Cardiac Physiology

  • Ali DabbaghEmail author
  • Alireza Imani
  • Samira Rajaei


Cardiac physiology is one of the most interesting discussions both in basic science and clinic. Anatomy and physiology of the heart directly affect the clinical presentations of disease states. The heart is composed of pericardium (outmost layer), endocardium (innermost layer), and myocardium (middle layer), the last being more discussed here and consists of:
  • Cardiac connective tissue cells

  • Cardiomyocytes (which have contractile function)

  • Cardiac electrical and conduction system cells (consisting of “impulse-generating cells” and “specialized conductive cells”)

The main cardiac cells are cardiomyocytes with their unique structure having some shared features with both skeletal muscles and smooth muscles, though not completely similar with any of these two muscle types.

Cardiac cells have three different but “highly interrelated” physiologic features:
  • Action potential

  • Excitation-contraction coupling (ECC)

  • Contractile mechanisms

Each of the three is composed of numerous different physiologic chains to create together, and as a final outcome, a main goal: cardiac contraction leading to cardiac output.

There are a number of cardiac controllers which modulate cardiac function based on physiologic demands, which are discussed in this chapter.

And finally, a number of physiologic reflexes are involved in cardiac physiology discussed in the final part of the chapter.


Cardiac physiology Cardiac anatomy Action potential Excitation contraction coupling (ECC) Chordae tendineae Pericardium Myocardium Endocardium Cardiomyocyte Sarcolemma T tubule Sarcoplasmic reticulum Spot desmosomes Sheet desmosomes Gap junction His bundle Coronary arteries Ca2+ homeostasis Ca2+-induced Ca2+ release “CICR” Actin Myosin Titin Myosin binding protein C (MYBPC) Tropomyosin Troponin Tropomodulin Cardiac cycle Cardiac work Cardiac output Ejection fraction Frank-Starling relationship Cardiac reflex Bainbridge reflex Baroreceptors reflex Bezold-Jarisch reflex Valsalva maneuver Cushing reflex Harvey cushing Oculocardiac reflex Chemoreceptor reflex 


  1. Ababneh AA, Sciacca RR, Kim B, Bergmann SR. Normal limits for left ventricular ejection fraction and volumes estimated with gated myocardial perfusion imaging in patients with normal exercise test results: influence of tracer, gender, and acquisition camera. J Nucl Cardiol. 2000;7:661–8.PubMedCrossRefPubMedCentralGoogle Scholar
  2. Abbott BC, Ritchie JM. Early tension relaxation during a muscle twitch. J Physiol. 1951;113:330–5.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Abdelmeguid NE, Sorour JM. A comparative ultrastructural study of the cardiac and skeletal striated muscles of the skink. Funct Dev Morphol. 1992;2:147–50.PubMedPubMedCentralGoogle Scholar
  4. Agarkova I, Ehler E, Lange S, Schoenauer R, Perriard JC. M-band: a safeguard for sarcomere stability? J Muscle Res Cell Motil. 2003;24:191–203.PubMedCrossRefPubMedCentralGoogle Scholar
  5. Agarkova I, Perriard JC. The M-band: an elastic web that crosslinks thick filaments in the center of the sarcomere. Trends Cell Biol. 2005;15:477–85.PubMedCrossRefPubMedCentralGoogle Scholar
  6. Alberts B, Johnson A, Lewis J, et al., editors. Molecular biology of the cell. 4th ed. New York: Garland Science; 2002.Google Scholar
  7. Amanfu RK, Saucerman JJ. Cardiac models in drug discovery and development: a review. Crit Rev Biomed Eng. 2011;39:379–95.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Anderson EJ, Katunga LA, Willis MS. Mitochondria as a source and target of lipid peroxidation products in healthy and diseased heart. Clin Exp Pharmacol Physiol. 2012;39:179–93.PubMedCrossRefPubMedCentralGoogle Scholar
  9. Anderson RH, Razavi R, Taylor AM. Cardiac anatomy revisited. J Anat. 2004;205:159–77.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Anderson RH, Yanni J, Boyett MR, Chandler NJ, Dobrzynski H. The anatomy of the cardiac conduction system. Clin Anat. 2009;22:99–113.PubMedCrossRefPubMedCentralGoogle Scholar
  11. Anwar AM, Geleijnse ML, Soliman OI, McGhie JS, Frowijn R, Nemes A, van den Bosch AE, Galema TW, Ten Cate FJ. Assessment of normal tricuspid valve anatomy in adults by real-time three-dimensional echocardiography. Int J Card Imaging. 2007;23:717–24.CrossRefGoogle Scholar
  12. Arasho B, Sandu N, Spiriev T, Prabhakar H, Schaller B. Management of the trigeminocardiac reflex: facts and own experience. Neurol India. 2009;57:375–80.PubMedCrossRefPubMedCentralGoogle Scholar
  13. Arias-Calderon M, Almarza G, Diaz-Vegas A, Contreras-Ferrat A, Valladares D, Casas M, Toledo H, Jaimovich E, Buvinic S. Characterization of a multiprotein complex involved in excitation-transcription coupling of skeletal muscle. Skelet Muscle. 2016;6:15.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Aronsen JM, Swift F, Sejersted OM. Cardiac sodium transport and excitation-contraction coupling. J Mol Cell Cardiol. 2013;61:11–9.PubMedCrossRefPubMedCentralGoogle Scholar
  15. Atkinson A, Inada S, Li J, Tellez JO, Yanni J, Sleiman R, Allah EA, Anderson RH, Zhang H, Boyett MR, Dobrzynski H. Anatomical and molecular mapping of the left and right ventricular his-Purkinje conduction networks. J Mol Cell Cardiol. 2011;51:689–701.PubMedCrossRefPubMedCentralGoogle Scholar
  16. Atkinson AJ, Logantha SJ, Hao G, Yanni J, Fedorenko O, Sinha A, Gilbert SH, Benson AP, Buckley DL, Anderson RH, Boyett MR, Dobrzynski H. Functional, anatomical, and molecular investigation of the cardiac conduction system and arrhythmogenic atrioventricular ring tissue in the rat heart. J Am Heart Assoc. 2013;2:e000246.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Ayling J. Managing head injuries. Emerg Med Serv. 2002;31:42.PubMedPubMedCentralGoogle Scholar
  18. Balse E, Steele DF, Abriel H, Coulombe A, Fedida D, Hatem SN. Dynamic of ion channel expression at the plasma membrane of cardiomyocytes. Physiol Rev. 2012;92:1317–58.PubMedCrossRefPubMedCentralGoogle Scholar
  19. Barbieri R, Triedman JK, Saul JP. Heart rate control and mechanical cardiopulmonary coupling to assess central volume: a systems analysis. Am J Phys Regul Integr Comp Phys. 2002;283:R1210–20.Google Scholar
  20. Barclay CJ. Energy demand and supply in human skeletal muscle. J Muscle Res Cell Motil. 2017;38(2):143–55.PubMedCrossRefPubMedCentralGoogle Scholar
  21. Bazgir B, Fathi R, Rezazadeh Valojerdi M, Mozdziak P, Asgari A. Satellite cells contribution to exercise mediated muscle hypertrophy and repair. Cell J. 2017;18:473–84.PubMedPubMedCentralGoogle Scholar
  22. Bennett BC, Purdy MD, Baker KA, Acharya C, McIntire WE, Stevens RC, Zhang Q, Harris AL, Abagyan R, Yeager M. An electrostatic mechanism for Ca(2+)-mediated regulation of gap junction channels. Nat Commun. 2016;7:8770.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Berisha F, Nikolaev VO. Cyclic nucleotide imaging and cardiovascular disease. Pharmacol Ther. 2017;175:107–15.PubMedCrossRefPubMedCentralGoogle Scholar
  24. Bickler PE, Fahlman CS. Moderate increases in intracellular calcium activate neuroprotective signals in hippocampal neurons. Neuroscience. 2004;127:673–83.PubMedCrossRefPubMedCentralGoogle Scholar
  25. Bingen BO, Askar SF, Schalij MJ, Kazbanov IV, Ypey DL, Panfilov AV, Pijnappels DA. Prolongation of minimal action potential duration in sustained fibrillation decreases complexity by transient destabilization. Cardiovasc Res. 2013;97(1):161–70.PubMedCrossRefPubMedCentralGoogle Scholar
