPubMedCentralGoogle Scholar
  128. Lee AY, Kamphuisen PW. Epidemiology and prevention of catheter-related thrombosis in patients with cancer. J Thromb Haemost. 2012;10:1491–9.PubMedCrossRefPubMedCentralGoogle Scholar
  129. Leibowitz AB, Oropello JM. The pulmonary artery catheter in anesthesia practice in 2007: an historical overview with emphasis on the past 6 years. Semin Cardiothorac Vasc Anesth. 2007;11:162–76.PubMedCrossRefPubMedCentralGoogle Scholar
  130. Li J. Systemic oxygen transport derived by using continuous measured oxygen consumption after the Norwood procedure-an interim review. Interact Cardiovasc Thorac Surg. 2012;15:93–101.PubMedPubMedCentralCrossRefGoogle Scholar
  131. Liang SY, Khair H, Durkin MJ, Marschall J. Prevention and management of central line-associated bloodstream infections in hospital practice. Hosp Pract (Minneap). 2012;40:106–18.CrossRefGoogle Scholar
  132. Linnemann B, Lindhoff-Last E. Risk factors, management and primary prevention of thrombotic complications related to the use of central venous catheters. Vasa. 2012;41:319–32.PubMedCrossRefPubMedCentralGoogle Scholar
  133. Litton E, Morgan M. The PiCCO monitor: a review. Anaesth Intensive Care. 2012;40:393–409.PubMedPubMedCentralGoogle Scholar
  134. Maguire S, Rinehart J, Vakharia S, Cannesson M. Technical communication: respiratory variation in pulse pressure and plethysmographic waveforms: intraoperative applicability in a North American academic center. Anesth Analg. 2011;112:94–6.PubMedCrossRefPubMedCentralGoogle Scholar
  135. Mandel MA, Dauchot PJ. Radial artery cannulation in 1,000 patients: precautions and complications. J Hand Surg [Am]. 1977;2:482–5.CrossRefGoogle Scholar
  136. Manecke GR. Edwards FloTrac sensor and Vigileo monitor: easy, accurate, reliable cardiac output assessment using the arterial pulse wave. Expert Rev Med Devices. 2005;2:523–7.PubMedCrossRefPubMedCentralGoogle Scholar
  137. Mansfield PF, Hohn DC, Fornage BD, Gregurich MA, Ota DM. Complications and failures of subclavian-vein catheterization. N Engl J Med. 1994;331:1735–8.PubMedCrossRefPubMedCentralGoogle Scholar
  138. Marik PE, Flemmer M, Harrison W. The risk of catheter-related bloodstream infection with femoral venous catheters as compared to subclavian and internal jugular venous catheters: a systematic review of the literature and meta-analysis. Crit Care Med. 2012;40:2479–85.PubMedCrossRefPubMedCentralGoogle Scholar
  139. Marik PE, Levitov A, Young A, Andrews L. The use of bioreactance and carotid Doppler to determine volume responsiveness and blood flow redistribution following passive leg raising in hemodynamically unstable patients. Chest. 2013;143:364–70.PubMedCrossRefPubMedCentralGoogle Scholar
  140. Masugata H, Peters B, Lafitte S, Strachan GM, Ohmori K, Mizushige K, Kohno M. Assessment of adenosine-induced coronary steal in the setting of coronary occlusion based on the extent of opacification defects by myocardial contrast echocardiography. Angiology. 2003;54:443–8.PubMedCrossRefPubMedCentralGoogle Scholar
  141. Mathews L, Singh RK. Cardiac output monitoring. Ann Card Anaesth. 2008;11:56–68.PubMedCrossRefPubMedCentralGoogle Scholar
  142. Matthay MA, Chatterjee K. Bedside catheterization of the pulmonary artery: risks compared with benefits. Ann Intern Med. 1988;109:826–34.PubMedCrossRefPubMedCentralGoogle Scholar
  143. Maurer MM, Burkhoff D, Maybaum S, Franco V, Vittorio TJ, Williams P, White L, Kamalakkannan G, Myers J, Mancini DM. A multicenter study of noninvasive cardiac output by bioreactance during symptom-limited exercise. J Card Fail. 2009;15:689–99.PubMedCrossRefPubMedCentralGoogle Scholar
  144. Maxwell RA, Gibson JB, Slade JB, Fabian TC, Proctor KG. Noninvasive cardiac output by partial CO2 rebreathing after severe chest trauma. J Trauma. 2001;51:849–53.PubMedCrossRefPubMedCentralGoogle Scholar
