Electrical Vehicle Charging Coordination Algorithms Framework

  • Nhan-Quy Nguyen
  • Farouk Yalaoui
  • Lionel Amodeo
  • Hicham Chehade
  • Pascal Toggenburger
Chapter
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 149)

Abstract

The coordination of the electrical vehicles (EV) charging becomes an important research subject in the actual context with the growth of the EV usage. This is due to the harmful impacts of the grid and the overspending price of uncoordinated charging procedure. This work tries to provide a framework to configure and formulate the EV charging problem by the theoretical research on scheduling problem with an additional resource. Given the numerous works in the both domains, this would be advantageous to address such a general algorithm framework. This chapter also introduces our configurations, named ACPF/ACPV, to formulate and solve an actual EV charging problem for residential parking—our case study. The purpose of this case study is to illustrate how the framework would be implemented for real-life cases.

Notes

Acknowledgements

This research has been supported by ANRT (Association Nationale de la Recherche et de la Technologie, France).

References

  1. Adika, C. O., & Wang, L. (2014). Smart charging and appliance scheduling approaches to demand side management. International Journal of Electrical Power & Energy Systems, 57, 232–240.CrossRefGoogle Scholar
  2. Al-Awami, A. T., Sortomme, E., Akhtar, G. M. A., & Faddel, S. (2016). A voltage-based controller for an electric-vehicle charger. IEEE Transactions on Vehicular Technology, 65(6), 4185–4196.CrossRefGoogle Scholar
  3. Alonso, M., Amaris, H., Germain, J. G., & Galan, J. M. (2014). Optimal charging scheduling of electric vehicles in smart grids by heuristic algorithms. Energies, 7(4), 2449–2475.CrossRefGoogle Scholar
  4. Álvarez, JN., Knezović, K., & Marinelli, M. (2016). Analysis and comparison of voltage dependent charging strategies for single-phase electric vehicles in an unbalanced danish distribution grid. In: Proceedings of the 51st International Universities Power Engineering Conference, IEEE.Google Scholar
  5. Baptiste, P., Le Pape, C., & Nuijten, W. (1999). Satisfiability tests and time-bound adjustments for cumulative scheduling problems. Annals of Operations Research, 92, 305–333.MathSciNetCrossRefMATHGoogle Scholar
  6. Beaumont, O., Bonichon, N., Eyraud-Dubois, L., & Marchal, L. (2012). Minimizing weighted mean completion time for malleable tasks scheduling. In: 2012 IEEE 26th International, IEEE Parallel & Distributed Processing Symposium (IPDPS), pp. 273–284.Google Scholar
  7. Blazewicz, J., Ecker, K. H., Pesch, E., Schmidt, G., & Weglarz, J. (2002). Scheduling computer and manufacturing processes. Newyork: Springer.Google Scholar
  8. Blazewicz, J., Kovalyov, M. Y., Machowiak, M., Trystram, D., & Weglarz, J. (2006). Preemptable malleable task scheduling problem. IEEE Transactions on Computers, 55(4), 486–490.CrossRefGoogle Scholar
  9. Blazewicz, J., Cheng, T. E., Machowiak, M., & Oguz, C. (2011). Berth and quay crane allocation: a moldable task scheduling model. Journal of the Operational Research Society, 62(7), 1189–1197.CrossRefGoogle Scholar
  10. Carlier, J., & Pinson, E. (2004). Jackson’s pseudo-preemptive schedule and cumulative scheduling problems. Discrete Applied Mathematics, 145(1), 80–94.MathSciNetCrossRefMATHGoogle Scholar
  11. Cazzola, P., & Gorner, M. (2016). Global ev outlook 2016—beyond one million electric cars. France, Paris: International Energy Agency.Google Scholar
  12. Deilami, S., Masoum, A. S., Moses, P. S., & Masoum, M. A. (2011). Real-time coordination of plug-in electric vehicle charging in smart grids to minimize power losses and improve voltage profile. IEEE Transactions on Smart Grid, 2(3), 456–467.CrossRefGoogle Scholar