  26. Boettcher DH, Zimpfer M, Vatner SF. Phylogenesis of the Bainbridge reflex. Am J Phys. 1982;242:R244–6.Google Scholar
  27. Bohnert KR, McMillan JD, Kumar A. Emerging roles of ER stress and unfolded protein response pathways in skeletal muscle health and disease. J Cell Physiol. 2018;233(1):67–78.PubMedCrossRefPubMedCentralGoogle Scholar
  28. Bollensdorff C, Lookin O, Kohl P. Assessment of contractility in intact ventricular cardiomyocytes using the dimensionless ‘Frank-Starling Gain’ index. Pflugers Arch. 2011;462:39–48.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Borg TK, Sullivan T, Ivy J. Functional arrangement of connective tissue in striated muscle with emphasis on cardiac muscle. Scan Electron Microsc. 1982:1775–84.Google Scholar
  30. Boyden PA, Gardner PI, Wit AL. Action potentials of cardiac muscle in healing infarcts: response to norepinephrine and caffeine. J Mol Cell Cardiol. 1988;20:525–37.PubMedCrossRefPubMedCentralGoogle Scholar
  31. Bragadeesh TK, Mathur G, Clark AL, Cleland JG. Novel cardiac myosin activators for acute heart failure. Expert Opin Investig Drugs. 2007;16:1541–8.PubMedCrossRefPubMedCentralGoogle Scholar
  32. Brunello L, Slabaugh JL, Radwanski PB, Ho HT, Belevych AE, Lou Q, Chen H, Napolitano C, Lodola F, Priori SG, Fedorov VV, Volpe P, Fill M, Janssen PM, Gyorke S. Decreased RyR2 refractoriness determines myocardial synchronization of aberrant Ca2+ release in a genetic model of arrhythmia. Proc Natl Acad Sci U S A. 2013;110:10312–7.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Bucchi A, Barbuti A, Baruscotti M, DiFrancesco D. Heart rate reduction via selective ‘funny’ channel blockers. Curr Opin Pharmacol. 2007;7:208–13.PubMedCrossRefPubMedCentralGoogle Scholar
  34. Burgoyne T, Muhamad F, Luther PK. Visualization of cardiac muscle thin filaments and measurement of their lengths by electron tomography. Cardiovasc Res. 2008;77:707–12.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Calore M, Lorenzon A, De Bortoli M, Poloni G, Rampazzo A. Arrhythmogenic cardiomyopathy: a disease of intercalated discs. Cell Tissue Res. 2015;360:491–500.PubMedCrossRefPubMedCentralGoogle Scholar
  36. Campagna JA, Carter C. Clinical relevance of the Bezold-Jarisch reflex. Anesthesiology. 2003;98:1250–60.PubMedCrossRefPubMedCentralGoogle Scholar
  37. Campanucci VA, Dookhoo L, Vollmer C, Nurse CA. Modulation of the carotid body sensory discharge by NO: an up-dated hypothesis. Respir Physiol Neurobiol. 2012;184:149–57.PubMedCrossRefPubMedCentralGoogle Scholar
  38. Campbell KS. Short-range mechanical properties of skeletal and cardiac muscles. Adv Exp Med Biol. 2010;682:223–46.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Campbell KS. Impact of myocyte strain on cardiac myofilament activation. Pflugers Arch. 2011;462:3–14.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Chatterjee K. Pathophysiology of systolic and diastolic heart failure. Med Clin North Am. 2012;96:891–9.PubMedCrossRefPubMedCentralGoogle Scholar
  41. Chaui-Berlinck JG, Monteiro LHA. Frank-Starling mechanism and short-term adjustment of cardiac flow. J Exp Biol. 2017;220(Pt 23):4391–8.PubMedCrossRefPubMedCentralGoogle Scholar
  42. Chen PS, Joung B, Shinohara T, Das M, Chen Z, Lin SF. The initiation of the heart beat. Circ J. 2010;74:221–5.PubMedCrossRefPubMedCentralGoogle Scholar
  43. Chung CJ, Lee JM, Choi SR, Lee SC, Lee JH. Effect of remifentanil on oculocardiac reflex in paediatric strabismus surgery. Acta Anaesthesiol Scand. 2008;52:1273–7.PubMedCrossRefPubMedCentralGoogle Scholar
  44. Cingolani HE, Perez NG, Cingolani OH, Ennis IL. The Anrep effect: 100 years later. Am J Phys Heart Circ Phys. 2013;304:H175–82.Google Scholar
  45. Coronel R, Janse MJ, Opthof T, Wilde AA, Taggart P. Postrepolarization refractoriness in acute ischemia and after antiarrhythmic drug administration: action potential duration is not always an index of the refractory period. Heart Rhythm. 2012;9:977–82.PubMedCrossRefPubMedCentralGoogle Scholar
  46. Craig R, Lehman W. Crossbridge and tropomyosin positions observed in native, interacting thick and thin filaments. J Mol Biol. 2001;311:1027–36.PubMedCrossRefPubMedCentralGoogle Scholar
  47. Crystal GJ, Salem MR. The Bainbridge and the “reverse” Bainbridge reflexes: history, physiology, and clinical relevance. Anesth Analg. 2012;114:520–32.PubMedCrossRefPubMedCentralGoogle Scholar
  48. Currie S. Cardiac ryanodine receptor phosphorylation by CaM kinase II: keeping the balance right. Front Biosci. 2009;14:5134–56.CrossRefGoogle Scholar
  49. Dabbagh A. Cardiac physiology. In: Dabbagh A, Esmailian F, Aranki S, editors. Postoperative critical care for cardiac surgical patients. 1st ed. New York: Springer; 2014. p. 1–39.CrossRefGoogle Scholar
  50. Dabbagh A, Imani A, Rajaei S. Pediatric cardiovascular physiology. In: Dabbagh A, Conte AH, Lubin L, editors. Congenital heart disease in pediatric and adult patients: anesthetic and perioperative management. 1st ed. New York: Springer; 2017. p. 65–116.CrossRefGoogle Scholar
  51. Dampney RA. Central neural control of the cardiovascular system: current perspectives. Adv Physiol Educ. 2016;40:283–96.PubMedCrossRefPubMedCentralGoogle Scholar
  52. de Leeuw PW, Bisognano JD, Bakris GL, Nadim MK, Haller H, Kroon AA. Sustained reduction of blood pressure with baroreceptor activation therapy: results of the 6-year open follow-up. Hypertension. 2017;69:836–43.PubMedCrossRefPubMedCentralGoogle Scholar
  53. Dell’Italia LJ. Anatomy and physiology of the right ventricle. Cardiol Clin. 2012;30:167–87.PubMedCrossRefPubMedCentralGoogle Scholar
  54. Delmar M, Makita N. Cardiac connexins, mutations and arrhythmias. Curr Opin Cardiol. 2012;27:236–41.PubMedCrossRefPubMedCentralGoogle Scholar
  55. Deng D, Jiao P, Ye X, Xia L. An image-based model of the whole human heart with detailed anatomical structure and fiber orientation. Comput Math Methods Med. 2012;2012:891070.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Desplantez T, Dupont E, Severs NJ, Weingart R. Gap junction channels and cardiac impulse propagation. J Membr Biol. 2007;218:13–28.PubMedCrossRefPubMedCentralGoogle Scholar
  57. Dickinson CJ. Reappraisal of the Cushing reflex: the most powerful neural blood pressure stabilizing system. Clin Sci (Lond). 1990;79:543–50.CrossRefGoogle Scholar
  58. Dickson EJ, Jensen JB, Hille B. Regulation of calcium and phosphoinositides at endoplasmic reticulum-membrane junctions. Biochem Soc Trans. 2016;44:467–73.PubMedPubMedCentralCrossRefGoogle Scholar
  59. DiFrancesco D. Funny channels in the control of cardiac rhythm and mode of action of selective blockers. Pharmacol Res. 2006;53:399–406.PubMedCrossRefPubMedCentralGoogle Scholar
  60. DiFrancesco D. The role of the funny current in pacemaker activity. Circ Res. 2010;106:434–46.PubMedCrossRefPubMedCentralGoogle Scholar
  61. DiFrancesco D, Borer JS. The funny current: cellular basis for the control of heart rate. Drugs. 2007;67(Suppl 2):15–24.PubMedCrossRefPubMedCentralGoogle Scholar
  62. DiFrancesco D, Noble D. The funny current has a major pacemaking role in the sinus node. Heart Rhythm. 2012;9:299–301.PubMedCrossRefPubMedCentralGoogle Scholar
