Anticancer Potential of Dietary Polyphenols



Numerous compounds found in dietary sources have been correlated to decreased cancer incidence, a statement endorsed by the National Cancer Institute and the American Institute for Cancer Research. These include but are in no way limited to: red wine, ginger, cauliflower, brussel sprouts, turmeric, onion, cabbage, soy bean, green tea, tomato, and potato [1–8]. Of these some of the most well-studied and promising dietary compounds are the polyphenols. Natural polyphenols are as diverse in number as the plant sources which create them. These plant-derived phenolic compounds have been used for centuries both spiritually and medicinally in their whole or extracted form [9]. Medicinal herb use has been limited in modern western medicine in the last century despite anecdotal and historical evidence of efficacy [10–13]. The reluctance to use herbal medicine in modern western medicine stems from concerns over purity to lack of evidence in mechanisms of action. Lack of correlation between in vitro and in vivo studies also cause skepticism [10, 14]. However as modern trends sometimes favor “natural” medicine and the cost of healthcare and pharmaceutics increases, the popularity of herbal medicine has blossomed. Our decade-long knowledge of the human genome compounded by an increased appreciation for epigenetics has sparked interest in the research world. Numerous studies have shown the benefits of healthy lifestyle and nutritious foods in cancer prevention and stimulated a whole new level of research targets. Studies have linked the impact on human health to the individual’s ability to absorb and metabolize polyphenols; thus an understanding of the structure, classification, and bioavailability of polyphenols is essential to understanding the potential of polyphenols to exhibit anticancer activity [15].


  1. 1.
    Levine M, et al. Criteria and recommendations for vitamin C intake. JAMA. 1999;281(15):1415–23.PubMedCrossRefGoogle Scholar
  2. 2.
    Levi F. Cancer prevention: epidemiology and perspectives. Eur J Cancer. 1999;35(7):1046–58.PubMedCrossRefGoogle Scholar
  3. 3.
    Lee KW, Lee HJ. The roles of polyphenols in cancer chemoprevention. Biofactors. 2006;26(2):105–21.PubMedCrossRefGoogle Scholar
  4. 4.
    Knekt P, et al. Flavonoid intake and risk of chronic diseases. Am J Clin Nutr. 2002;76(3):560–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Knekt P, et al. Dietary flavonoids and the risk of lung cancer and other malignant neoplasms. Am J Epidemiol. 1997;146(3):223–30.PubMedCrossRefGoogle Scholar
  6. 6.
    Garcia-Closas R, et al. Intake of specific carotenoids and flavonoids and the risk of gastric cancer in Spain. Cancer Causes Control. 1999;10(1):71–5.PubMedCrossRefGoogle Scholar
  7. 7.
    Cao G, et al. Serum antioxidant capacity is increased by consumption of strawberries, spinach, red wine or vitamin C in elderly women. J Nutr. 1998;128(12):2383–90.PubMedCrossRefGoogle Scholar
  8. 8.
    Surh Y-J. Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer. 2003;3(10):768–80.PubMedCrossRefGoogle Scholar
  9. 9.
    Quideau S, et al. Plant polyphenols: chemical properties, biological activities, and synthesis. Angew Chem Int Ed. 2011;50(3):586–621.CrossRefGoogle Scholar
  10. 10.
    Asensi M, et al. Natural polyphenols in cancer therapy. Crit Rev Clin Lab Sci. 2011;48(5–6):197–216.PubMedCrossRefGoogle Scholar
  11. 11.
    Dai J, Mumper RJ. Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules. 2010;15(10):7313.PubMedCrossRefGoogle Scholar
  12. 12.
    Sies H. Polyphenols and health: update and perspectives. Arch Biochem Biophys. 2010;501(1):2–5.PubMedCrossRefGoogle Scholar
  13. 13.
    Bravo L. Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev. 1998;56(11):317–33.PubMedCrossRefGoogle Scholar
  14. 14.
    Scalbert A, et al. Dietary polyphenols and the prevention of diseases. Crit Rev Food Sci Nutr. 2005;45(4):287–306.PubMedCrossRefGoogle Scholar
  15. 15.
    Scalbert A, et al. Absorption and metabolism of polyphenols in the gut and impact on health. Biomed Pharmacother. 2002;56(6):276–82.PubMedCrossRefGoogle Scholar
  16. 16.
    Manach C, et al. Polyphenols: food sources and bioavailability. Am J Clin Nutr. 2004;79(5):727–47.PubMedCrossRefGoogle Scholar
  17. 17.
    Tsao R. Chemistry and biochemistry of dietary polyphenols. Forum Nutr. 2010;2(12):1231.Google Scholar
  18. 18.
    Kroon PA, et al. How should we assess the effects of exposure to dietary polyphenols in vitro? Am J Clin Nutr. 2004;80(1):15–21.PubMedCrossRefGoogle Scholar
  19. 19.
    Landis-Piwowar KR, et al. Methylation suppresses the proteasome-inhibitory function of green tea polyphenols. J Cell Physiol. 2007;213(1):252–60.PubMedCrossRefGoogle Scholar
  20. 20.
    Tapiero H, et al. Polyphenols: do they play a role in the prevention of human pathologies? Biomed Pharmacother. 2002;56(4):200–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Dugas AJ, et al. Evaluation of the total peroxyl radical-scavenging capacity of flavonoids: structure−activity relationships. J Nat Prod. 2000;63(3):327–31.PubMedCrossRefGoogle Scholar
  22. 22.
    Heim KE, Tagliaferro AR, Bobilya DJ. Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J Nutr Biochem. 2002;13(10):572–84.PubMedCrossRefGoogle Scholar
  23. 23.