  13. Dutot, PF., Mounié, G., & Trystram, D. (2004). Scheduling parallel tasks: Approximation algorithms.Google Scholar
  14. Faddel, S., Al-Awami, A. T., & Abido, M. (2017). Fuzzy optimization for the operation of electric vehicle parking lots. Electric Power Systems Research, 145, 166–174.CrossRefGoogle Scholar
  15. Galus, M. D., Waraich, R. A., Noembrini, F., Steurs, K., Georges, G., Boulouchos, K., et al. (2012). Integrating power systems, transport systems and vehicle technology for electric mobility impact assessment and efficient control. IEEE Transactions on Smart Grid, 3(2), 934–949.CrossRefGoogle Scholar
  16. Hartmann, S., & Briskorn, D. (2010). A survey of variants and extensions of the resource-constrained project scheduling problem. European Journal of Operational Research, 207(1), 1–14.MathSciNetCrossRefMATHGoogle Scholar
  17. Huang, W., Chen, D., & Xu, R. (2007). A new heuristic algorithm for rectangle packing. Computers & Operations Research, 34(11), 3270–3280.MathSciNetCrossRefMATHGoogle Scholar
  18. Iversen, E. B., Morales, J. M., & Madsen, H. (2014). Optimal charging of an electric vehicle using a markov decision process. Applied Energy, 123, 1–12.CrossRefGoogle Scholar
  19. Józefowska, J., & Weglarz, J. (1998). On a methodology for discrete–continuous scheduling. European Journal of Operational Research, 107(2), 338–353.CrossRefMATHGoogle Scholar
  20. Józefowska, J., Waligóra, G., & Wȩglarz, J. (2002). Tabu list management methods for a discrete–continuous scheduling problem. European Journal of Operational Research, 137(2), 288–302.MathSciNetCrossRefMATHGoogle Scholar
  21. Karbasioun, M. M., Shaikhet, G., Kranakis, E., & Lambadaris, I. (2013). Power strip packing of malleable demands in smart grid. In: 2013 IEEE International Conference on Communications (ICC), pp. 4261–4265.Google Scholar
  22. Lee, J., Kim, H. J., Park, G. L., & Jeon, H. (2012). Genetic algorithm-based charging task scheduler for electric vehicles in smart transportation. In: Asian Conference on Intelligent Information and Database Systems, (pp. 208–217). Springer.Google Scholar
  23. Leech, S. (2017). The economics of electric cars. The Market Mogul.Google Scholar
  24. Li, Y., Li, L., Yong, J., Yao, Y., & Li, Z. (2011). Layout planning of electrical vehicle charging stations based on genetic algorithm. In: Electrical Power Systems and Computers, (pp. 661–668). New York: Springer.Google Scholar
  25. Ma, Z., Callaway, D. S., & Hiskens, I. A. (2013). Decentralized charging control of large populations of plug-in electric vehicles. IEEE Transactions on Control Systems Technology, 21(1), 67–78.CrossRefGoogle Scholar
  26. Maasmann, J., Aldejohann, C., Horenkamp, W., Kaliwoda, M., & Rehtanz, C. (2014). Charging optimization due to a fuzzy feedback controlled charging algorithm. In: 2014 49th International Universities, IEEE Power Engineering Conference (UPEC), pp. 1–6.Google Scholar
  27. Mohsenian-Rad, A. H., Wong, V. W., Jatskevich, J., Schober, R., & Leon-Garcia, A. (2010). Autonomous demand-side management based on game-theoretic energy consumption scheduling for the future smart grid. IEEE transactions on Smart Grid, 1(3), 320–331.CrossRefGoogle Scholar
  28. Musardo, C., Rizzoni, G., Guezennec, Y., & Staccia, B. (2005). A-ecms: An adaptive algorithm for hybrid electric vehicle energy management. European Journal of Control, 11(4–5), 509–524.MathSciNetCrossRefMATHGoogle Scholar
  29. Nabrzyski, J., Schopf, J. M., & Weglarz, J. (2012). Grid resource management: State of the art and future trends.Google Scholar