  63. Ding Y, Li YL, Schultz HD. Role of blood flow in carotid body chemoreflex function in heart failure. J Physiol. 2011;589:245–58.PubMedCrossRefPubMedCentralGoogle Scholar
  64. Distefano G, Sciacca P. Molecular pathogenesis of myocardial remodeling and new potential therapeutic targets in chronic heart failure. Ital J Pediatr. 2012;38:41.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Dulhunty AF. Excitation-contraction coupling from the 1950s into the new millennium. Clin Exp Pharmacol Physiol. 2006;33:763–72.PubMedCrossRefPubMedCentralGoogle Scholar
  66. Dun W, Boyden PA. The Purkinje cell; 2008 style. J Mol Cell Cardiol. 2008;45:617–24.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Ednie AR, Bennett ES. Modulation of voltage-gated ion channels by sialylation. Compr Physiol. 2012;2:1269–301.PubMedPubMedCentralGoogle Scholar
  68. Ehler E. Cardiac cytoarchitecture - why the “hardware” is important for heart function! Biochim Biophys Acta. 2016;1863:1857–63.PubMedPubMedCentralCrossRefGoogle Scholar
  69. Eisner D, Bode E, Venetucci L, Trafford A. Calcium flux balance in the heart. J Mol Cell Cardiol. 2012;58:110–7.PubMedCrossRefPubMedCentralGoogle Scholar
  70. Faber GM, Rudy Y. Action potential and contractility changes in [Na(+)](i) overloaded cardiac myocytes: a simulation study. Biophys J. 2000;78:2392–404.PubMedPubMedCentralCrossRefGoogle Scholar
  71. Fabiato A. Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am J Phys. 1983;245:C1–14.CrossRefGoogle Scholar
  72. Fabiato A. Time and calcium dependence of activation and inactivation of calcium-induced release of calcium from the sarcoplasmic reticulum of a skinned canine cardiac Purkinje cell. J Gen Physiol. 1985;85:247–89.PubMedCrossRefPubMedCentralGoogle Scholar
  73. Fabiato A, Fabiato F. Calcium release from the sarcoplasmic reticulum. Circ Res. 1977;40:119–29.PubMedCrossRefPubMedCentralGoogle Scholar
  74. Fabiato A, Fabiato F. Calcium-induced release of calcium from the sarcoplasmic reticulum of skinned cells from adult human, dog, cat, rabbit, rat, and frog hearts and from fetal and new-born rat ventricles. Ann N Y Acad Sci. 1978;307:491–522.PubMedCrossRefPubMedCentralGoogle Scholar
  75. Fabiato A, Fabiato F. Calcium and cardiac excitation-contraction coupling. Annu Rev Physiol. 1979;41:473–84.PubMedCrossRefPubMedCentralGoogle Scholar
  76. Farah CS, Reinach FC. The troponin complex and regulation of muscle contraction. FASEB J. 1995;9:755–67.PubMedCrossRefPubMedCentralGoogle Scholar
  77. Fodstad H, Kelly PJ, Buchfelder M. History of the cushing reflex. Neurosurgery. 2006;59:1132–7; discussion 1137PubMedCrossRefPubMedCentralGoogle Scholar
  78. Foley JR, Plein S, Greenwood JP. Assessment of stable coronary artery disease by cardiovascular magnetic resonance imaging: current and emerging techniques. World J Cardiol. 2017;9:92–108.PubMedPubMedCentralCrossRefGoogle Scholar
  79. Fuchs F, Smith SH. Calcium, cross-bridges, and the frank-Starling relationship. News Physiol Sci. 2001;16:5–10.PubMedPubMedCentralGoogle Scholar
  80. Gao L, Wang Q, Xu H, Tao Z, Wu F. The oculocardiac reflex in cataract surgery in the elderly. Br J Ophthalmol. 1997;81:614.PubMedCrossRefPubMedCentralGoogle Scholar
  81. Gautel M. Cytoskeletal protein kinases: titin and its relations in mechanosensing. Pflugers Arch. 2011;462:119–34.PubMedPubMedCentralCrossRefGoogle Scholar
  82. George SA, Poelzing S. Cardiac conduction in isolated hearts of genetically modified mice—Connexin43 and salts. Prog Biophys Mol Biol. 2016;120:189–98.PubMedCrossRefPubMedCentralGoogle Scholar
  83. Germano G, Kiat H, Kavanagh PB, Moriel M, Mazzanti M, Su HT, Van Train KF, Berman DS. Automatic quantification of ejection fraction from gated myocardial perfusion SPECT. J Nucl Med. 1995;36:2138–47.PubMedPubMedCentralGoogle Scholar
  84. Gibson DG, Francis DP. Clinical assessment of left ventricular diastolic function. Heart. 2003;89:231–8.PubMedPubMedCentralCrossRefGoogle Scholar
  85. Goldhaber JI, Philipson KD. Cardiac sodium-calcium exchange and efficient excitation-contraction coupling: implications for heart disease. Adv Exp Med Biol. 2013;961:355–64.PubMedPubMedCentralCrossRefGoogle Scholar
  86. Goldstein DS, Cheshire WP Jr. Beat-to-beat blood pressure and heart rate responses to the Valsalva maneuver. Clin Auton Res. 2017;27(6):361–7.PubMedCrossRefPubMedCentralGoogle Scholar
  87. Gordon AM, Homsher E, Regnier M. Regulation of contraction in striated muscle. Physiol Rev. 2000;80:853–924.PubMedCrossRefPubMedCentralGoogle Scholar
  88. Grady PA, Blaumanis OR. Physiologic parameters of the Cushing reflex. Surg Neurol. 1988;29:454–61.PubMedCrossRefPubMedCentralGoogle Scholar
  89. Granzier H, Wu Y, Siegfried L, LeWinter M. Titin: physiological function and role in cardiomyopathy and failure. Heart Fail Rev. 2005;10:211–23.PubMedCrossRefPubMedCentralGoogle Scholar
  90. Grunnet M. Repolarization of the cardiac action potential. Does an increase in repolarization capacity constitute a new anti-arrhythmic principle? Acta Physiol. 2010;198(Suppl 676):1–48.CrossRefGoogle Scholar
  91. Haddad F, Couture P, Tousignant C, Denault AY. The right ventricle in cardiac surgery, a perioperative perspective: I. Anatomy, physiology, and assessment. Anesth Analg. 2009;108:407–21.PubMedCrossRefPubMedCentralGoogle Scholar
  92. Hajdu MA, Cornish KG, Tan W, Panzenbeck MJ, Zucker IH. The interaction of the Bainbridge and Bezold-Jarisch reflexes in the conscious dog. Basic Res Cardiol. 1991;86:175–85.PubMedCrossRefPubMedCentralGoogle Scholar
  93. Hakumaki MO. Seventy years of the Bainbridge reflex. Acta Physiol Scand. 1987;130:177–85.PubMedCrossRefPubMedCentralGoogle Scholar
  94. Hamilton SL, Serysheva I, Strasburg GM. Calmodulin and excitation-contraction coupling. News Physiol Sci. 2000;15:281–4.PubMedPubMedCentralGoogle Scholar
  95. Herzog JA, Leonard TR, Jinha A, Herzog W. Are titin properties reflected in single myofibrils? J Biomech. 2012;45:1893–9.PubMedCrossRefPubMedCentralGoogle Scholar
  96. Hill TL, Eisenberg E, Greene L. Theoretical model for the cooperative equilibrium binding of myosin subfragment 1 to the actin-troponin-tropomyosin complex. Proc Natl Acad Sci U S A. 1980;77:3186–90.PubMedPubMedCentralCrossRefGoogle Scholar
  97. Hiltrop N, Bennett J, Desmet W. Circumflex coronary artery injury after mitral valve surgery: a report of four cases and comprehensive review of the literature. Catheter Cardiovasc Interv. 2017;89:78–92.PubMedCrossRefPubMedCentralGoogle Scholar
  98. Hitchcock-DeGregori SE. Tropomyosin: function follows structure. Adv Exp Med Biol. 2008;644:60–72.PubMedCrossRefPubMedCentralGoogle Scholar
  99. Ho SY, McCarthy KP. Anatomy of the left atrium for interventional electrophysiologists. PACE. 2010;33:620–7.PubMedCrossRefPubMedCentralGoogle Scholar
  100. Hohendanner F, McCulloch AD, Blatter LA, Michailova AP. Calcium and IP3 dynamics in cardiac myocytes: experimental and computational perspectives and approaches. Front Pharmacol. 2014;5:35.PubMedPubMedCentralCrossRefGoogle Scholar
  101. Hong T, Shaw RM. Cardiac T-tubule microanatomy and function. Physiol Rev. 2017;97:227–52.PubMedCrossRefPubMedCentralGoogle Scholar
  102. Humphries ES, Dart C. Neuronal and cardiovascular potassium channels as therapeutic drug targets: promise and pitfalls. J Biomol Screen. 2015;20:1055–73.PubMedPubMedCentralCrossRefGoogle Scholar