    Shin SY, et al. Polyphenols bearing cinnamaldehyde scaffold showing cell growth inhibitory effects on the cisplatin-resistant A2780/Cis ovarian cancer cells. Bioorg Med Chem. 2014;22(6):1809–20.PubMedCrossRefGoogle Scholar
  24. 24.
    Dominique D, Jianbo X. EDITORIAL (hot topic: natural polyphenols properties: chemopreventive and chemosensitizing activities). Anti Cancer Agents Med Chem. 2012;12(8):835.CrossRefGoogle Scholar
  25. 25.
    Lee SH, Oe T, Blair IA. Vitamin C-induced decomposition of lipid hydroperoxides to endogenous genotoxins. Science. 2001;292(5524):2083–6.PubMedCrossRefGoogle Scholar
  26. 26.
    Lee KW, et al. Vitamin C and cancer chemoprevention: reappraisal. Am J Clin Nutr. 2003;78(6):1074–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Kevers C, et al. Influence of cultivar, harvest time, storage conditions, and peeling on the antioxidant capacity and phenolic and ascorbic acid contents of apples and pears. J Agric Food Chem. 2011;59(11):6165–71.PubMedCrossRefGoogle Scholar
  28. 28.
    Wang SY, Zheng W. Effect of plant growth temperature on antioxidant capacity in strawberry. J Agric Food Chem. 2001;49(10):4977–82.PubMedCrossRefGoogle Scholar
  29. 29.
    Chandra S, et al. Assessment of total phenolic and flavonoid content, antioxidant properties, and yield of aeroponically and conventionally grown leafy vegetables and fruit crops: a comparative study. Evid Based Complement Alternat Med. 2014;2014:9.CrossRefGoogle Scholar
  30. 30.
    Winardiantika V, et al. Effects of cultivar and harvest time on the contents of antioxidant phytochemicals in strawberry fruits. Hortic Environ Biotechnol. 2015;56(6):732–9.CrossRefGoogle Scholar
  31. 31.
    Cogo SLP, et al. Low soil water content during growth contributes to preservation of green colour and bioactive compounds of cold-stored broccoli (Brassica oleraceae L.) florets. Postharvest Biol Technol. 2011;60(2):158–63.CrossRefGoogle Scholar
  32. 32.
    Xiao J, Muzashvili TS, Georgiev MI. Advances in the biotechnological glycosylation of valuable flavonoids. Biotechnol Adv. 2014;32(6):1145–56.PubMedCrossRefGoogle Scholar
  33. 33.
    Kozlowska A, Szostak-Wegierek D. Flavonoids—food sources and health benefits. Rocz Panstw Zakl Hig. 2014;65(2):79–85.PubMedGoogle Scholar
  34. 34.
    de Pascual-Teresa S, Moreno DA, García-Viguera C. Flavanols and anthocyanins in cardiovascular health: a review of current evidence. Int J Mol Sci. 2010;11(4):1679–703.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    van Duynhoven J, et al. Metabolic fate of polyphenols in the human superorganism. Proc Natl Acad Sci. 2011;108(Suppl 1):4531–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Turnbaugh PJ, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457(7228):480.PubMedCrossRefGoogle Scholar
  37. 37.
    Cermak R, et al. In vitro degradation of the flavonol quercetin and of quercetin glycosides in the porcine hindgut. Arch Anim Nutr. 2006;60(2):180–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Zoetendal EG, Vaughan EE, De Vos WM. A microbial world within us. Mol Microbiol. 2006;59(6):1639–50.PubMedCrossRefGoogle Scholar
  39. 39.
    Blaut M, Clavel T. Metabolic diversity of the intestinal microbiota: implications for health and disease. J Nutr. 2007;137(3):751S–5S.PubMedCrossRefGoogle Scholar
  40. 40.
    Simons AL, et al. Human gut microbial degradation of flavonoids: structure−function relationships. J Agric Food Chem. 2005;53(10):4258–63.PubMedCrossRefGoogle Scholar
  41. 41.
    Erlund I. Review of the flavonoids quercetin, hesperetin, and naringenin. Dietary sources, bioactivities, bioavailability, and epidemiology. Nutr Res. 2004;24(10):851–74.CrossRefGoogle Scholar
  42. 42.
    Roowi S, et al. Yoghurt impacts on the excretion of phenolic acids derived from colonic breakdown of orange juice flavanones in humans. Mol Nutr Food Res. 2009;53(S1):S68–75.PubMedCrossRefGoogle Scholar
  43. 43.
    van Velzen EJ, et al. Phenotyping tea consumers by nutrikinetic analysis of polyphenolic end-metabolites. J Proteome Res. 2009;8(7):3317–30.PubMedCrossRefGoogle Scholar
  44. 44.
    van Dorsten FA, et al. The metabolic fate of red wine and grape juice polyphenols in humans assessed by metabolomics. Mol Nutr Food Res. 2010;54(7):897–908.PubMedCrossRefGoogle Scholar
  45. 45.
    Winnike JH, et al. Effects of a prolonged standardized diet on normalizing the human metabolome. Am J Clin Nutr. 2009;90(6):1496–501.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Seyfried T. Cancer as a mitochondrial metabolic disease. Front Cell Dev Biol. 2015;3:43.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Seyfried TN, Shelton LM. Cancer as a metabolic disease. Nutr Metab. 2010;7(1):7.CrossRefGoogle Scholar
  48. 48.
    Denkert C, et al. Metabolite profiling of human colon carcinoma—deregulation of TCA cycle and amino acid turnover. Mol Cancer. 2008;7(1):72.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Denkert C, et al. Mass spectrometry–based metabolic profiling reveals different metabolite patterns in invasive ovarian carcinomas and ovarian borderline tumors. Cancer Res. 2006;66(22):10795–804.PubMedCrossRefGoogle Scholar
  50. 50.
