Advertisement

Kelvin Probe Force Microscopy Characterization of Organic and Hybrid Perovskite Solar Cells

  • Benjamin Grévin
Chapter
Part of the Springer Series in Surface Sciences book series (SSSUR, volume 65)

Abstract

Nowadays, solution processed solar cells based on organic and hybrid-perovskite semi-conductors are serious competitors for silicon-based and inorganic photovoltaic technologies in terms of production costs, performance to weight ratio, flexibility, and easy manufacturing. Since the beginning of this century, the power conversion efficiency (PCE) values of polymer solar cells have continuously increased, and now exceed ten percent. More recently, following the development of dye-sensitized solar cells, lead-halide perovskite based devices with various architectures have been developed leading to PCE exceeding twenty percent. The goal of this chapter is to show how KPFM can contribute to further improve the performances of these solution-processed photovoltaic devices, by gaining a deeper insight in the local mechanisms governing the charge carrier generation, recombination, transport, and extraction at the electrodes. This chapter will focus more specifically on KPFM investigations of the surface potential and surface photo-voltage of organic donor-acceptor interfaces and polycrystalline lead halide perovskites in relation with the sample morphology and structural defects at the mesoscopic and nanometer scales, cross sectional KPFM investigations, and time-resolved measurements of the charge dynamics by KPFM under frequency modulated illumination.