  103. Ibrahim M, Siedlecka U, Buyandelger B, Harada M, Rao C, Moshkov A, Bhargava A, Schneider M, Yacoub MH, Gorelik J, Knoll R, Terracciano CM. A critical role for Telethonin in regulating t-tubule structure and function in the mammalian heart. Hum Mol Genet. 2012;22(2):372–83.PubMedPubMedCentralCrossRefGoogle Scholar
  104. Jafri MS. Models of excitation-contraction coupling in cardiac ventricular myocytes. Methods Mol Biol. 2012;910:309–35.PubMedPubMedCentralCrossRefGoogle Scholar
  105. Kajioka S, Takahashi-Yanaga F, Shahab N, Onimaru M, Matsuda M, Takahashi R, Asano H, Morita H, Morimoto S, Yonemitsu Y, Hayashi M, Seki N, Sasaguri T, Hirata M, Nakayama S, Naito S. Endogenous cardiac troponin T modulates Ca(2+)-mediated smooth muscle contraction. Sci Rep. 2012;2:979.PubMedPubMedCentralCrossRefGoogle Scholar
  106. Karaman T, Demir S, Dogru S, Sahin A, Tapar H, Karaman S, Kaya Z, Suren M, Arici S. The effect of anesthesia depth on the oculocardiac reflex in strabismus surgery. J Clin Monit Comput. 2016;30:889–93.PubMedCrossRefPubMedCentralGoogle Scholar
  107. Kashihara K. Roles of arterial baroreceptor reflex during bezold-jarisch reflex. Curr Cardiol Rev. 2009;5:263–7.PubMedPubMedCentralCrossRefGoogle Scholar
  108. Kashihara K, Kawada T, Li M, Sugimachi M, Sunagawa K. Bezold-Jarisch reflex blunts arterial baroreflex via the shift of neural arc toward lower sympathetic nerve activity. Jpn J Physiol. 2004;54:395–404.PubMedCrossRefPubMedCentralGoogle Scholar
  109. Kennedy A, Finlay DD, Guldenring D, Bond R, Moran K, McLaughlin J. The cardiac conduction system: generation and conduction of the cardiac impulse. Crit Care Nurs Clin North Am. 2016;28:269–79.PubMedCrossRefPubMedCentralGoogle Scholar
  110. Kerckhoffs RC, Campbell SG, Flaim SN, Howard EJ, Sierra-Aguado J, Mulligan LJ, McCulloch AD. Multi-scale modeling of excitation-contraction coupling in the normal and failing heart. Conf Proc IEEE Eng Med Biol Soc. 2009;2009:4281–2.PubMedPubMedCentralGoogle Scholar
  111. Khan MU, Cheema Y, Shahbaz AU, Ahokas RA, Sun Y, Gerling IC, Bhattacharya SK, Weber KT. Mitochondria play a central role in nonischemic cardiomyocyte necrosis: common to acute and chronic stressor states. Pflugers Arch. 2012;464:123–31.PubMedPubMedCentralCrossRefGoogle Scholar
  112. Kim B, Takeuchi A, Koga O, Hikida M, Matsuoka S. Mitochondria Na(+)-Ca (2+) exchange in cardiomyocytes and lymphocytes. Adv Exp Med Biol. 2013;961:193–201.PubMedCrossRefPubMedCentralGoogle Scholar
  113. Kim BB, Qaqish C, Frangos J, Caccamese JF Jr. Oculocardiac reflex induced by an orbital floor fracture: report of a case and review of the literature. J Oral Maxillofac Surg. 2012;70:2614–9.PubMedCrossRefPubMedCentralGoogle Scholar
  114. Kim HS, Kim SD, Kim CS, Yum MK. Prediction of the oculocardiac reflex from pre-operative linear and nonlinear heart rate dynamics in children. Anaesthesia. 2000;55:847–52.PubMedCrossRefPubMedCentralGoogle Scholar
  115. Kim Y, Boucher M, Argaez C. Ifunny channel inhibitors: an emerging option for heart failure. Ottawa, ON: CADTH Issues in Emerging Health Technologies; 2016. Canadian Agency for Drugs and Technologies in Health Copyright (c) CADTH 2017. You are permitted to reproduce this document for non-commercial purposes, provided it is not modified when reproduced and appropriate credit is given to CADTH.Google Scholar
  116. Kirchhoff S, Kim JS, Hagendorff A, Thonnissen E, Kruger O, Lamers WH, Willecke K. Abnormal cardiac conduction and morphogenesis in connexin 40 and connexin 43 double-deficient mice. Circ Res. 2000;87:399–405.PubMedCrossRefPubMedCentralGoogle Scholar
  117. Kleber AG, Saffitz JE. Role of the intercalated disc in cardiac propagation and arrhythmogenesis. Front Physiol. 2014;5:404.PubMedPubMedCentralCrossRefGoogle Scholar
  118. Knoll R. Myosin binding protein C: implications for signal-transduction. J Muscle Res Cell Motil. 2012;33:31–42.PubMedCrossRefPubMedCentralGoogle Scholar
  119. Kobayashi T, Jin L, de Tombe PP. Cardiac thin filament regulation. Pflugers Arch. 2008;457:37–46.PubMedPubMedCentralCrossRefGoogle Scholar
  120. Koivumaki JT, Korhonen T, Takalo J, Weckstrom M, Tavi P. Regulation of excitation-contraction coupling in mouse cardiac myocytes: integrative analysis with mathematical modelling. BMC Physiol. 2009;9:16.PubMedPubMedCentralCrossRefGoogle Scholar
  121. Kokkinidis DG, Waldo SW, Armstrong EJ. Treatment of coronary artery in-stent restenosis. Expert Rev Cardiovasc Ther. 2017;15:191–202.PubMedCrossRefPubMedCentralGoogle Scholar
  122. Krishnan S, Fiori MC, Cuello LG, Altenberg GA. A cell-based assay to assess Hemichannel function. Yale J Biol Med. 2017;90:87–95.PubMedPubMedCentralGoogle Scholar
  123. Kruger M, Linke WA. The giant protein titin: a regulatory node that integrates myocyte signaling pathways. J Biol Chem. 2011;286:9905–12.PubMedPubMedCentralCrossRefGoogle Scholar
  124. Kubli DA, Gustafsson AB. Mitochondria and mitophagy: the yin and yang of cell death control. Circ Res. 2012;111:1208–21.PubMedPubMedCentralCrossRefGoogle Scholar
  125. Kuhtz-Buschbeck JP, Schaefer J, Wilder N. Mechanosensitivity: from Aristotle’s sense of touch to cardiac mechano-electric coupling. Prog Biophys Mol Biol. 2017;130(Pt B):126–31.PubMedCrossRefPubMedCentralGoogle Scholar
  126. Kurtenbach S, Kurtenbach S, Zoidl G. Gap junction modulation and its implications for heart function. Front Physiol. 2014;5:82.PubMedPubMedCentralCrossRefGoogle Scholar
  127. Kusakari Y, Urashima T, Shimura D, Amemiya E, Miyasaka G, Yokota S, Fujimoto Y, Akaike T, Inoue T, Minamisawa S. Impairment of excitation-contraction coupling in right ventricular hypertrophied muscle with fibrosis induced by pulmonary artery banding. PLoS One. 2017;12:e0169564.PubMedPubMedCentralCrossRefGoogle Scholar
  128. Kuster DW, Bawazeer AC, Zaremba R, Goebel M, Boontje NM, van der Velden J. Cardiac myosin binding protein C phosphorylation in cardiac disease. J Muscle Res Cell Motil. 2012;33:43–52.PubMedCrossRefPubMedCentralGoogle Scholar
  129. Lang S, Lanigan DT, van der Wal M. Trigeminocardiac reflexes: maxillary and mandibular variants of the oculocardiac reflex. Can J Anaesth. 1991;38:757–60.PubMedCrossRefPubMedCentralGoogle Scholar
  130. LeWinter MM, Wu Y, Labeit S, Granzier H. Cardiac titin: structure, functions and role in disease. Clin Chim Acta. 2007;375:1–9.PubMedCrossRefPubMedCentralGoogle Scholar
  131. Limbu B, Shah K, Weinberg SH, Deo M. Role of cytosolic calcium diffusion in murine cardiac purkinje cells. Clin Med Insights Cardiol. 2016;10:17–26.PubMedPubMedCentralGoogle Scholar
  132. Lindskog C, Linne J, Fagerberg L, Hallstrom BM, Sundberg CJ, Lindholm M, Huss M, Kampf C, Choi H, Liem DA, Ping P, Varemo L, Mardinoglu A, Nielsen J, Larsson E, Ponten F, Uhlen M. The human cardiac and skeletal muscle proteomes defined by transcriptomics and antibody-based profiling. BMC Genomics. 2015;16:475.PubMedPubMedCentralCrossRefGoogle Scholar
  133. Linke WA. Stretching molecular springs: elasticity of titin filaments in vertebrate striated muscle. Histol Histopathol. 2000a;15:799–811.PubMedPubMedCentralGoogle Scholar
  134. Linke WA. Titin elasticity in the context of the sarcomere: force and extensibility measurements on single myofibrils. Adv Exp Med Biol. 2000b;481:179–202; discussion 203-176.PubMedCrossRefPubMedCentralGoogle Scholar
  135. Lluri G, Aboulhosn J. Coronary arterial development: a review of normal and congenitally anomalous patterns. Clin Cardiol. 2014;37:126–30.PubMedCrossRefPubMedCentralGoogle Scholar