  145. Mayer J, Suttner S. Cardiac output derived from arterial pressure waveform. Curr Opin Anaesthesiol. 2009;22:804–8.PubMedCrossRefPubMedCentralGoogle Scholar
  146. McGee WT, Mailloux PT, Martin RT. Safe placement of central venous catheters: a measured approach. J Intensive Care Med. 2011;26:392–6.PubMedCrossRefPubMedCentralGoogle Scholar
  147. McGhee BH, Bridges EJ. Monitoring arterial blood pressure: what you may not know. Crit Care Nurse. 2002;22:60–4, 66–70, 73 passim.PubMedPubMedCentralGoogle Scholar
  148. Melhuish TM, White LD. Optimal wrist positioning for radial arterial cannulation in adults: a systematic review and meta-analysis. Am J Emerg Med. 2016;34:2372–8.PubMedCrossRefPubMedCentralGoogle Scholar
  149. Merrer J, De Jonghe B, Golliot F, Lefrant JY, Raffy B, Barre E, Rigaud JP, Casciani D, Misset B, Bosquet C, Outin H, Brun-Buisson C, Nitenberg G. Complications of femoral and subclavian venous catheterization in critically ill patients: a randomized controlled trial. JAMA. 2001;286:700–7.PubMedCrossRefPubMedCentralGoogle Scholar
  150. Meyer JA. Werner Forssmann and catheterization of the heart, 1929. Ann Thorac Surg. 1990;49:497–9.PubMedCrossRefPubMedCentralGoogle Scholar
  151. Mielniczuk LM, Lamas GA, Flaker GC, Mitchell G, Smith SC, Gersh BJ, Solomon SD, Moye LA, Rouleau JL, Rutherford JD, Pfeffer MA. Left ventricular end-diastolic pressure and risk of subsequent heart failure in patients following an acute myocardial infarction. Congest Heart Fail. 2007;13:209–14.PubMedCrossRefPubMedCentralGoogle Scholar
  152. Miller AG, Bardin AJ. Review of ultrasound-guided radial artery catheter placement. Respir Care. 2016;61:383–8.PubMedCrossRefPubMedCentralGoogle Scholar
  153. Miller SE, Maragakis LL. Central line-associated bloodstream infection prevention. Curr Opin Infect Dis. 2012;25:412–22.PubMedCrossRefPubMedCentralGoogle Scholar
  154. Mohr R, Meir O, Smolinsky A, Goor DA. A method for continuous on-line monitoring of systemic vascular resistance (COMS) after open heart procedures. J Cardiovasc Surg. 1987;28:558–65.Google Scholar
  155. Monnet X, Picard F, Lidzborski E, Mesnil M, Duranteau J, Richard C, Teboul JL. The estimation of cardiac output by the Nexfin device is of poor reliability for tracking the effects of a fluid challenge. Crit Care. 2012;16:R212.PubMedPubMedCentralCrossRefGoogle Scholar
  156. Monnet X, Richard C, Teboul JL. The pulmonary artery catheter in critically ill patients. Does it change outcome? Minerva Anestesiol. 2004;70:219–24.PubMedPubMedCentralGoogle Scholar
  157. Monnet X, Teboul JL. Minimally invasive monitoring. Crit Care Clin. 2015;31:25–42.PubMedCrossRefPubMedCentralGoogle Scholar
  158. Moran J. Pulse. In: Walker HK, Hall WD, Hurst JW, editors. Clinical methods: the history, physical, and laboratory examinations. 3rd ed. Boston: Butterworths; 1990. Chapter 17. Scholar
  159. Mueller HS, Chatterjee K, Davis KB, Fifer MA, Franklin C, Greenberg MA, Labovitz AJ, Shah PK, Tuman KJ, Weil MH, Weintraub WS. ACC expert consensus document. Present use of bedside right heart catheterization in patients with cardiac disease. J Am Coll Cardiol. 1998;32:840–64.PubMedCrossRefPubMedCentralGoogle Scholar
  160. Myers MG, Godwin M. Automated office blood pressure. Can J Cardiol. 2012;28:341–6.PubMedCrossRefPubMedCentralGoogle Scholar
  161. Nichols WW, Denardo SJ, Wilkinson IB, McEniery CM, Cockcroft J, O’Rourke MF. Effects of arterial stiffness, pulse wave velocity, and wave reflections on the central aortic pressure waveform. J Clin Hypertens (Greenwich). 2008;10:295–303.CrossRefGoogle Scholar
  162. Nilsson LB, Eldrup N, Berthelsen PG. Lack of agreement between thermodilution and carbon dioxide-rebreathing cardiac output. Acta Anaesthesiol Scand. 2001;45:680–5.PubMedCrossRefPubMedCentralGoogle Scholar