    Struck-Lewicka W, et al. Urine metabolic fingerprinting using LC–MS and GC–MS reveals metabolite changes in prostate cancer: a pilot study. J Pharm Biomed Anal. 2015;111:351–61.PubMedCrossRefGoogle Scholar
  51. 51.
    Slupsky CM, et al. Urine metabolite analysis offers potential early diagnosis of ovarian and breast cancers. Clin Cancer Res. 2010;16:5835.PubMedCrossRefGoogle Scholar
  52. 52.
    Dang L, et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature. 2009;462(7274):739.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Xie G, et al. Metabolic fate of tea polyphenols in humans. J Proteome Res. 2012;11(6):3449–57.PubMedCrossRefGoogle Scholar
  54. 54.
    Van Dorsten FA, et al. Metabonomics approach to determine metabolic differences between green tea and black tea consumption. J Agric Food Chem. 2006;54(18):6929–38.PubMedCrossRefGoogle Scholar
  55. 55.
    Locasale JW, Cantley LC. Altered metabolism in cancer. BMC Biol. 2010;8(1):88.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Zhang Y, Yang J-M. Altered energy metabolism in cancer: a unique opportunity for therapeutic intervention. Cancer Biol Ther. 2013;14(2):81–9.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Cao X, et al. Glucose uptake inhibitor sensitizes cancer cells to daunorubicin and overcomes drug resistance in hypoxia. Cancer Chemother Pharmacol. 2007;59(4):495–505.PubMedCrossRefGoogle Scholar
  58. 58.
    Riccio A, et al. Glucose and lipid metabolism in non-insulin-dependent diabetes. Effect of metformin. Diabetes Metab. 1991;17(1 Pt 2):180–4.Google Scholar
  59. 59.
    Wolvetang EJ, et al. Mitochondrial respiratory chain inhibitors induce apoptosis. FEBS Lett. 1994;339(1–2):40–4.PubMedCrossRefGoogle Scholar
  60. 60.
    Baur JA, Sinclair DA. Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov. 2006;5(6):493–506.PubMedCrossRefGoogle Scholar
  61. 61.
    Zhou Q, Bennett LL, Zhou S. Multifaceted ability of naturally occurring polyphenols against metastatic cancer. Clin Exp Pharmacol Physiol. 2016;43(4):394–409.PubMedCrossRefGoogle Scholar
  62. 62.
    Arts IC, Hollman PC. Polyphenols and disease risk in epidemiologic studies. Am J Clin Nutr. 2005;81(1):317S–25S.PubMedCrossRefGoogle Scholar
  63. 63.
    Yang CS, Wang Z-Y. Tea and cancer. J Natl Cancer Inst. 1993;85(13):1038–49.PubMedCrossRefGoogle Scholar
  64. 64.
    Liu RH. Potential synergy of phytochemicals in cancer prevention: mechanism of action. J Nutr. 2004;134(12):3479S–85S.PubMedCrossRefGoogle Scholar
  65. 65.
    Nimptsch K, et al. Habitual intake of flavonoid subclasses and risk of colorectal cancer in 2 large prospective cohorts. Am J Clin Nutr. 2016;103(1):184–91.PubMedCrossRefGoogle Scholar
  66. 66.
    Liu RH. Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals. Am J Clin Nutr. 2003;78(3):517S–20S.PubMedCrossRefGoogle Scholar
  67. 67.
    Yang CS, et al. Cancer prevention by tea: animal studies, molecular mechanisms and human relevance. Nat Rev Cancer. 2009;9(6):429–39.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Adhami VM, et al. Dietary flavonoid fisetin: a novel dual inhibitor of PI3K/Akt and mTOR for prostate cancer management. Biochem Pharmacol. 2012;84(10):1277–81.PubMedCrossRefGoogle Scholar
  69. 69.
    de Kok TM, van Breda SG, Manson MM. Mechanisms of combined action of different chemopreventive dietary compounds: a review. Eur J Nutr. 2008;47(Suppl 2):51–9.PubMedCrossRefGoogle Scholar
  70. 70.
    de Oliveira MR, et al. Resveratrol and the mitochondria: from triggering the intrinsic apoptotic pathway to inducing mitochondrial biogenesis, a mechanistic view. Biochim Biophys Acta. 2016;1860(4):727–45.PubMedCrossRefGoogle Scholar
  71. 71.
    Ferguson LR, Philpott M. Cancer prevention by dietary bioactive components that target the immune response. Curr Cancer Drug Targets. 2007;7(5):459–64.PubMedCrossRefGoogle Scholar
  72. 72.
    He Z, et al. Selecting bioactive phenolic compounds as potential agents to inhibit proliferation and VEGF expression in human ovarian cancer cells. Oncol Lett. 2015;9(3):1444–50.PubMedCrossRefGoogle Scholar
  73. 73.
    Keijer J, et al. Bioactive food components, cancer cell growth limitation and reversal of glycolytic metabolism. Biochim Biophys Acta. 2011;1807(6):697–706.PubMedCrossRefGoogle Scholar
  74. 74.
    Malavolta M, et al. Modulators of cellular senescence: mechanisms, promises, and challenges from in vitro studies with dietary bioactive compounds. Nutr Res. 2014;34(12):1017–35.PubMedCrossRefGoogle Scholar
  75. 75.
    Mileo AM, Miccadei S. Polyphenols as modulator of oxidative stress in cancer disease: new therapeutic strategies. Oxidative Med Cell Longev. 2016;2016:6475624.CrossRefGoogle Scholar
  76. 76.