  136. Lo CW. Role of gap junctions in cardiac conduction and development: insights from the connexin knockout mice. Circ Res. 2000;87:346–8.PubMedCrossRefPubMedCentralGoogle Scholar
  137. Lodish H, Berk A, Zipursky SL, et al. Section 21.2: the action potential and conduction of electric impulses. In:Molecular cell biology. 4th ed. New York: W. H. Freeman; 2000.Google Scholar
  138. Lomsky M, Johansson L, Gjertsson P, Bjork J, Edenbrandt L. Normal limits for left ventricular ejection fraction and volumes determined by gated single photon emission computed tomography—a comparison between two quantification methods. Clin Physiol Funct Imaging. 2008;28:169–73.PubMedPubMedCentralCrossRefGoogle Scholar
  139. London B. Defining the complexity of the junctional membrane complex. Circ Res. 2017;120:11–2.PubMedPubMedCentralCrossRefGoogle Scholar
  140. Lu X, Ginsburg KS, Kettlewell S, Bossuyt J, Smith GL, Bers DM. Measuring local gradients of intra-mitochondrial [Ca] in cardiac myocytes during SR Ca release. Circ Res. 2012;112(3):424–31.PubMedPubMedCentralCrossRefGoogle Scholar
  141. Mahadevan G, Davis RC, Frenneaux MP, Hobbs FD, Lip GY, Sanderson JE, Davies MK. Left ventricular ejection fraction: are the revised cut-off points for defining systolic dysfunction sufficiently evidence based? Heart. 2008;94:426–8.PubMedCrossRefPubMedCentralGoogle Scholar
  142. Malik FI, Hartman JJ, Elias KA, Morgan BP, Rodriguez H, Brejc K, Anderson RL, Sueoka SH, Lee KH, Finer JT, Sakowicz R, Baliga R, Cox DR, Garard M, Godinez G, Kawas R, Kraynack E, Lenzi D, Lu PP, Muci A, Niu C, Qian X, Pierce DW, Pokrovskii M, Suehiro I, Sylvester S, Tochimoto T, Valdez C, Wang W, Katori T, Kass DA, Shen YT, Vatner SF, Morgans DJ. Cardiac myosin activation: a potential therapeutic approach for systolic heart failure. Science. 2011;331:1439–43.PubMedPubMedCentralCrossRefGoogle Scholar
  143. Malik FI, Morgan BP. Cardiac myosin activation part 1: from concept to clinic. J Mol Cell Cardiol. 2011;51:454–61.PubMedCrossRefPubMedCentralGoogle Scholar
  144. Marcotti W, Johnson SL, Kros CJ. A transiently expressed SK current sustains and modulates action potential activity in immature mouse inner hair cells. J Physiol. 2004;560:691–708.PubMedPubMedCentralCrossRefGoogle Scholar
  145. Marionneau C, Abriel H. Regulation of the cardiac Na channel Na1.5 by post-translational modifications. J Mol Cell Cardiol. 2015;82:36–47.PubMedPubMedCentralCrossRefGoogle Scholar
  146. Markwalder J, Starling EH. On the constancy of the systolic output under varying conditions. J Physiol. 1914;48:348–56.PubMedPubMedCentralCrossRefGoogle Scholar
  147. Marston S, Burton D, Copeland O, Fraser I, Gao Y, Hodgkinson J, Huber P, Levine B, el-Mezgueldi M, Notarianni G. Structural interactions between actin, tropomyosin, caldesmon and calcium binding protein and the regulation of smooth muscle thin filaments. Acta Physiol Scand. 1998;164:401–14.PubMedCrossRefPubMedCentralGoogle Scholar
  148. Marston SB, Redwood CS. Modulation of thin filament activation by breakdown or isoform switching of thin filament proteins: physiological and pathological implications. Circ Res. 2003;93:1170–8.PubMedCrossRefPubMedCentralGoogle Scholar
  149. Mattiazzi A, Bassani RA, Escobar AL, Palomeque J, Valverde CA, Vila Petroff M, Bers DM. Chasing cardiac physiology and pathology down the CaMKII cascade. Am J Phys Heart Circ Phys. 2015;308:H1177–91.Google Scholar
  150. McDonald KS. The interdependence of Ca2+ activation, sarcomere length, and power output in the heart. Pflugers Arch. 2011;462:61–7.PubMedCrossRefPubMedCentralGoogle Scholar
  151. McLachlan AD, Stewart M. Tropomyosin coiled-coil interactions: evidence for an unstaggered structure. J Mol Biol. 1975;98:293–304.PubMedCrossRefPubMedCentralGoogle Scholar
  152. Meyer T, Stuerz K, Guenther E, Edamura M, Kraushaar U. Cardiac slices as a predictive tool for arrhythmogenic potential of drugs and chemicals. Expert Opin Drug Metab Toxicol. 2010;6:1461–75.PubMedCrossRefPubMedCentralGoogle Scholar
  153. Meyrelles SS, Bernardes CF, Modolo RP, Mill JG, Vasquez EC. Bezold-Jarisch reflex in myocardial infarcted rats. J Auton Nerv Syst. 1997;63:144–52.PubMedCrossRefPubMedCentralGoogle Scholar
  154. Michael G, Xiao L, Qi XY, Dobrev D, Nattel S. Remodelling of cardiac repolarization: how homeostatic responses can lead to arrhythmogenesis. Cardiovasc Res. 2009;81:491–9.PubMedCrossRefPubMedCentralGoogle Scholar
  155. Miragoli M, Novak P, Ruenraroengsak P, Shevchuk AI, Korchev YE, Lab MJ, Tetley TD, Gorelik J. Functional interaction between charged nanoparticles and cardiac tissue: a new paradigm for cardiac arrhythmia? Nanomedicine (London). 2012;8(5):725–37.CrossRefGoogle Scholar
  156. Molnar C, Nemes C, Szabo S, Fulesdi B. Harvey cushing, a pioneer of neuroanesthesia. J Anesth. 2008;22:483–6.PubMedCrossRefPubMedCentralGoogle Scholar
  157. Morad M, Tung L. Ionic events responsible for the cardiac resting and action potential. Am J Cardiol. 1982;49:584–94.PubMedCrossRefPubMedCentralGoogle Scholar
  158. Morimoto S, Goto T. Role of troponin I isoform switching in determining the pH sensitivity of Ca(2+) regulation in developing rabbit cardiac muscle. Biochem Biophys Res Commun. 2000;267:912–7.PubMedCrossRefPubMedCentralGoogle Scholar
  159. Nakada T, Flucher BE, Kashihara T, Sheng X, Shibazaki T, Horiuchi-Hirose M, Gomi S, Hirose M, Yamada M. The proximal C-terminus of alpha1C subunits is necessary for junctional membrane targeting of cardiac L-type calcium channels. Biochem J. 2012;448:221–31.PubMedCrossRefPubMedCentralGoogle Scholar
  160. Nakasuka K, Miyamoto K, Noda T, Kamakura T, Wada M, Nakajima I, Ishibashi K, Inoue Y, Okamura H, Nagase S, Aiba T, Kamakura S, Shimizu W, Noguchi T, Anzai T, Yasuda S, Ohte N, Kusano K. “Window Sliding” analysis combined with high-density and rapid electroanatomical mapping: its efficacy and the outcome of catheter ablation of atrial tachycardia. Heart Vessel. 2017;32(8):984–96.CrossRefGoogle Scholar
  161. Neco P, Rose B, Huynh N, Zhang R, Bridge JH, Philipson KD, Goldhaber JI. Sodium-calcium exchange is essential for effective triggering of calcium release in mouse heart. Biophys J. 2010;99:755–64.PubMedPubMedCentralCrossRefGoogle Scholar
  162. Nicholson D, Kossler A, Topping K, Stary CM. Exaggerated oculocardiac reflex elicited by local anesthetic injection of an empty orbit: a case report. A&A Pract. 2017;9(12):337–8.Google Scholar
  163. Offer G, Ranatunga KW. Crossbridge and filament compliance in muscle: implications for tension generation and lever arm swing. J Muscle Res Cell Motil. 2010;31:245–65.PubMedCrossRefPubMedCentralGoogle Scholar
  164. Ohtsuki I, Morimoto S. Troponin: regulatory function and disorders. Biochem Biophys Res Commun. 2008;369:62–73.PubMedCrossRefPubMedCentralGoogle Scholar
  165. Orellana JA, Sanchez HA, Schalper KA, Figueroa V, Saez JC. Regulation of intercellular calcium signaling through calcium interactions with connexin-based channels. Adv Exp Med Biol. 2012;740:777–94.PubMedCrossRefPubMedCentralGoogle Scholar
  166. Ottolia M, Torres N, Bridge JH, Philipson KD, Goldhaber JI. Na/Ca exchange and contraction of the heart. J Mol Cell Cardiol. 2013;61:28–33.PubMedPubMedCentralCrossRefGoogle Scholar
  167. Pan BS, Gordon AM, Luo ZX. Removal of tropomyosin overlap modifies cooperative binding of myosin S-1 to reconstituted thin filaments of rabbit striated muscle. J Biol Chem. 1989;264:8495–8.PubMedPubMedCentralGoogle Scholar