  163. Nossaman BD, Scruggs BA, Nossaman VE, Murthy SN, Kadowitz PJ. History of right heart catheterization: 100 years of experimentation and methodology development. Cardiol Rev. 2010;18:94–101.PubMedPubMedCentralCrossRefGoogle Scholar
  164. O’Brien E. Automated blood pressure measurement: state of the market in 1998 and the need for an international validation protocol for blood pressure measuring devices. Blood Press Monit. 1998;3:205–11.PubMedPubMedCentralGoogle Scholar
  165. O’Brien E. Demise of the mercury sphygmomanometer and the dawning of a new era in blood pressure measurement. Blood Press Monit. 2003;8:19–21.PubMedCrossRefPubMedCentralGoogle Scholar
  166. O’Brien E, Stergiou GS. The pursuit of accurate blood pressure measurement: a 35-year travail. J Clin Hypertens (Greenwich). 2017;19:746–52.CrossRefGoogle Scholar
  167. O’Brien E, van Montfrans G, Palatini P, Tochikubo O, Staessen J, Shirasaki O, Lipicky R, Myers M. Task force I: methodological aspects of blood pressure measurement. Blood Press Monit. 2001;6:313–5.PubMedCrossRefPubMedCentralGoogle Scholar
  168. O’Rourke MF, Avolio AP. Pulsatile flow and pressure in human systemic arteries. Studies in man and in a multibranched model of the human systemic arterial tree. Circ Res. 1980;46:363–72.PubMedCrossRefPubMedCentralGoogle Scholar
  169. O’Rourke MF, Pauca A, Jiang XJ. Pulse wave analysis. Br J Clin Pharmacol. 2001;51:507–22.PubMedPubMedCentralCrossRefGoogle Scholar
  170. O’Rourke MF, Yaginuma T. Wave reflections and the arterial pulse. Arch Intern Med. 1984;144:366–71.PubMedCrossRefPubMedCentralGoogle Scholar
  171. Omar HR, Fathy A, Mangar D, Camporesi E. Missing the guidewire: an avoidable complication. Int Arch Med. 2010;3:21.PubMedPubMedCentralCrossRefGoogle Scholar
  172. Opotowsky AR, Hess E, Maron BA, Brittain EL, Baron AE, Maddox TM, Alshawabkeh LI, Wertheim BM, Xu M, Assad TR, Rich JD, Choudhary G, Tedford RJ. Thermodilution vs estimated Fick cardiac output measurement in clinical practice: an analysis of mortality from the veterans affairs clinical assessment, reporting, and tracking (VA CART) program and Vanderbilt University. JAMA Cardiol. 2017;2:1090–9.PubMedCrossRefPubMedCentralGoogle Scholar
  173. Oransky I. H. Jeremy C. Swan. Lancet. 2005;365:1132.PubMedCrossRefPubMedCentralGoogle Scholar
  174. Ouellette EA. Compartment syndromes in obtunded patients. Hand Clin. 1998;14:431–50.PubMedPubMedCentralGoogle Scholar
  175. Papaioannou TG, Karageorgopoulou TD, Sergentanis TN, Protogerou AD, Psaltopoulou T, Sharman JE, Weber T, Blacher J, Daskalopoulou SS, Wassertheurer S, Khir AW, Vlachopoulos C, Stergiopulos N, Stefanadis C, Nichols WW, Tousoulis D. Accuracy of commercial devices and methods for noninvasive estimation of aortic systolic blood pressure a systematic review and meta-analysis of invasive validation studies. J Hypertens. 2016;34:1237–48.PubMedCrossRefPubMedCentralGoogle Scholar
  176. Parienti JJ, du Cheyron D, Timsit JF, Traore O, Kalfon P, Mimoz O, Mermel LA. Meta-analysis of subclavian insertion and nontunneled central venous catheter-associated infection risk reduction in critically ill adults. Crit Care Med. 2012;40:1627–34.PubMedCrossRefPubMedCentralGoogle Scholar
  177. Pearse RM, Ikram K, Barry J. Equipment review: an appraisal of the LiDCO plus method of measuring cardiac output. Crit Care. 2004;8:190–5.PubMedPubMedCentralCrossRefGoogle Scholar
  178. Phan TD, Kluger R, Wan C, Wong D, Padayachee A. A comparison of three minimally invasive cardiac output devices with thermodilution in elective cardiac surgery. Anaesth Intensive Care. 2011;39:1014–21.PubMedPubMedCentralGoogle Scholar