    Nichenametla SN, et al. A review of the effects and mechanisms of polyphenolics in cancer. Crit Rev Food Sci Nutr. 2006;46(2):161–83.PubMedCrossRefGoogle Scholar
  77. 77.
    Roy P, et al. Tea polyphenols inhibit cyclooxygenase-2 expression and block activation of nuclear factor-kappa B and Akt in diethylnitrosoamine induced lung tumors in Swiss mice. Investig New Drugs. 2010;28(4):466–71.CrossRefGoogle Scholar
  78. 78.
    Thomas E, et al. A novel resveratrol based tubulin inhibitor induces mitotic arrest and activates apoptosis in cancer cells. Sci Rep. 2016;6:34653.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Weinstein IB, Joe A. Oncogene addiction. Cancer Res. 2008;68(9):3077–80.PubMedCrossRefGoogle Scholar
  80. 80.
    Terao J. Dietary flavonoids as antioxidants. Forum Nutr. 2009;61:87–94.PubMedCrossRefGoogle Scholar
  81. 81.
    Afrin S, et al. Chemopreventive and therapeutic effects of edible berries: a focus on colon cancer prevention and treatment. Molecules. 2016;21(2):1–40.CrossRefGoogle Scholar
  82. 82.
    Brückner M, et al. Green tea polyphenol epigallocatechin-3-gallate shows therapeutic antioxidative effects in a murine model of colitis. J Crohn's Colitis. 2012;6(2):226–35.CrossRefGoogle Scholar
  83. 83.
    Gresele P, et al. Resveratrol, at concentrations attainable with moderate wine consumption, stimulates human platelet nitric oxide production. J Nutr. 2008;138(9):1602–8.PubMedCrossRefGoogle Scholar
  84. 84.
    Karlsen A, et al. Bilberry juice modulates plasma concentration of NF-κB related inflammatory markers in subjects at increased risk of CVD. Eur J Nutr. 2010;49(6):345–55.PubMedCrossRefGoogle Scholar
  85. 85.
    Kappus H, Sies H. Toxic drug effects associated with oxygen metabolism: redox cycling and lipid peroxidation. Experientia. 1981;37(12):1233–41.PubMedCrossRefGoogle Scholar
  86. 86.
    Wilhelm J. Metabolic aspects of membrane lipid peroxidation. Acta Univ Carol Med Monogr. 1990;137:1–53.PubMedGoogle Scholar
  87. 87.
    Jiang Y, Huang B. Drought and heat stress injury to two cool-season turfgrasses in relation to antioxidant metabolism and lipid peroxidation. Crop Sci. 2001;41(2):436–42.CrossRefGoogle Scholar
  88. 88.
    Paradies G, et al. Lipid peroxidation and alterations to oxidative metabolism in mitochondria isolated from rat heart subjected to ischemia and reperfusion. Free Radic Biol Med. 1999;27(1):42–50.PubMedCrossRefGoogle Scholar
  89. 89.
    Vladimirov YA, et al. Lipid peroxidation in mitochondrial membrane. Adv Lipid Res. 1980;17:173–249.PubMedCrossRefGoogle Scholar
  90. 90.
    Wallace DC. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet. 2005;39:359–407.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature. 2006;443(7113):787.PubMedCrossRefGoogle Scholar
  92. 92.
    Chicco AJ, Sparagna GC. Role of cardiolipin alterations in mitochondrial dysfunction and disease. Am J Phys Cell Phys. 2007;292(1):C33–44.CrossRefGoogle Scholar
  93. 93.
    Lesnefsky EJ, et al. Mitochondrial dysfunction in cardiac disease: ischemia–reperfusion, aging, and heart failure. J Mol Cell Cardiol. 2001;33(6):1065–89.PubMedCrossRefGoogle Scholar
  94. 94.
    Wallace DC. Mitochondrial diseases in man and mouse. Science. 1999;283(5407):1482–8.PubMedCrossRefGoogle Scholar
  95. 95.
    Boland ML, Chourasia AH, Macleod KF. Mitochondrial dysfunction in cancer. Front Oncol. 2013;3:292.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Basu A, et al. Pomegranate polyphenols lower lipid peroxidation in adults with type 2 diabetes but have no effects in healthy volunteers: a pilot study. J Nutr Metab. 2013;2013:1–7.CrossRefGoogle Scholar
  97. 97.
    Inami S, et al. Tea catechin consumption reduces circulating oxidized low-density lipoprotein. Int Heart J. 2007;48(6):725–32.PubMedCrossRefGoogle Scholar
  98. 98.
    Hsu SP, et al. Chronic green tea extract supplementation reduces hemodialysis-enhanced production of hydrogen peroxide and hypochlorous acid, atherosclerotic factors, and proinflammatory cytokines. Am J Clin Nutr. 2007;86(5):1539–47.PubMedCrossRefGoogle Scholar
  99. 99.
    Dietrich-muszalska A, Olas B. Inhibitory effects of polyphenol compounds on lipid peroxidation caused by antipsychotics (haloperidol and amisulpride) in human plasma in vitro. World J Biol Psychiatry. 2010;11(2_2):276–81.PubMedCrossRefGoogle Scholar
  100. 100.
    Shabalala S, et al. Polyphenols, autophagy and doxorubicin-induced cardiotoxicity. Life Sci. 2017;180:160–70.PubMedCrossRefGoogle Scholar
  101. 101.
    Kojadinovic MI, et al. Consumption of pomegranate juice decreases blood lipid peroxidation and levels of arachidonic acid in women with metabolic syndrome. J Sci Food Agric. 2017;97(6):1798–804.PubMedCrossRefGoogle Scholar
  102. 102.