  168. Paniagua R, Royuela M, Garcia-Anchuelo RM, Fraile B. Ultrastructure of invertebrate muscle cell types. Histol Histopathol. 1996;11:181–201.PubMedPubMedCentralGoogle Scholar
  169. Papaioannou VE, Verkerk AO, Amin AS, de Bakker JM. Intracardiac origin of heart rate variability, pacemaker funny current and their possible association with critical illness. Curr Cardiol Rev. 2013;9:82–96.PubMedPubMedCentralGoogle Scholar
  170. Parham WA, Mehdirad AA, Biermann KM, Fredman CS. Hyperkalemia revisited. Tex Heart Inst J. 2006;33:40–7.PubMedPubMedCentralGoogle Scholar
  171. Park KH, Weisleder N, Zhou J, Gumpper K, Zhou X, Duann P, Ma J, Lin PH. Assessment of calcium sparks in intact skeletal muscle fibers. J Vis Exp. 2014;84:e50898.Google Scholar
  172. Paton JF, Boscan P, Pickering AE, Nalivaiko E. The yin and yang of cardiac autonomic control: vago-sympathetic interactions revisited. Brain Res Brain Res Rev. 2005;49:555–65.PubMedCrossRefPubMedCentralGoogle Scholar
  173. Patterson SW, Piper H, Starling EH. The regulation of the heart beat. J Physiol. 1914;48:465–513.PubMedPubMedCentralCrossRefGoogle Scholar
  174. Periasamy M, Bhupathy P, Babu GJ. Regulation of sarcoplasmic reticulum Ca2+ ATPase pump expression and its relevance to cardiac muscle physiology and pathology. Cardiovasc Res. 2008;77:265–73.PubMedCrossRefPubMedCentralGoogle Scholar
  175. Periasamy M, Huke S. SERCA pump level is a critical determinant of Ca(2+)homeostasis and cardiac contractility. J Mol Cell Cardiol. 2001;33:1053–63.PubMedCrossRefPubMedCentralGoogle Scholar
  176. Peters NS. New insights into myocardial arrhythmogenesis: distribution of gap-junctional coupling in normal, ischaemic and hypertrophied human hearts. Clin Sci (Lond). 1996;90:447–52.CrossRefGoogle Scholar
  177. Pilowsky PM, Goodchild AK. Baroreceptor reflex pathways and neurotransmitters: 10 years on. J Hypertens. 2002;20:1675–88.PubMedCrossRefPubMedCentralGoogle Scholar
  178. Pohjoismaki JL, Goffart S. The role of mitochondria in cardiac development and protection. Free Radic Biol Med. 2017;106:345–54.PubMedCrossRefPubMedCentralGoogle Scholar
  179. Porth CJ, Bamrah VS, Tristani FE, Smith JJ. The Valsalva maneuver: mechanisms and clinical implications. Heart Lung. 1984;13:507–18.PubMedPubMedCentralGoogle Scholar
  180. Posch MG, Waldmuller S, Muller M, Scheffold T, Fournier D, Andrade-Navarro MA, De Geeter B, Guillaumont S, Dauphin C, Yousseff D, Schmitt KR, Perrot A, Berger F, Hetzer R, Bouvagnet P, Ozcelik C. Cardiac alpha-myosin (MYH6) is the predominant sarcomeric disease gene for familial atrial septal defects. PLoS One. 2011;6:e28872.PubMedPubMedCentralCrossRefGoogle Scholar
  181. Pott C, Eckardt L, Goldhaber JI. Triple threat: the Na+/Ca2+ exchanger in the pathophysiology of cardiac arrhythmia, ischemia and heart failure. Curr Drug Targets. 2011;12:737–47.PubMedPubMedCentralCrossRefGoogle Scholar
  182. Prosser BL, Hernandez-Ochoa EO, Schneider MF. S100A1 and calmodulin regulation of ryanodine receptor in striated muscle. Cell Calcium. 2011;50:323–31.PubMedPubMedCentralCrossRefGoogle Scholar
  183. Qiu J, Zhou S, Liu Q. Phosphorylated AMP-activated protein kinase slows down the atrial fibrillation progression by activating Connexin43. Int J Cardiol. 2016;208:56–7.PubMedCrossRefPubMedCentralGoogle Scholar
  184. Raut MS, Maheshwari A, Dubey S. Sudden hemodynamic instability during off-pump coronary artery bypass grafting surgery: role of Bezold-Jarisch reflex. J Cardiothorac Vasc Anesth. 2017;31(6):2139–40.PubMedCrossRefPubMedCentralGoogle Scholar
  185. Ravens U, Cerbai E. Role of potassium currents in cardiac arrhythmias. Europace. 2008;10:1133–7.PubMedCrossRefPubMedCentralGoogle Scholar
  186. Redwood CS, Moolman-Smook JC, Watkins H. Properties of mutant contractile proteins that cause hypertrophic cardiomyopathy. Cardiovasc Res. 1999;44:20–36.PubMedCrossRefPubMedCentralGoogle Scholar
  187. Reuter H, Pott C, Goldhaber JI, Henderson SA, Philipson KD, Schwinger RH. Na(+)–Ca2+ exchange in the regulation of cardiac excitation-contraction coupling. Cardiovasc Res. 2005;67:198–207.PubMedCrossRefPubMedCentralGoogle Scholar
  188. Ribaric S, Kordas M. Simulation of the frank-Starling law of the heart. Comput Math Methods Med. 2012;2012:267834.PubMedPubMedCentralCrossRefGoogle Scholar
  189. Rice JJ, Wang F, Bers DM, de Tombe PP. Approximate model of cooperative activation and crossbridge cycling in cardiac muscle using ordinary differential equations. Biophys J. 2008;95:2368–90.PubMedPubMedCentralCrossRefGoogle Scholar
  190. Robbins MS, Robertson CE, Kaplan E, Ailani J, Lt C, Kuruvilla D, Blumenfeld A, Berliner R, Rosen NL, Duarte R, Vidwan J, Halker RB, Gill N, Ashkenazi A. The sphenopalatine ganglion: anatomy, pathophysiology, and therapeutic targeting in headache. Headache. 2016;56:240–58.PubMedCrossRefPubMedCentralGoogle Scholar
  191. Robertson D, Hollister AS, Forman MB, Robertson RM. Reflexes unique to myocardial ischemia and infarction. J Am Coll Cardiol. 1985;5:99B–104B.PubMedCrossRefPubMedCentralGoogle Scholar
  192. Robinson TF, Cohen-Gould L, Factor SM, Eghbali M, Blumenfeld OO. Structure and function of connective tissue in cardiac muscle: collagen types I and III in endomysial struts and pericellular fibers. Scanning Microsc. 1988;2:1005–15.PubMedPubMedCentralGoogle Scholar
  193. Robinson TF, Factor SM, Sonnenblick EH. The heart as a suction pump. Sci Am. 1986;254:84–91.PubMedCrossRefPubMedCentralGoogle Scholar
  194. Rogers JH, Bolling SF. Valve repair for functional tricuspid valve regurgitation: anatomical and surgical considerations. Semin Thorac Cardiovasc Surg. 2010;22:84–9.PubMedCrossRefPubMedCentralGoogle Scholar
  195. Rossi MA, Abreu MA, Santoro LB. Images in cardiovascular medicine. Connective tissue skeleton of the human heart: a demonstration by cell-maceration scanning electron microscope method. Circulation. 1998;97:934–5.PubMedCrossRefPubMedCentralGoogle Scholar
  196. Rozanski A, Nichols K, Yao SS, Malholtra S, Cohen R, DePuey EG. Development and application of normal limits for left ventricular ejection fraction and volume measurements from 99mTc-sestamibi myocardial perfusion gates SPECT. J Nucl Med. 2000;41:1445–50.PubMedPubMedCentralGoogle Scholar
  197. Rudy Y. Modelling the molecular basis of cardiac repolarization. Europace. 2007;9(Suppl 6):vi17–9.PubMedPubMedCentralGoogle Scholar
  198. Rybakova IN, Greaser ML, Moss RL. Myosin binding protein C interaction with actin: characterization and mapping of the binding site. J Biol Chem. 2011;286:2008–16.PubMedCrossRefPubMedCentralGoogle Scholar
  199. Salo LM, Woods RL, Anderson CR, McAllen RM. Nonuniformity in the von Bezold-Jarisch reflex. Am J Phys Regul Integr Comp Phys. 2007;293:R714–20.Google Scholar
  200. Sandow A. Excitation-contraction coupling in muscular response. Yale J Biol Med. 1952;25:176–201.PubMedPubMedCentralGoogle Scholar
  201. Schoenberg M. Equilibrium muscle crossbridge behavior: the interaction of myosin crossbridges with actin. Adv Biophys. 1993;29:55–73.PubMedCrossRefPubMedCentralGoogle Scholar
  202. Schultz HD. Angiotensin and carotid body chemoreception in heart failure. Curr Opin Pharmacol. 2011;11:144–9.PubMedPubMedCentralCrossRefGoogle Scholar