  179. Pikwer A, Akeson J, Lindgren S. Complications associated with peripheral or central routes for central venous cannulation. Anaesthesia. 2012;67:65–71.PubMedCrossRefPubMedCentralGoogle Scholar
  180. Pipanmekaporn T, Bunchungmongkol N, Pin on P, Punjasawadwong Y. Impact of patients’ positions on the incidence of arrhythmias during pulmonary artery catheterization. J Cardiothorac Vasc Anesth. 2012;26:391–4.PubMedCrossRefPubMedCentralGoogle Scholar
  181. Pirracchio R, Cholley B, De Hert S, Solal AC, Mebazaa A. Diastolic heart failure in anaesthesia and critical care. Br J Anaesth. 2007;98:707–21.PubMedCrossRefPubMedCentralGoogle Scholar
  182. Poelaert JI, Trouerbach J, De Buyzere M, Everaert J, Colardyn FA. Evaluation of transesophageal echocardiography as a diagnostic and therapeutic aid in a critical care setting. Chest. 1995;107:774–9.PubMedCrossRefPubMedCentralGoogle Scholar
  183. Rajaram SS, Desai NK, Kalra A, Gajera M, Cavanaugh SK, Brampton W, Young D, Harvey S, Rowan K. Pulmonary artery catheters for adult patients in intensive care. Cochrane Database Syst Rev. 2013;2:CD003408.Google Scholar
  184. Ramaswamykanive H, Bihari DJ. Entrapment of the introducing sheath of a pulmonary artery catheter. Anaesth Intensive Care. 2009;37:1025–6.PubMedPubMedCentralGoogle Scholar
  185. Ranganath A, Hanumanthaiah D. Radial artery pseudo aneurysm after percutaneous cannulation using Seldinger technique. Indian J Anaesth. 2011;55:274–6.PubMedPubMedCentralCrossRefGoogle Scholar
  186. Raval NY, Squara P, Cleman M, Yalamanchili K, Winklmaier M, Burkhoff D. Multicenter evaluation of noninvasive cardiac output measurement by bioreactance technique. J Clin Monit Comput. 2008;22:113–9.PubMedCrossRefPubMedCentralGoogle Scholar
  187. Razavi A, Newth CJL, Khemani RG, Beltramo F, Ross PA. Cardiac output and systemic vascular resistance: clinical assessment compared with a noninvasive objective measurement in children with shock. J Crit Care. 2017;39:6–10.PubMedCrossRefPubMedCentralGoogle Scholar
  188. Reed CR, Sessler CN, Glauser FL, Phelan BA. Central venous catheter infections: concepts and controversies. Intensive Care Med. 1995;21:177–83.PubMedCrossRefPubMedCentralGoogle Scholar
  189. Reems MM, Aumann M. Central venous pressure: principles, measurement, and interpretation. Compend Contin Educ Vet. 2012;34:E1–E10.PubMedPubMedCentralGoogle Scholar
  190. Renner J, Scholz J, Bein B. Monitoring fluid therapy. Best Pract Res Clin Anaesthesiol. 2009;23:159–71.PubMedCrossRefPubMedCentralGoogle Scholar
  191. Reshetnik A, Compton F, Scholzel A, Tolle M, Zidek W, Giet MV. Noninvasive oscillometric cardiac output determination in the intensive care unit - comparison with invasive transpulmonary thermodilution. Sci Rep. 2017;7:9997.PubMedPubMedCentralCrossRefGoogle Scholar
  192. Reuter DA, Huang C, Edrich T, Shernan SK, Eltzschig HK. Cardiac output monitoring using indicator-dilution techniques: basics, limits, and perspectives. Anesth Analg. 2010;110:799–811.PubMedCrossRefPubMedCentralGoogle Scholar
  193. Rhodes A, Cusack RJ, Newman PJ, Grounds RM, Bennett ED. A randomised, controlled trial of the pulmonary artery catheter in critically ill patients. Intensive Care Med. 2002;28:256–64.PubMedCrossRefPubMedCentralGoogle Scholar
  194. Richard C, Monnet X, Teboul JL. Pulmonary artery catheter monitoring in 2011. Curr Opin Crit Care. 2011;17:296–302.PubMedCrossRefPubMedCentralGoogle Scholar
  195. Richard C, Warszawski J, Anguel N, Deye N, Combes A, Barnoud D, Boulain T, Lefort Y, Fartoukh M, Baud F, Boyer A, Brochard L, Teboul JL. Early use of the pulmonary artery catheter and outcomes in patients with shock and acute respiratory distress syndrome: a randomized controlled trial. JAMA. 2003;290:2713–20.PubMedCrossRefPubMedCentralGoogle Scholar