    Letai A, et al. Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell. 2002;2(3):183–92.PubMedCrossRefGoogle Scholar
  103. 103.
    Tabit CE, et al. Endothelial dysfunction in diabetes mellitus: molecular mechanisms and clinical implications. Rev Endocr Metab Disord. 2010;11(1):61–74.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Keller JN, et al. Mitochondrial manganese superoxide dismutase prevents neural apoptosis and reduces ischemic brain injury: suppression of peroxynitrite production, lipid peroxidation, and mitochondrial dysfunction. J Neurosci. 1998;18(2):687–97.PubMedCrossRefGoogle Scholar
  105. 105.
    Hakim IA, et al. Effect of increased tea consumption on oxidative DNA damage among smokers: a randomized controlled study. J Nutr. 2003;133(10):3303s–9s.PubMedCrossRefGoogle Scholar
  106. 106.
    Katiyar SK, Perez A, Mukhtar H. Green tea polyphenol treatment to human skin prevents formation of ultraviolet light B-induced pyrimidine dimers in DNA. Clin Cancer Res. 2000;6(10):3864–9.PubMedGoogle Scholar
  107. 107.
    Nichols JA, Katiyar SK. Skin photoprotection by natural polyphenols: anti-inflammatory, antioxidant and DNA repair mechanisms. Arch Dermatol Res. 2010;302(2):71–83.PubMedCrossRefGoogle Scholar
  108. 108.
    Srividhya R, et al. Attenuation of senescence-induced oxidative exacerbations in aged rat brain by (−)-epigallocatechin-3-gallate. Int J Dev Neurosci. 2008;26(2):217–23.PubMedCrossRefGoogle Scholar
  109. 109.
    Senthil Kumaran V, et al. Repletion of antioxidant status by EGCG and retardation of oxidative damage induced macromolecular anomalies in aged rats. Exp Gerontol. 2008;43(3):176–83.PubMedCrossRefGoogle Scholar
  110. 110.
    Franco AA, Odom RS, Rando TA. Regulation of antioxidant enzyme gene expression in response to oxidative stress and during differentiation of mouse skeletal muscle. Free Radic Biol Med. 1999;27(9):1122–32.PubMedCrossRefGoogle Scholar
  111. 111.
    Jardim BV, et al. Glutathione and glutathione peroxidase expression in breast cancer: an immunohistochemical and molecular study. Oncol Rep. 2013;30(3):1119–28.PubMedCrossRefGoogle Scholar
  112. 112.
    Jurkovič S, Osredkar J, Marc J. Molecular impact of glutathione peroxidases in antioxidant processes. Biochem Med. 2008;18(2):162–74.CrossRefGoogle Scholar
  113. 113.
    Chada S, Whitney C, Newburger PE. Post-transcriptional regulation of glutathione peroxidase gene expression by selenium in the HL-60 human myeloid cell line. Blood. 1989;74(7):2535–41.PubMedGoogle Scholar
  114. 114.
    Tan M, et al. Transcriptional activation of the human glutathione peroxidase promoter by p53. J Biol Chem. 1999;274(17):12061–6.PubMedCrossRefGoogle Scholar
  115. 115.
    Liu C-W, et al. Polyphenol-rich longan (Dimocarpus longan Lour.)-flower-water-extract attenuates nonalcoholic fatty liver via decreasing lipid peroxidation and downregulating matrix metalloproteinases-2 and -9. Food Res Int. 2012;45(1):444–9.CrossRefGoogle Scholar
  116. 116.
    Hou Z, et al. Mechanism of action of (−)-epigallocatechin-3-gallate: auto-oxidation-dependent inactivation of epidermal growth factor receptor and direct effects on growth inhibition in human esophageal cancer KYSE 150 cells. Cancer Res. 2005;65(17):8049–56.PubMedCrossRefGoogle Scholar
  117. 117.
    Yang GY, et al. Inhibition of growth and induction of apoptosis in human cancer cell lines by tea polyphenols. Carcinogenesis. 1998;19(4):611–6.PubMedCrossRefGoogle Scholar
  118. 118.
    Lambert JD, Elias RJ. The antioxidant and pro-oxidant activities of green tea polyphenols: a role in cancer prevention. Arch Biochem Biophys. 2010;501(1):65–72.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Yen G-C, Chen H-Y, Peng H-H. Antioxidant and pro-oxidant effects of various tea extracts. J Agric Food Chem. 1997;45(1):30–4.CrossRefGoogle Scholar
  120. 120.
    Martin KR, Appel CL. Polyphenols as dietary supplements: a double-edged sword. Nutr Diet Suppl. 2010;2:1–12.Google Scholar
  121. 121.
    Na HK, Surh YJ. Modulation of Nrf2-mediated antioxidant and detoxifying enzyme induction by the green tea polyphenol EGCG. Food Chem Toxicol. 2008;46(4):1271–8.PubMedCrossRefGoogle Scholar
  122. 122.
    DeNicola GM, et al. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature. 2011;475(7354):106–9.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Jaiswal AK. Nrf2 signaling in coordinated activation of antioxidant gene expression. Free Radic Biol Med. 2004;36(10):1199–207.PubMedCrossRefGoogle Scholar
  124. 124.
    Kode A, et al. Resveratrol induces glutathione synthesis by activation of Nrf2 and protects against cigarette smoke-mediated oxidative stress in human lung epithelial cells. Am J Phys Lung Cell Mol Phys. 2008;294(3):L478–88.Google Scholar
  125. 125.