  30. Nguyen, N. Q., Yalaoui, F., Amodeo, L., Chehade, H., & Toggenburger, P. (2016a). Solving a malleable jobs scheduling problem to minimize total weighted completion times by mixed integer linear programming models. In: Asian Conference on Intelligent Information and Database Systems, (pp. 286–295). Springer.Google Scholar
  31. Nguyen, N. Q., Yalaoui, F., Amodeo, L., Chehade, H., & Toggenburger, P. (2016b). Total completion time minimization for machine scheduling problem under time windows constraints with jobs’ linear processing rate function. Computer Operational Research, manuscript submitted.Google Scholar
  32. Nguyen, N. Q., Yalaoui, F., Amodeo, L., Chehade, H., & Toggenburger, P. (2017a). A branch-and-price approach to solving a discrete malleable jobs scheduling problem with time-varying resource constraints. European Journal of Operational Research, manuscript submitted.Google Scholar
  33. Nguyen, N. Q., Yalaoui, F., Amodeo, L., Chehade, H., & Toggenburger, P. (2017b). Predictive baseline schedule for electrical vehicles charging in dedicated residential zone parking.Google Scholar
  34. Nobibon, F. T., Leus, R., Nip, K., & Wang, Z. (2015). Resource loading with time windows. European Journal of Operational Research, 244(2), 404–416.MathSciNetCrossRefMATHGoogle Scholar
  35. Pinedo, M. (2015). Scheduling. Springer, Chap. 9.Google Scholar
  36. Sadykov, R. (2012). A dominant class of schedules for malleable jobs in the problem to minimize the total weighted completion time. Computers & Operations Research, 39(6), 1265–1270.MathSciNetCrossRefMATHGoogle Scholar
  37. Schmutzler, J., Andersen, C. A., Wietfeld, C. (2013). Evaluation of ocpp and iec 61850 for smart charging electric vehicles. In: 2013 World, IEEE Electric Vehicle Symposium and Exhibition (EVS27), pp. 1–12.Google Scholar
  38. Shabtay, D., & Kaspi, M. (2004). Minimizing the total weighted flow time in a single machine with controllable processing times. Computers & Operations Research, 31(13), 2279–2289.MathSciNetCrossRefMATHGoogle Scholar
  39. Shabtay, D., & Steiner, G. (2007). Optimal due date assignment and resource allocation to minimize the weighted number of tardy jobs on a single machine. Manufacturing & Service Operations Management, 9(3), 332–350.CrossRefGoogle Scholar
  40. Sperling, D. (2013). Future drive: Electric vehicles and sustainable transportation. Island Press.Google Scholar
  41. US Department of Energy (DOE), North Carolina State Energy Office. (2014). Real-World Charging Behavior at the Workplace. Plug-in Electric Vehicle Consumer Usage Study, Advanced Energy leveraged a U.S. Department of Energy (DOE).Google Scholar
  42. Vieira, G. E., Herrmann, J. W., & Lin, E. (2003). Rescheduling manufacturing systems: a framework of strategies, policies, and methods. Journal of Scheduling, 6(1), 39–62.MathSciNetCrossRefMATHGoogle Scholar
  43. Waligóra, G. (2009). Tabu search for discrete–continuous scheduling problems with heuristic continuous resource allocation. European Journal of Operational Research, 193(3), 849–856.CrossRefMATHGoogle Scholar
  44. Weglarz, J. (2012). Project scheduling: recent models, algorithms and applications (Vol. 14). Springer Science & Business Media.Google Scholar
  45. Yalaoui, F., & Chu, C. (2002). Parallel machine scheduling to minimize total tardiness. International Journal of Production Economics, 76(3), 265–279.CrossRefGoogle Scholar
  46. Yilmaz, M., & Krein, P. T. (2013). Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles. IEEE Transactions on Power Electronics, 28(5), 2151–2169.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Nhan-Quy Nguyen
    • 1
  • Farouk Yalaoui
    • 1
  • Lionel Amodeo
    • 1
  • Hicham Chehade
    • 1
  • Pascal Toggenburger
    • 2
  1. 1.ICD, LOSI, Université de Technologie de Troyes, France, UMR 6281, CNRSTroyes CedexFrance
  2. 2.Parkn’PlugIssy-les-MoulineauxFrance

Personalised recommendations