  196. Riva-Rocci S, Zanchetti A, Mancia G. A new sphygmomanometer. Sphygmomanometric technique. J Hypertens. 1996;14:1–12.PubMedPubMedCentralGoogle Scholar
  197. Roguin A. Scipione Riva-Rocci and the men behind the mercury sphygmomanometer. Int J Clin Pract. 2006;60:73–9.PubMedCrossRefPubMedCentralGoogle Scholar
  198. Sander M, von Heymann C, Foer A, von Dossow V, Grosse J, Dushe S, Konertz WF, Spies CD. Pulse contour analysis after normothermic cardiopulmonary bypass in cardiac surgery patients. Crit Care. 2005;9:R729–34.PubMedPubMedCentralCrossRefGoogle Scholar
  199. Sandham JD, Hull RD, Brant RF, Knox L, Pineo GF, Doig CJ, Laporta DP, Viner S, Passerini L, Devitt H, Kirby A, Jacka M. A randomized, controlled trial of the use of pulmonary-artery catheters in high-risk surgical patients. N Engl J Med. 2003;348:5–14.PubMedCrossRefPubMedCentralGoogle Scholar
  200. Sangkum L, Liu GL, Yu L, Yan H, Kaye AD, Liu H. Minimally invasive or noninvasive cardiac output measurement: an update. J Anesth. 2016;30:461–80.PubMedCrossRefPubMedCentralGoogle Scholar
  201. Satler LF. Iatrogenic pulmonary artery rupture: the realities of management. Catheter Cardiovasc Interv. 2013;81:60–1.PubMedCrossRefPubMedCentralGoogle Scholar
  202. Saugel B, Bendjelid K, Critchley LA, Rex S, Scheeren TW. Journal of clinical monitoring and computing 2016 end of year summary: cardiovascular and hemodynamic monitoring. J Clin Monit Comput. 2017;31:5–17.PubMedCrossRefPubMedCentralGoogle Scholar
  203. Scheer B, Perel A, Pfeiffer UJ. Clinical review: complications and risk factors of peripheral arterial catheters used for haemodynamic monitoring in anaesthesia and intensive care medicine. Crit Care. 2002;6:199–204.PubMedPubMedCentralCrossRefGoogle Scholar
  204. Schloglhofer T, Gilly H, Schima H. Semi-invasive measurement of cardiac output based on pulse contour: a review and analysis. Can J Anaesth. 2014;61:452–79.PubMedCrossRefPubMedCentralGoogle Scholar
  205. Schramm R, Abugameh A, Tscholl D, Schafers HJ. Managing pulmonary artery catheter-induced pulmonary hemorrhage by bronchial occlusion. Ann Thorac Surg. 2009;88:284–7.PubMedCrossRefPubMedCentralGoogle Scholar
  206. Schubert S, Schmitz T, Weiss M, Nagdyman N, Huebler M, Alexi-Meskishvili V, Berger F, Stiller B. Continuous, non-invasive techniques to determine cardiac output in children after cardiac surgery: evaluation of transesophageal Doppler and electric velocimetry. J Clin Monit Comput. 2008;22:299–307.PubMedCrossRefPubMedCentralGoogle Scholar
  207. Schwann NM, Hillel Z, Hoeft A, Barash P, Mohnle P, Miao Y, Mangano DT. Lack of effectiveness of the pulmonary artery catheter in cardiac surgery. Anesth Analg. 2011;113:994–1002.PubMedCrossRefPubMedCentralGoogle Scholar
  208. Scolletta S, Romano SM, Biagioli B, Capannini G, Giomarelli P. Pressure recording analytical method (PRAM) for measurement of cardiac output during various haemodynamic states. Br J Anaesth. 2005;95:159–65.PubMedCrossRefPubMedCentralGoogle Scholar
  209. Shah MR, Hasselblad V, Stevenson LW, Binanay C, O’Connor CM, Sopko G, Califf RM. Impact of the pulmonary artery catheter in critically ill patients: meta-analysis of randomized clinical trials. JAMA. 2005;294:1664–70.PubMedCrossRefPubMedCentralGoogle Scholar
  210. Shevde K, Raab R, Lee P. Decreasing the risk of pulmonary artery rupture with a pressure relief balloon. J Cardiothorac Vasc Anesth. 1994;8:30–4.PubMedCrossRefPubMedCentralGoogle Scholar
  211. Singer M, Clarke J, Bennett ED. Continuous hemodynamic monitoring by esophageal Doppler. Crit Care Med. 1989;17:447–52.PubMedCrossRefPubMedCentralGoogle Scholar
  212. Siradovic A, Stoll R, Kern F, Haertel M. Optimizing puncture of the internal jugular vein. Effects and advantages of the Valsalva maneuver in catheterization. Anaesthesist. 1988;37:387–91.PubMedPubMedCentralGoogle Scholar