    Chow HH, et al. Modulation of human glutathione s-transferases by polyphenon e intervention. Cancer Epidemiol Biomark Prev. 2007;16(8):1662–6.CrossRefGoogle Scholar
  126. 126.
    Bonkovsky HL. Hepatotoxicity associated with supplements containing Chinese green tea (Camellia sinensis). Ann Intern Med. 2006;144(1):68–71.PubMedCrossRefGoogle Scholar
  127. 127.
    Halliwell B. Are polyphenols antioxidants or pro-oxidants? What do we learn from cell culture and in vivo studies? Arch Biochem Biophys. 2008;476(2):107–12.PubMedCrossRefGoogle Scholar
  128. 128.
    Weisburg JH, et al. In vitro cytotoxicity of epigallocatechin gallate and tea extracts to cancerous and normal cells from the human oral cavity. Basic Clin Pharmacol Toxicol. 2004;95(4):191–200.PubMedCrossRefGoogle Scholar
  129. 129.
    Galati G, et al. Cellular and in vivo hepatotoxicity caused by green tea phenolic acids and catechins. Free Radic Biol Med. 2006;40(4):570–80.PubMedCrossRefGoogle Scholar
  130. 130.
    Isbrucker R, et al. Safety studies on epigallocatechin gallate (EGCG) preparations. Part 2: dermal, acute and short-term toxicity studies. Food Chem Toxicol. 2006;44(5):636–50.PubMedCrossRefGoogle Scholar
  131. 131.
    Dunnick JK, Hailey JR. Toxicity and carcinogenicity studies of quercetin, a natural component of foods. Fundam Appl Toxicol. 1992;19(3):423–31.PubMedCrossRefGoogle Scholar
  132. 132.
    Ferguson LR. Role of plant polyphenols in genomic stability. Mutat Res. 2001;475(1):89–111.PubMedCrossRefGoogle Scholar
  133. 133.
    Strick R, et al. Dietary bioflavonoids induce cleavage in the MLL gene and may contribute to infant leukemia. Proc Natl Acad Sci. 2000;97(9):4790–5.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Lambert JD, Sang S, Yang CS. Possible controversy over dietary polyphenols: benefits vs risks. Chem Res Toxicol. 2007;20(4):583–5.PubMedCrossRefGoogle Scholar
  135. 135.
    Williamson MP, et al. Epigallocatechin gallate, the main polyphenol in green tea, binds to the T-cell receptor, CD4: potential for HIV-1 therapy. J Allergy Clin Immunol. 2006;118(6):1369–74.PubMedCrossRefGoogle Scholar
  136. 136.
    Gehm BD, et al. Resveratrol, a polyphenolic compound found in grapes and wine, is an agonist for the estrogen receptor. Proc Natl Acad Sci. 1997;94(25):14138–43.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Williams RJ, Spencer JP, Rice-Evans C. Flavonoids: antioxidants or signalling molecules? Free Radic Biol Med. 2004;36(7):838–49.PubMedCrossRefGoogle Scholar
  138. 138.
    Kang NJ, et al. Polyphenols as small molecular inhibitors of signaling cascades in carcinogenesis. Pharmacol Ther. 2011;130(3):310–24.PubMedCrossRefGoogle Scholar
  139. 139.
    Santangelo C, et al. Polyphenols, intracellular signalling and inflammation. Ann Ist Super Sanita. 2007;43(4):394.PubMedGoogle Scholar
  140. 140.
    Crespo I, et al. A comparison of the effects of kaempferol and quercetin on cytokine-induced pro-inflammatory status of cultured human endothelial cells. Br J Nutr. 2008;100(5):968–76.PubMedCrossRefGoogle Scholar
  141. 141.
    Yu R, et al. Activation of mitogen-activated protein kinases by green tea polyphenols: potential signaling pathways in the regulation of antioxidant-responsive element-mediated phase II enzyme gene expression. Carcinogenesis. 1997;18(2):451–6.PubMedCrossRefGoogle Scholar
  142. 142.
    Chen C, et al. Activation of antioxidant-response element (ARE), mitogen-activated protein kinases (MAPKs) and caspases by major green tea polyphenol components during cell survival and death. Arch Pharm Res. 2000;23(6):605.PubMedCrossRefGoogle Scholar
  143. 143.
    Oršolić N, et al. Immunomodulatory and antimetastatic action of propolis and related polyphenolic compounds. J Ethnopharmacol. 2004;94(2):307–15.PubMedCrossRefGoogle Scholar
  144. 144.
    Gao X, et al. Immunomodulatory activity of resveratrol: suppression of lymphocyte proliferation, development of cell-mediated cytotoxicity, and cytokine production. Biochem Pharmacol. 2001;62(9):1299–308.PubMedCrossRefGoogle Scholar
  145. 145.
    Haddad JJ. Redox regulation of pro-inflammatory cytokines and IκB-α/NF-κB nuclear translocation and activation. Biochem Biophys Res Commun. 2002;296(4):847–56.PubMedCrossRefGoogle Scholar
  146. 146.
    Wheeler DS, et al. Epigallocatechin-3-gallate, a green tea-derived polyphenol, inhibits IL-1β-dependent proinflammatory signal transduction in cultured respiratory epithelial cells. J Nutr. 2004;134(5):1039–44.PubMedCrossRefGoogle Scholar
  147. 147.
    Mackenzie GG, et al. Epicatechin, catechin, and dimeric procyanidins inhibit PMA-induced NF-κB activation at multiple steps in Jurkat T cells. FASEB J. 2004;18(1):167–9.PubMedCrossRefGoogle Scholar
  148. 148.