  203. Schultz HD, Del Rio R, Ding Y, Marcus NJ. Role of neurotransmitter gases in the control of the carotid body in heart failure. Respir Physiol Neurobiol. 2012;184:197–203.PubMedPubMedCentralCrossRefGoogle Scholar
  204. Schultz HD, Li YL. Carotid body function in heart failure. Respir Physiol Neurobiol. 2007;157:171–85.PubMedPubMedCentralCrossRefGoogle Scholar
  205. Schultz HD, Marcus NJ. Heart failure and carotid body chemoreception. Adv Exp Med Biol. 2012;758:387–95.PubMedCrossRefPubMedCentralGoogle Scholar
  206. Schultz HD, Sun SY. Chemoreflex function in heart failure. Heart Fail Rev. 2000;5:45–56.PubMedCrossRefPubMedCentralGoogle Scholar
  207. Scoote M, Poole-Wilson PA, Williams AJ. The therapeutic potential of new insights into myocardial excitation-contraction coupling. Heart. 2003;89:371–6.PubMedPubMedCentralCrossRefGoogle Scholar
  208. Scoote M, Williams AJ. Myocardial calcium signalling and arrhythmia pathogenesis. Biochem Biophys Res Commun. 2004;322:1286–309.PubMedCrossRefPubMedCentralGoogle Scholar
  209. Scriven DR, Moore ED. Ca(2+) channel and Na(+)/Ca(2+) exchange localization in cardiac myocytes. J Mol Cell Cardiol. 2012;58:22–31.PubMedCrossRefPubMedCentralGoogle Scholar
  210. Sequeira V, van der Velden J. The frank-Starling law: a jigsaw of titin proportions. Biophys Rev. 2017;9:259–67.PubMedPubMedCentralCrossRefGoogle Scholar
  211. Seshubabu G. The oculocardiac reflex in cataract surgery in the elderly. Br J Ophthalmol. 1998;82:589.PubMedPubMedCentralCrossRefGoogle Scholar
  212. Severs NJ. Intercellular junctions and the cardiac intercalated disk. Adv Myocardiol. 1985;5:223–42.PubMedCrossRefPubMedCentralGoogle Scholar
  213. Sharir T, Kang X, Germano G, Bax JJ, Shaw LJ, Gransar H, Cohen I, Hayes SW, Friedman JD, Berman DS. Prognostic value of poststress left ventricular volume and ejection fraction by gated myocardial perfusion SPECT in women and men: gender-related differences in normal limits and outcomes. J Nucl Cardiol. 2006;13:495–506.PubMedCrossRefPubMedCentralGoogle Scholar
  214. Sharpey-Schafer EP. Effects of Valsalva’s manoeuvre on the normal and failing circulation. Br Med J. 1955;1:693–5.PubMedPubMedCentralCrossRefGoogle Scholar
  215. Shattock MJ, Ottolia M, Bers DM, Blaustein MP, Boguslavskyi A, Bossuyt J, Bridge JH, Chen-Izu Y, Clancy CE, Edwards A, Goldhaber J, Kaplan J, Lingrel JB, Pavlovic D, Philipson K, Sipido KR, Xie ZJ. Na+/Ca2+ exchange and Na+/K+-ATPase in the heart. J Physiol. 2015;593:1361–82.PubMedPubMedCentralCrossRefGoogle Scholar
  216. Shaw RM, Rudy Y. Cardiac muscle is not a uniform syncytium. Biophys J. 2010;98:3102–3; discussion 3104–3105.PubMedPubMedCentralCrossRefGoogle Scholar
  217. Shih HT. Anatomy of the action potential in the heart. Tex Heart Inst J. 1994;21:30–41.PubMedPubMedCentralGoogle Scholar
  218. Shy D, Gillet L, Abriel H. Cardiac sodium channel Na(V)1.5 distribution in myocytes via interacting proteins: the multiple pool model. Biochim Biophys Acta. 2013;1833(4):886–94.PubMedCrossRefPubMedCentralGoogle Scholar
  219. Silbiger JJ. Anatomy, mechanics, and pathophysiology of the mitral annulus. Am Heart J. 2012;164:163–76.PubMedCrossRefPubMedCentralGoogle Scholar
  220. Silbiger JJ, Bazaz R. Contemporary insights into the functional anatomy of the mitral valve. Am Heart J. 2009;158:887–95.PubMedCrossRefPubMedCentralGoogle Scholar
  221. Silver MD, Lam JH, Ranganathan N, Wigle ED. Morphology of the human tricuspid valve. Circulation. 1971;43:333–48.PubMedCrossRefPubMedCentralGoogle Scholar
  222. Simon JW. Complications of strabismus surgery. Curr Opin Ophthalmol. 2010;21:361–6.PubMedCrossRefPubMedCentralGoogle Scholar
  223. Sipido KR, Acsai K, Antoons G, Bito V, Macquaide N. T-tubule remodelling and ryanodine receptor organization modulate sodium-calcium exchange. Adv Exp Med Biol. 2013;961:375–83.PubMedCrossRefPubMedCentralGoogle Scholar
  224. Smith G. Management of supraventricular tachycardia using the Valsalva manoeuvre: a historical review and summary of published evidence. Eur J Emerg Med. 2012;19:346–52.PubMedCrossRefPubMedCentralGoogle Scholar
  225. Smith RB. Death and the oculocardiac reflex. Can J Anaesth. 1994;41:760.PubMedCrossRefPubMedCentralGoogle Scholar
  226. Snyders DJ. Structure and function of cardiac potassium channels. Cardiovasc Res. 1999;42:377–90.PubMedCrossRefPubMedCentralGoogle Scholar
  227. Solaro RJ. Mechanisms of the frank-Starling law of the heart: the beat goes on. Biophys J. 2007;93:4095–6.PubMedPubMedCentralCrossRefGoogle Scholar
  228. Solaro RJ, Henze M, Kobayashi T. Integration of troponin I phosphorylation with cardiac regulatory networks. Circ Res. 2013;112:355–66.PubMedPubMedCentralCrossRefGoogle Scholar
  229. Spicer DE, Henderson DJ, Chaudhry B, Mohun TJ, Anderson RH. The anatomy and development of normal and abnormal coronary arteries. Cardiol Young. 2015;25:1493–503.PubMedCrossRefPubMedCentralGoogle Scholar
  230. Strege P, Beyder A, Bernard C, Crespo-Diaz R, Behfar A, Terzic A, Ackerman M, Farrugia G. Ranolazine inhibits shear sensitivity of endogenous Na (+) current and spontaneous action potentials in HL-1 cells. Channels. 2012;6(6):457–62.PubMedPubMedCentralCrossRefGoogle Scholar
  231. Stroemlund LW, Jensen CF, Qvortrup K, Delmar M, Nielsen MS. Gap junctions—guards of excitability. Biochem Soc Trans. 2015;43:508–12.PubMedCrossRefPubMedCentralGoogle Scholar
  232. Sun T, Dong YH, Du W, Shi CY, Wang K, Tariq MA, Wang JX, Li PF. The role of MicroRNAs in myocardial infarction: from molecular mechanism to clinical application. Int J Mol Sci. 2017;18(4):E745.PubMedCrossRefPubMedCentralGoogle Scholar
  233. Swaminathan PD, Purohit A, Hund TJ, Anderson ME. Calmodulin-dependent protein kinase II: linking heart failure and arrhythmias. Circ Res. 2012;110:1661–77.PubMedPubMedCentralCrossRefGoogle Scholar
  234. Szigligeti P, Pankucsi C, Banyasz T, Varro A, Nanasi PP. Action potential duration and force-frequency relationship in isolated rabbit, guinea pig and rat cardiac muscle. J Comp Physiol B. 1996;166:150–5.PubMedCrossRefPubMedCentralGoogle Scholar
  235. Tanaka H, Matsuyama TA, Takamatsu T. Towards an integrated understanding of cardiac arrhythmogenesis–growing roles of experimental pathology. Pathol Int. 2017;67:8–16.PubMedCrossRefPubMedCentralGoogle Scholar
  236. Tanaka Y, Nakamura K, Kuroiwa N, Odachi M, Mawatari K, Onimaru M, Sanada J, Arima T. Isovolumetric relaxation flow in patients with ischemic heart disease. J Am Coll Cardiol. 1993;21:1357–64.PubMedCrossRefPubMedCentralGoogle Scholar
  237. Tang W, Sencer S, Hamilton SL. Calmodulin modulation of proteins involved in excitation-contraction coupling. Front Biosci. 2002;7:d1583–9.PubMedCrossRefPubMedCentralGoogle Scholar
  238. Tardiff JC. Thin filament mutations: developing an integrative approach to a complex disorder. Circ Res. 2011;108:765–82.PubMedPubMedCentralCrossRefGoogle Scholar
  239. Tavi P, Westerblad H. The role of in vivo Ca(2)(+) signals acting on Ca(2)(+)-calmodulin-dependent proteins for skeletal muscle plasticity. J Physiol. 2011;589:5021–31.PubMedPubMedCentralCrossRefGoogle Scholar
  240. Teerlink JR. A novel approach to improve cardiac performance: cardiac myosin activators. Heart Fail Rev. 2009;14:289–98.PubMedPubMedCentralCrossRefGoogle Scholar
  241. ter Keurs HE. The interaction of Ca2+ with sarcomeric proteins: role in function and dysfunction of the heart. Am J Phys Heart Circ Phys. 2012;302:H38–50.Google Scholar