  213. Sise MJ, Hollingsworth P, Brimm JE, Peters RM, Virgilio RW, Shackford SR. Complications of the flow-directed pulmonary artery catheter: a prospective analysis in 219 patients. Crit Care Med. 1981;9:315–8.PubMedCrossRefPubMedCentralGoogle Scholar
  214. Stergiou GS, Parati G, Vlachopoulos C, Achimastos A, Andreadis E, Asmar R, Avolio A, Benetos A, Bilo G, Boubouchairopoulou N, Boutouyrie P, Castiglioni P, de la Sierra A, Dolan E, Head G, Imai Y, Kario K, Kollias A, Kotsis V, Manios E, McManus R, Mengden T, Mihailidou A, Myers M, Niiranen T, Ochoa JE, Ohkubo T, Omboni S, Padfield P, Palatini P, Papaioannou T, Protogerou A, Redon J, Verdecchia P, Wang J, Zanchetti A, Mancia G, O’Brien E. Methodology and technology for peripheral and central blood pressure and blood pressure variability measurement: current status and future directions—Position statement of the European Society of Hypertension Working Group on blood pressure monitoring and cardiovascular variability. J Hypertens. 2016;34:1665–77.PubMedCrossRefPubMedCentralGoogle Scholar
  215. Stevens K, McCabe C, Jones C, Ashcroft J, Harvey S, Rowan K. The incremental cost effectiveness of withdrawing pulmonary artery catheters from routine use in critical care. Appl Health Econ Health Policy. 2005;4:257–64.PubMedCrossRefPubMedCentralGoogle Scholar
  216. Stone PA, Hass SM, Knackstedt KS, Jagannath P. Malposition of a central venous catheter into the right internal mammary vein: review of complications of catheter misplacement. Vasc Endovasc Surg. 2012;46:187–9.CrossRefGoogle Scholar
  217. Sumita S, Ujike Y, Namiki A, Watanabe H, Watanabe A, Satoh O. Rupture of pulmonary artery induced by balloon occlusion pulmonary angiography. Intensive Care Med. 1995;21:79–81.PubMedCrossRefPubMedCentralGoogle Scholar
  218. Summerhill EM, Baram M. Principles of pulmonary artery catheterization in the critically ill. Lung. 2005;183:209–19.PubMedCrossRefPubMedCentralGoogle Scholar
  219. Surov A, Wienke A, Carter JM, Stoevesandt D, Behrmann C, Spielmann RP, Werdan K, Buerke M. Intravascular embolization of venous catheter—causes, clinical signs, and management: a systematic review. JPEN J Parenter Enteral Nutr. 2009;33:677–85.PubMedCrossRefPubMedCentralGoogle Scholar
  220. Swan HJ. The pulmonary artery catheter in anesthesia practice. 1970. Anesthesiology. 2005;103:890–3.PubMedCrossRefPubMedCentralGoogle Scholar
  221. Swan HJ, Ganz W. Letter: guidelines for use of balloon-tipped catheter. Am J Cardiol. 1974;34:119–20.PubMedCrossRefPubMedCentralGoogle Scholar
  222. Swan HJ, Ganz W. Use of balloon flotation catheters in critically ill patients. Surg Clin North Am. 1975;55:501–9.PubMedCrossRefPubMedCentralGoogle Scholar
  223. Swan HJ, Ganz W. Complications with flow-directed balloon-tipped catheters. Ann Intern Med. 1979;91:494.PubMedCrossRefPubMedCentralGoogle Scholar
  224. Swan HJ, Ganz W, Forrester J, Marcus H, Diamond G, Chonette D. Catheterization of the heart in man with use of a flow-directed balloon-tipped catheter. N Engl J Med. 1970;283:447–51.CrossRefPubMedGoogle Scholar
  225. Takada M, Minami K, Murata T, Inoue C, Sudani T, Suzuki A, Yamamoto T. Anesthetic management using the arterial pressure-based cardiac output monitor and a central venous oximetry catheter for tricuspid valve replacement in a patient receiving hemodialysis. Masui. 2010;59:1016–20.PubMedPubMedCentralGoogle Scholar
  226. Taylor HL, Tiede K. A comparison of the estimation of the basal cardiac output from a linear formula and the cardiac index. J Clin Invest. 1952;31:209–16.PubMedPubMedCentralCrossRefGoogle Scholar
  227. Tesio F, De Baz H, Panarello G, Calianno G, Quaia P, Raimondi A, Schinella D. Double catheterization of the internal jugular vein for hemodialysis: indications, techniques, and clinical results. Artif Organs. 1994;18:301–4.PubMedCrossRefPubMedCentralGoogle Scholar