    De Stefano D, et al. Lycopene, quercetin and tyrosol prevent macrophage activation induced by gliadin and IFN-γ. Eur J Pharmacol. 2007;566(1):192–9.PubMedCrossRefGoogle Scholar
  149. 149.
    Ciribilli Y, et al. Decoding c-Myc networks of cell cycle and apoptosis regulated genes in a transgenic mouse model of papillary lung adenocarcinomas. Oncotarget. 2015;6(31):31569–92.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Dolezal JM, et al. Sequential adaptive changes in a c-Myc-driven model of hepatocellular carcinoma. J Biol Chem. 2017;292(24):10068–86.PubMedCrossRefGoogle Scholar
  151. 151.
    Wang H, et al. Coordinated activities of multiple Myc-dependent and Myc-independent biosynthetic pathways in hepatoblastoma. J Biol Chem. 2016;291(51):26241–51.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Daniel P, et al. Selective CREB-dependent cyclin expression mediated by the PI3K and MAPK pathways supports glioma cell proliferation. Oncogene. 2014;3:e108.CrossRefGoogle Scholar
  153. 153.
    Tulchinsky E. Fos family members: regulation, structure and role in oncogenic transformation. Histol Histopathol. 2000;15(3):921–8.PubMedGoogle Scholar
  154. 154.
    Cho J-W, Lee K-S, Kim C-W. Curcumin attenuates the expression of IL-1β, IL-6, and TNF-α as well as cyclin E in TNF-α-treated HaCaT cells; NF-κB and MAPKs as potential upstream targets. Int J Mol Med. 2007;19(3):469–74.PubMedGoogle Scholar
  155. 155.
    Kim J-E, et al. Cocoa polyphenols suppress TNF-α-induced vascular endothelial growth factor expression by inhibiting phosphoinositide 3-kinase (PI3K) and mitogen-activated protein kinase kinase-1 (MEK1) activities in mouse epidermal cells. Br J Nutr. 2010;104(7):957–64.PubMedCrossRefGoogle Scholar
  156. 156.
    Siddiqui IA, et al. Modulation of phosphatidylinositol-3-kinase/protein kinase B-and mitogen-activated protein kinase-pathways by tea polyphenols in human prostate cancer cells. J Cell Biochem. 2004;91(2):232–42.PubMedCrossRefGoogle Scholar
  157. 157.
    Mebratu Y, Tesfaigzi Y. How ERK1/2 activation controls cell proliferation and cell death: is subcellular localization the answer? Cell Cycle. 2009;8(8):1168–75.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Lu Z, Xu S. ERK1/2 MAP kinases in cell survival and apoptosis. IUBMB Life. 2006;58(11):621–31.PubMedCrossRefGoogle Scholar
  159. 159.
    Kushima Y, et al. Inhibitory effect of (−)-epigallocatechin and (−)-epigallocatechin gallate against heregulin β1-induced migration/invasion of the MCF-7 breast carcinoma cell line. Biol Pharm Bull. 2009;32(5):899–904.PubMedCrossRefGoogle Scholar
  160. 160.
    Wallasch C, et al. Heregulin-dependent regulation of HER2/neu oncogenic signaling by heterodimerization with HER3. EMBO J. 1995;14(17):4267.PubMedPubMedCentralGoogle Scholar
  161. 161.
    Stoica GE, et al. Heregulin-b1 regulates the estrogen receptor-a gene expression and activity via the ErbB2/PI 3-K/Akt pathway. Oncogene. 2005;24:1964.PubMedCrossRefGoogle Scholar
  162. 162.
    Chausovsky A, et al. Molecular requirements for the effect of neuregulin on cell spreading, motility and colony organization. Oncogene. 2000;19(7):878.PubMedCrossRefGoogle Scholar
  163. 163.
    Golias C, Charalabopoulos A, Charalabopoulos K. Cell proliferation and cell cycle control: a mini review. Int J Clin Pract. 2004;58(12):1134–41.PubMedCrossRefGoogle Scholar
  164. 164.
    Amararathna M, Johnston MR, Rupasinghe H. Plant polyphenols as chemopreventive agents for lung cancer. Int J Mol Sci. 2016;17(8):1352.PubMedCentralCrossRefGoogle Scholar
  165. 165.
    Kaur M, et al. Grape seed extract inhibits in vitro and in vivo growth of human colorectal carcinoma cells. Clin Cancer Res. 2006;12(20):6194–202.PubMedCrossRefGoogle Scholar
  166. 166.
    Shi J, et al. Polyphenolics in grape seeds-biochemistry and functionality. J Med Food. 2003;6(4):291–9.PubMedCrossRefGoogle Scholar
  167. 167.
    Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 1999;13(12):1501–12.PubMedCrossRefGoogle Scholar
  168. 168.
    Chen A, et al. The role of p21 in apoptosis, proliferation, cell cycle arrest, and antioxidant activity in UVB-irradiated human HaCaT keratinocytes. Med Sci Monit Basic Res. 2015;21:86.PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Nandakumar V, Vaid M, Katiyar SK. (−)-Epigallocatechin-3-gallate reactivates silenced tumor suppressor genes, Cip1/p21 and p 16INK4a , by reducing DNA methylation and increasing histones acetylation in human skin cancer cell. Carcinogenesis. 2011;32(4):537–44.PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Yang J-H, et al. Inhibition of lung cancer cell growth by quercetin glucuronides via G2/M arrest and induction of apoptosis. Drug Metab Dispos. 2006;34(2):296–304.PubMedCrossRefGoogle Scholar
  171. 171.
    Green DR, Amarante-Mendes GP. The point of no return: mitochondria caspases , and the commitment to cell death. Apoptosis Mech Role Dis. 1998;24:45.CrossRefGoogle Scholar
  172. 172.