  242. Thierfelder L, Watkins H, MacRae C, Lamas R, McKenna W, Vosberg HP, Seidman JG, Seidman CE. Alpha-tropomyosin and cardiac troponin T mutations cause familial hypertrophic cardiomyopathy: a disease of the sarcomere. Cell. 1994;77:701–12.PubMedCrossRefPubMedCentralGoogle Scholar
  243. Tops LF, van der Wall EE, Schalij MJ, Bax JJ. Multi-modality imaging to assess left atrial size, anatomy and function. Heart. 2007;93:1461–70.PubMedPubMedCentralCrossRefGoogle Scholar
  244. Torres-Jacome J, Gallego M, Rodriguez-Robledo JM, Sanchez-Chapula JA, Casis O. Improvement of the metabolic status recovers cardiac potassium channel synthesis in experimental diabetes. Acta Physiol. 2013;207(3):447–59.CrossRefGoogle Scholar
  245. Tsai JC, Heitz JW. Oculocardiac reflex elicited during debridement of an empty orbit. J Clin Anesth. 2012;24:426–7.PubMedCrossRefPubMedCentralGoogle Scholar
  246. Tuomainen T, Tavi P. The role of cardiac energy metabolism in cardiac hypertrophy and failure. Exp Cell Res. 2017;360(1):12–8.PubMedCrossRefPubMedCentralGoogle Scholar
  247. Vahebi S, Ota A, Li M, Warren CM, de Tombe PP, Wang Y, Solaro RJ. p38-MAPK induced dephosphorylation of alpha-tropomyosin is associated with depression of myocardial sarcomeric tension and ATPase activity. Circ Res. 2007;100:408–15.PubMedCrossRefPubMedCentralGoogle Scholar
  248. Van Petegem F. Ryanodine receptors: structure and function. J Biol Chem. 2012;287:31624–32.PubMedPubMedCentralCrossRefGoogle Scholar
  249. Vangheluwe P, Sipido KR, Raeymaekers L, Wuytack F. New perspectives on the role of SERCA2’s Ca2+ affinity in cardiac function. Biochim Biophys Acta. 2006;1763:1216–28.PubMedCrossRefPubMedCentralGoogle Scholar
  250. Vasquez EC, Meyrelles SS, Mauad H, Cabral AM. Neural reflex regulation of arterial pressure in pathophysiological conditions: interplay among the baroreflex, the cardiopulmonary reflexes and the chemoreflex. Braz J Med Biol Res. 1997;30:521–32.PubMedCrossRefPubMedCentralGoogle Scholar
  251. Vatner SF, Zimpfer M. Bainbridge reflex in conscious, unrestrained, and tranquilized baboons. Am J Phys. 1981;240:H164–7.Google Scholar
  252. Vermij SH, Abriel H, van Veen TA. Refining the molecular organization of the cardiac intercalated disc. Cardiovasc Res. 2017;113(3):259–75.PubMedCrossRefPubMedCentralGoogle Scholar
  253. Villa AD, Sammut E, Nair A, Rajani R, Bonamini R, Chiribiri A. Coronary artery anomalies overview: the normal and the abnormal. World J Radiol. 2016;8:537–55.PubMedPubMedCentralCrossRefGoogle Scholar
  254. Wan WH, Ang BT, Wang E. The cushing response: a case for a review of its role as a physiological reflex. J Clin Neurosci. 2008;15:223–8.PubMedCrossRefPubMedCentralGoogle Scholar
  255. Wang Q, Lin JL, Wu KH, Wang DZ, Reiter RS, Sinn HW, Lin CI, Lin CJ. Xin proteins and intercalated disc maturation, signaling and diseases. Front Biosci. 2012;17:2566–93.CrossRefPubMedCentralGoogle Scholar
  256. Wang Z, Yuan LJ, Cao TS, Yang Y, Duan YY, Xing CY. Simultaneous beat-by-beat investigation of the effects of the Valsalva maneuver on left and right ventricular filling and the possible mechanism. PLoS One. 2013;8:e53917.PubMedPubMedCentralCrossRefGoogle Scholar
  257. Watson CJ, Phelan D, Xu M, Collier P, Neary R, Smolenski A, Ledwidge M, McDonald K, Baugh J. Mechanical stretch up-regulates the B-type natriuretic peptide system in human cardiac fibroblasts: a possible defense against transforming growth factor-beta mediated fibrosis. Fibrogenesis Tissue Repair. 2012;5:9.PubMedPubMedCentralCrossRefGoogle Scholar
  258. Weisbrod D, Peretz A, Ziskind A, Menaker N, Oz S, Barad L, Eliyahu S, Itskovitz-Eldor J, Dascal N, Khananshvili D, Binah O, Attali B. SK4 Ca2+ activated K+ channel is a critical player in cardiac pacemaker derived from human embryonic stem cells. Proc Natl Acad Sci U S A. 2013;110:E1685–94.PubMedPubMedCentralCrossRefGoogle Scholar
  259. White SP, Cohen C, Phillips GN Jr. Structure of co-crystals of tropomyosin and troponin. Nature. 1987;325:826–8.PubMedCrossRefPubMedCentralGoogle Scholar
  260. Wick M. Filament assembly properties of the sarcomeric myosin heavy chain. Poult Sci. 1999;78:735–42.PubMedCrossRefPubMedCentralGoogle Scholar
  261. Williams GS, Smith GD, Sobie EA, Jafri MS. Models of cardiac excitation-contraction coupling in ventricular myocytes. Math Biosci. 2010;226:1–15.PubMedPubMedCentralCrossRefGoogle Scholar
  262. Wolf CM, Berul CI. Molecular mechanisms of inherited arrhythmias. Curr Genomics. 2008;9:160–8.PubMedPubMedCentralCrossRefGoogle Scholar
  263. Workman AJ, Smith GL, Rankin AC. Mechanisms of termination and prevention of atrial fibrillation by drug therapy. Pharmacol Ther. 2011;131:221–41.PubMedPubMedCentralCrossRefGoogle Scholar
  264. Yang D, Song LS, Zhu WZ, Chakir K, Wang W, Wu C, Wang Y, Xiao RP, Chen SR, Cheng H. Calmodulin regulation of excitation-contraction coupling in cardiac myocytes. Circ Res. 2003;92:659–67.PubMedCrossRefPubMedCentralGoogle Scholar
  265. Yester JW, Kuhn B. Mechanisms of cardiomyocyte proliferation and differentiation in development and regeneration. Curr Cardiol Rep. 2017;19:13.PubMedPubMedCentralCrossRefGoogle Scholar
  266. Yi C, Jee D. Influence of the anaesthetic depth on the inhibition of the oculocardiac reflex during sevoflurane anaesthesia for paediatric strabismus surgery. Br J Anaesth. 2008;101:234–8.PubMedCrossRefPubMedCentralGoogle Scholar
  267. Yi Y, Jin ZY, Wang YN. Advances in myocardial CT perfusion imaging technology. Am J Transl Res. 2016;8:4523–31.PubMedPubMedCentralGoogle Scholar
  268. Young ML, McLeary M, Chan KC. Acquired and congenital coronary artery abnormalities. Cardiol Young. 2017;27:S31–s35.PubMedCrossRefPubMedCentralGoogle Scholar
  269. Yuniarti AR, Lim KM. The effect of electrical conductivity of myocardium on cardiac pumping efficacy: a computational study. Biomed Eng Online. 2017;16:11.PubMedPubMedCentralCrossRefGoogle Scholar
  270. Zack F, Rodewald AK, Blaas V, Buttner A. Histologic spectrum of the cardiac conducting tissue in non-natural deaths under 30 years of age: an analysis of 43 cases with special implications for sudden cardiac death. Int J Legal Med. 2016;130:173–8.PubMedCrossRefPubMedCentralGoogle Scholar
  271. Zhang YH, Hancox JC. Regulation of cardiac Na+–Ca2+ exchanger activity by protein kinase phosphorylation—still a paradox? Cell Calcium. 2009;45:1–10.PubMedCrossRefPubMedCentralGoogle Scholar
  272. Zhao CY, Greenstein JL, Winslow RL. Mechanisms of the cyclic nucleotide cross-talk signaling network in cardiac L-type calcium channel regulation. J Mol Cell Cardiol. 2017;106:29–44.PubMedPubMedCentralCrossRefGoogle Scholar
  273. Zhou K, Hong T. Cardiac BIN1 (cBIN1) is a regulator of cardiac contractile function and an emerging biomarker of heart muscle health. Sci China Life Sci. 2017;60:257–63.PubMedCrossRefPubMedCentralGoogle Scholar
  274. Zhou L, O’Rourke B. Cardiac mitochondrial network excitability: insights from computational analysis. Am J Phys Heart Circ Phys. 2012;302:H2178–89.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Cardiac Anesthesiology Department, Anesthesiology Research Center, Faculty of MedicineShahid Beheshti University of Medical SciencesTehranIran
  2. 2.Department of Physiology, School of MedicineTehran University of Medical SciencesTehranIran
  3. 3.Department of Immunology, School of MedicineTehran University of Medical SciencesTehranIran

Personalised recommendations