  228. Trieschmann U, Kruessell M, Cate UT, Sreeram N. Central venous catheters in children and neonates (Part 2)—Access via the internal jugular vein. Images Paediatr Cardiol. 2008;10:1–7.PubMedPubMedCentralGoogle Scholar
  229. Trof RJ, Danad I, Reilingh MW, Breukers RM, Groeneveld AB. Cardiac filling volumes versus pressures for predicting fluid responsiveness after cardiovascular surgery: the role of systolic cardiac function. Crit Care. 2011;15:R73.PubMedPubMedCentralCrossRefGoogle Scholar
  230. Truijen J, van Lieshout JJ, Wesselink WA, Westerhof BE. Noninvasive continuous hemodynamic monitoring. J Clin Monit Comput. 2012;26:267–78.PubMedPubMedCentralCrossRefGoogle Scholar
  231. Trzebicki J, Lisik W, Blaszczyk B, Pacholczyk M, Fudalej M, Chmura A, Lazowski T. Unexpected fatal right ventricular rupture during liver transplantation: case report. Ann Transplant. 2011;16:70–4.PubMedPubMedCentralGoogle Scholar
  232. Turi G, Tordiglione P, Araimo F. Anterior mediastinal central line malposition. Anesth Analg. 2012;117(1):123–5.PubMedCrossRefPubMedCentralGoogle Scholar
  233. Tyden H. Cannulation of the internal jugular vein—500 cases. Acta Anaesthesiol Scand. 1982;26:485–8.PubMedCrossRefPubMedCentralGoogle Scholar
  234. Uchida Y, Sakamoto M, Takahashi H, Matsuo Y, Funahashi H, Sasano H, Sobue K, Takeyama H. Optimal prediction of the central venous catheter insertion depth on a routine chest x-ray. Nutrition. 2011;27:557–60.PubMedCrossRefPubMedCentralGoogle Scholar
  235. Unal AE, Bayar S, Arat M, Ilhan O. Malpositioning of Hickman catheters, left versus right sided attempts. Transfus Apher Sci. 2003;28:9–12.PubMedCrossRefPubMedCentralGoogle Scholar
  236. Urban T, Wappler F, Sakka SG. Intra-arterial ECG leads of a positive P-wave potential during central venous catheterization. Anasthesiol Intensivmed Notfallmed Schmerzther. 2011;46:94–7.PubMedCrossRefPubMedCentralGoogle Scholar
  237. Urbano J, Lopez J, Gonzalez R, Fernandez SN, Solana MJ, Toledo B, Carrillo A, Lopez-Herce J. Comparison between pressure-recording analytical method (PRAM) and femoral arterial thermodilution method (FATD) cardiac output monitoring in an infant animal model of cardiac arrest. Intensive Care Med Exp. 2016;4:13.PubMedPubMedCentralCrossRefGoogle Scholar
  238. Urschel JD, Myerowitz PD. Catheter-induced pulmonary artery rupture in the setting of cardiopulmonary bypass. Ann Thorac Surg. 1993;56:585–9.PubMedCrossRefPubMedCentralGoogle Scholar
  239. Uzun M, Erinc K, Kirilmaz A, Baysan O, Sag C, Kilicarslan F, Genc C, Karaeren H, Demirtas E. A novel method to estimate pulmonary artery wedge pressure using the downslope of the Doppler mitral regurgitant velocity profile. Echocardiography. 2004;21:673–9.PubMedCrossRefPubMedCentralGoogle Scholar
  240. Vakily A, Parsaei H, Movahhedi MM, Sahmeddini MA. A system for continuous estimating and monitoring cardiac output via arterial waveform analysis. J Biomed Phys Eng. 2017;7:181–90.PubMedPubMedCentralGoogle Scholar
  241. Valtier B, Cholley BP, Belot JP, de la Coussaye JE, Mateo J, Payen DM. Noninvasive monitoring of cardiac output in critically ill patients using transesophageal Doppler. Am J Respir Crit Care Med. 1998;158:77–83.PubMedCrossRefPubMedCentralGoogle Scholar
  242. van Heerden PV, Baker S, Lim SI, Weidman C, Bulsara M. Clinical evaluation of the non-invasive cardiac output (NICO) monitor in the intensive care unit. Anaesth Intensive Care. 2000;28:427–30.PubMedPubMedCentralGoogle Scholar
  243. Vats HS. Complications of catheters: tunneled and nontunneled. Adv Chronic Kidney Dis. 2012;19:188–94.PubMedCrossRefPubMedCentralGoogle Scholar
  244. Vender JS. Pulmonary artery catheter utilization: the use, misuse, or abuse. J Cardiothorac Vasc Anesth. 2006;20:295–9.PubMedCrossRefPubMedCentralGoogle Scholar