    Pradhan D, et al. Inhibition of proteasome activity by the dietary flavonoid Quercetin associated with growth inhibition in cultured breast cancer cells and xenografts. J Young Pharm. 2015;7(3):225.CrossRefGoogle Scholar
  173. 173.
    Halder B, Das Gupta S, Gomes A. Black tea polyphenols induce human leukemic cell cycle arrest by inhibiting Akt signaling. FEBS J. 2012;279(16):2876–91.PubMedCrossRefGoogle Scholar
  174. 174.
    Basso AD, et al. Ansamycin antibiotics inhibit Akt activation and cyclin D expression in breast cancer cells that overexpress HER2. Oncogene. 2002;21(8):1159.PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Colotta F, et al. Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis. 2009;30:1073.PubMedCrossRefGoogle Scholar
  176. 176.
    Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420:860.PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Palmisano WA, et al. Predicting lung cancer by detecting aberrant promoter methylation in sputum. Cancer Res. 2000;60(21):5954–8.PubMedGoogle Scholar
  178. 178.
    Gonzalgo ML, et al. Prostate cancer detection by GSTP1 methylation analysis of postbiopsy urine specimens. Clin Cancer Res. 2003;9(7):2673–7.PubMedGoogle Scholar
  179. 179.
    Esteller M, et al. A gene hypermethylation profile of human cancer. Cancer Res. 2001;61(8):3225–9.PubMedGoogle Scholar
  180. 180.
    Tsou JA, et al. DNA methylation analysis: a powerful new tool for lung cancer diagnosis. Oncogene. 2002;21(35):5450.PubMedCrossRefGoogle Scholar
  181. 181.
    Chiang JW, Karlan BY, Baldwin RL. BRCA1 promoter methylation predicts adverse ovarian cancer prognosis. Gynecol Oncol. 2006;101(3):403–10.PubMedCrossRefGoogle Scholar
  182. 182.
    Sharma P, et al. The prognostic value of BRCA1 promoter methylation in early stage triple negative breast cancer. J Cancer Ther Res. 2014;3(1):2.CrossRefGoogle Scholar
  183. 183.
    Kumar U, Sharma U, Rathi G. Reversal of hypermethylation and reactivation of glutathione S-transferase pi 1 gene by curcumin in breast cancer cell line. Tumor Biol. 2017;39(2):1010428317692258.CrossRefGoogle Scholar
  184. 184.
    Thakur VS, et al. Plant phytochemicals as epigenetic modulators: role in cancer chemoprevention. AAPS J. 2014;16(1):151–63.PubMedCrossRefGoogle Scholar
  185. 185.
    Aggarwal R, et al. Natural compounds: role in reversal of epigenetic changes. Biochem Mosc. 2015;80(8):972–89.CrossRefGoogle Scholar
  186. 186.
    Lim SO et al. Epigenetic changes induced by reactive oxygen species in hepatocellular carcinoma: methylation of the E-cadherin promoter. Gastroenterology. 2008;135(6):2128–40, 2140.e1–8.Google Scholar
  187. 187.
    Wu Q, Ni X. ROS-mediated DNA methylation pattern alterations in carcinogenesis. Curr Drug Targets. 2015;16(1):13–9.PubMedCrossRefGoogle Scholar
  188. 188.
    Pandey M, Shukla S, Gupta S. Promoter demethylation and chromatin remodeling by green tea polyphenols leads to re-expression of GSTP1 in human prostate cancer cells. Int J Cancer. 2010;126(11):2520–33.PubMedPubMedCentralGoogle Scholar
  189. 189.
    Fang M, Chen D, Yang CS. Dietary polyphenols may affect DNA methylation. J Nutr. 2007;137(1):223S–8S.PubMedCrossRefGoogle Scholar
  190. 190.
    Mocanu M-M, Nagy P, Szöllősi J. Chemoprevention of breast cancer by dietary polyphenols. Molecules. 2015;20(12):22578–620.PubMedCrossRefGoogle Scholar
  191. 191.
    Gomez LS, et al. Resveratrol decreases breast cancer cell viability and glucose metabolism by inhibiting 6-phosphofructo-1-kinase. Biochimie. 2013;95(6):1336–43.PubMedCrossRefGoogle Scholar
  192. 192.
    Stockert A, et al. Improving the efficacy of cisplatin in colon cancer HT-29 cells via combination therapy with selenium. Austin J Pharmacol Ther. 2014;2(2):6.Google Scholar
  193. 193.
    Zhang Y, et al. Green tea polyphenol EGCG reverse cisplatin resistance of A549/DDP cell line through candidate genes demethylation. Biomed Pharmacother. 2015;69:285–90.PubMedCrossRefGoogle Scholar
  194. 194.
    Zhang J, et al. Curcumin promotes apoptosis in A549/DDP multidrug-resistant human lung adenocarcinoma cells through an miRNA signaling pathway. Biochem Biophys Res Commun. 2010;399(1):1–6.PubMedCrossRefGoogle Scholar
  195. 195.
    Shukla S, et al. Curcumin inhibits the activity of ABCG2/BCRP1, a multidrug resistance-linked ABC drug transporter in mice. Pharm Res. 2009;26(2):480–7.PubMedCrossRefGoogle Scholar
  196. 196.
    Brennemen M, Mahfouz T, Stockert A. Cooperative binding of cinnamon polyphenols as activators of Sirtuin-1 protein in the insulin signaling pathway. FASEB J. 2017;31(1 Supplement):761.25.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Pharmaceutical and Biomedical SciencesThe Raabe College of Pharmacy, Ohio Northern UniversityAdaUSA

Personalised recommendations