  245. Vincent JL, Pinsky MR, Sprung CL, Levy M, Marini JJ, Payen D, Rhodes A, Takala J. The pulmonary artery catheter: in medio virtus. Crit Care Med. 2008;36:3093–6.CrossRefPubMedGoogle Scholar
  246. Vincent JL, Rhodes A, Perel A, Martin GS, Della Rocca G, Vallet B, Pinsky MR, Hofer CK, Teboul JL, de Boode WP, Scolletta S, Vieillard-Baron A, De Backer D, Walley KR, Maggiorini M, Singer M. Clinical review: update on hemodynamic monitoring—a consensus of 16. Crit Care. 2011;15:229.PubMedPubMedCentralCrossRefGoogle Scholar
  247. Waldron NH, Miller TE, Thacker JK, Manchester AK, White WD, Nardiello J, Elgasim MA, Moon RE, Gan TJ. A prospective comparison of a noninvasive cardiac output monitor versus esophageal Doppler monitor for goal-directed fluid therapy in colorectal surgery patients. Anesth Analg. 2014;118:966–75.PubMedCrossRefPubMedCentralGoogle Scholar
  248. Walser EM. Venous access ports: indications, implantation technique, follow-up, and complications. Cardiovasc Intervent Radiol. 2012;35:751–64.PubMedCrossRefPubMedCentralGoogle Scholar
  249. Wanderer JP, Rathmell JP. Utilizing ultrasound: let us help you with that arterial line! Anesthesiology. 2017;127:A15.CrossRefGoogle Scholar
  250. Wax DB, Lin HM, Leibowitz AB. Invasive and concomitant noninvasive intraoperative blood pressure monitoring: observed differences in measurements and associated therapeutic interventions. Anesthesiology. 2011;115:973–8.PubMedCrossRefPubMedCentralGoogle Scholar
  251. West JB. The beginnings of cardiac catheterization and the resulting impact on pulmonary medicine. Am J Phys Lung Cell Mol Phys. 2017;313:L651–l658.Google Scholar
  252. Westenskow DR, Silva FH. Device to limit inflation of a pulmonary artery catheter balloon. Crit Care Med. 1993;21:1365–8.PubMedCrossRefPubMedCentralGoogle Scholar
  253. Wheeler AP, Bernard GR, Thompson BT, Schoenfeld D, Wiedemann HP, deBoisblanc B, Connors AF Jr, Hite RD, Harabin AL. Pulmonary-artery versus central venous catheter to guide treatment of acute lung injury. N Engl J Med. 2006;354:2213–24.PubMedCrossRefPubMedCentralGoogle Scholar
  254. Wilcox TA. Catheter-related bloodstream infections. Semin Interv Radiol. 2009;26:139–43.CrossRefGoogle Scholar
  255. Williams L, Frenneaux M. Diastolic ventricular interaction: from physiology to clinical practice. Nat Clin Pract Cardiovasc Med. 2006;3:368–76.PubMedCrossRefPubMedCentralGoogle Scholar
  256. Woodrow P. Central venous catheters and central venous pressure. Nurs Stand. 2002;16:45–51; quiz 52.PubMedCrossRefPubMedCentralGoogle Scholar
  257. Yu DT, Platt R, Lanken PN, Black E, Sands KE, Schwartz JS, Hibberd PL, Graman PS, Kahn KL, Snydman DR, Parsonnet J, Moore R, Bates DW. Relationship of pulmonary artery catheter use to mortality and resource utilization in patients with severe sepsis. Crit Care Med. 2003;31:2734–41.PubMedCrossRefPubMedCentralGoogle Scholar
  258. Zarshenas Z, Sparschu RA. Catheter placement and misplacement. Crit Care Clin. 1994;10:417–36.PubMedCrossRefPubMedCentralGoogle Scholar
  259. Zhou Q, Xiao W, An E, Zhou H, Yan M. Effects of four different positive airway pressures on right internal jugular vein catheterisation. Eur J Anaesthesiol. 2012;29:223–8.PubMedCrossRefPubMedCentralGoogle Scholar
  260. Zuffi A, Biondi-Zoccai G, Colombo F. Swan-Ganz-induced pulmonary artery rupture: management with stent graft implantation. Catheter Cardiovasc Interv. 2010;76:578–81.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Medicine, Cardiac Anesthesiology Department, Anesthesiology Research CenterShahid Beheshti University of Medical SciencesTehranIran
  2. 2.Cardiac Anesthesiology Fellowship ProgramShahid Beheshti University of Medical SciencesTehranIran

Personalised recommendations