References

  1. 1.
    Y. Liu, J. Zhao, Z. Li, C. Mu, W. Ma, H. Hu, K. Jiang, H. Lin, H. Ade, H. Yan, Nat. Commun. 5, 5293 (2014)ADSCrossRefGoogle Scholar
  2. 2.
    Z. He, B. Xiao, F. Liu, H. Wu, Y. Yang, S. Xiao, C. Wang, T.P. Russell, Y. Cao, Nat. Photonics 9, 174 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    J. Zhao, Y. Li, G. Yang, K. Jiang, H. Lin, H. Ade, W. Ma, H. Yan, Nat. Energy 1, 15027 (2016)ADSCrossRefGoogle Scholar
  4. 4.
    W. Zhao, D. Qian, S. Zhang, S. Li, O. Inganäs, F. Gao, J. Hou, Adv. Mater. 28, 4734 (2016)CrossRefGoogle Scholar
  5. 5.
    R.A. Janssen, J. Nelson, Adv. Mater. 25, 1847 (2013)CrossRefGoogle Scholar
  6. 6.
    A.J. Heeger, Adv. Mater. 26, 10 (2014)CrossRefGoogle Scholar
  7. 7.
    Z. He, C. Zhong, S. Su, M. Xu, H. Wu, Y. Cao, Nat. Photonics 6, 591 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    L.-M. Chen, Z. Xu, Z. Hong, Y. Yang, J. Mater. Chem. 20, 2575 (2010)CrossRefGoogle Scholar
  9. 9.
    T.-H. Lai, S.-W. Tsang, J.R. Manders, S. Chen, F. So, Mater. Today 16, 424 (2013)CrossRefGoogle Scholar
  10. 10.
    G. Yu, J. Gao, J.C. Hummelen, F. Wudl, A.J. Heeger, Science 270, 1789 (1995)ADSCrossRefGoogle Scholar
  11. 11.
    S.R. Cowan, A. Roy, A.J. Heeger, Phys. Rev. B 82, 245207 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    C.G. Shuttle, R. Hamilton, J. Nelson, B.C. O’Regan, J.R. Durrant, Adv. Funct. Mater. 20, 698 (2010)CrossRefGoogle Scholar
  13. 13.
    S.R. Cowan, N. Banerji, W.L. Leong, A.J. Heeger, Adv. Funct. Mater. 22, 1116 (2012)CrossRefGoogle Scholar
  14. 14.
    T. Kirchartz, B.E. Pieters, J. Kirkpatrick, U. Rau, J. Nelson, Phys. Rev. B. 83, 115209 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    K.S. Nalwa, H.K. Kodali, B. Ganapathysubramanian, S. Chaudhary, Appl. Phys. Lett. 99, 263301 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    S. Venkatesan, J. Chen, E.C. Ngo, A. Dubey, D. Khatiwada, C. Zhang, Q. Qiao, Nano Energy 12, 457 (2015)CrossRefGoogle Scholar
  17. 17.
    F. Sheridan, J.M. Frost, J. Nelson, Phys. Chem. Chem. Phys. 17, 2311 (2015)CrossRefGoogle Scholar
  18. 18.
    R.A. Street, Adv. Mater. 28, 3814 (2016)CrossRefGoogle Scholar
  19. 19.
    G. D’Avino, S. Mothy, L. Muccioli, C. Zannoni, L. Wang, J. Cornil, D. Beljonne, F. Castet, J. Phys. Chem. C 117, 12981 (2013)CrossRefGoogle Scholar
  20. 20.
    N. Banerji, Chimia 70, 512 (2016)CrossRefGoogle Scholar
  21. 21.
    E. Buchaca-Domingo, A.J. Ferguson, F.C. Jamieson, T. McCarthy-Ward, S. Shoaee, J.R. Tumbleston, O.G. Reid, L. Yu, M.-B. Madec, M. Pfannmöller, F. Hermerschmidt, R.R. Schröder, S.E. Watkins, N. Kopidakis, G. Portale, A. Amassian, M. Heeney, H. Ade, G. Rumbles, J.R. Durrant, N. Stingelin, Mater. Horiz. 1, 270 (2014)CrossRefGoogle Scholar
  22. 22.
    T.M. Burke, M.D. McGehee, Adv. Mater. 26, 1923 (2014)CrossRefGoogle Scholar
  23. 23.
    J. Razzell-Hollis, S. Limbu, J.-S. Kim, J. Phys. Chem. C 120, 10806 (2016)CrossRefGoogle Scholar
  24. 24.
    M. Causa, J. De Jonghe-Risse, M. Scarongella, J.C. Brauer, E. Buchaca-Domingo, J.-E. Moser, N. Stingelin, N. Banerji, Nat. Commun. 7, 12556 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    M. Scarongella, J. De Jonghe-Risse, E. Buchaca-Domingo, M. Causa, Z. Fei, M. Heeney, J.-E. Moser, N. Stingelin, N. Banerji, J. Am. Chem. Soc. 137, 2908 (2015)CrossRefGoogle Scholar
  26. 26.
    C. Wehrenfennig, G.E. Eperon, M.B. Johnston, H.J. Snaith, L.M. Herz, Adv. Mater. 26, 1584 (2014)CrossRefGoogle Scholar
  27. 27.
    S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, H.J. Snaith, Science 342, 341 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    X. Li, D. Bi, C. Yi, J.-D. Décoppet, J. Luo, S.M. Zakeeruddin, A. Hagfeldt, M. Grätzel, Science 353, 58 (2016)ADSCrossRefGoogle Scholar
  29. 29.
    A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009)CrossRefGoogle Scholar
  30. 30.
    M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Science 338, 643 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    D. Liu, T.L. Kelly, Nat. Photonics 8, 133 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    W. Nie, H. Tsai, R. Asadpour, J. Blancon, A.J. Neukirch, G. Gupta, J.J. Crochet, M. Chhowalla, S. Tretiak, M.A. Alam, H.L. Wang, A.D. Mohite, Science 347, 522 (2015)ADSCrossRefGoogle Scholar
  33. 33.
    H. Nagaoka, F. Ma, D.W. deQuilettes, S.M. Vorpahl, M.S. Glaz, A.E. Colbert, M.E. Ziffer, D.S. Ginger, J. Phys. Chem. Lett. 6, 669 (2015)CrossRefGoogle Scholar
  34. 34.
    E. Edri, S. Kirmayer, S. Mukopadhyay, K. Gartsman, G. Hodes, D. Cahen, Nat. Commun. 5, 3461 (2014)ADSCrossRefGoogle Scholar
  35. 35.
    G. Yang, C. Wang, H. Lei, X. Zheng, P. Qin, L. Xiong, X. Zhao, Y. Yan, G. Fang, J. Mater. Chem. A 5, 1658 (2017)CrossRefGoogle Scholar
  36. 36.
    P. Schulz, L.L. Whittaker-Brooks, B.A. MacLeod, D.C. Olson, Y.-L. Loo, A. Kahn, Adv. Mater. Int. 2, 1400532 (2015)CrossRefGoogle Scholar
  37. 37.
    D.W. de Quilettes, S.M. Vorpahl, S.D. Stranks, H. Nagaoka, G.E. Eperon, M.E. Ziffer, H.J. Snaith, D.S. Ginger, Science 348, 683 (2015)ADSCrossRefGoogle Scholar
  38. 38.
    A. Abate, M. Saliba, D.J. Hollman, S.D. Stranks, K. Wojciechowski, R. Avolio, G. Grancini, A. Petrozza, H.J. Snaith, Nano Lett. 14, 3247 (2014)ADSCrossRefGoogle Scholar
  39. 39.
    Y. Shao, Z. Xiao, C. Bi, Y. Yuan, J. Huang, Nat. Commun. 5, 5784 (2014)ADSCrossRefGoogle Scholar
  40. 40.
    D.W. deQuilettes, S. Koch, S. Burke, R.K. Paranji, A.J. Shropshire, M.E. Ziffer, D.S. Ginger, ACS Energy Lett. 1, 438 (2016)CrossRefGoogle Scholar
  41. 41.
    D. Kiermasch, P. Rieder, K. Tvingstedt, A. Baumann, V. Dyakonov, Sci. Rep. 6, 39333 (2016)ADSCrossRefGoogle Scholar
  42. 42.
    H. Uratani, K. Yamashita, J. Phys. Chem. Lett. 8, 742 (2017)CrossRefGoogle Scholar
  43. 43.
    R. Gottesman, A. Zaban, Acc. Chem. Res. 49, 320 (2016)CrossRefGoogle Scholar
  44. 44.
    J.M. Azpiroz, E. Mosconi, J. Bisquert, F.D. Angelis, Energy Environ. Sci. 8, 2118 (2015)Google Scholar
  45. 45.
    S. van Reenen, M. Kemerink, H.J. Snaith, J. Phys. Chem. Lett. 6, 3808 (2015)CrossRefGoogle Scholar
  46. 46.
    D.W. deQuilettes, W. Zhang, V.M. Burlakov, D.J. Graham, T. Leijtens, A. Osherov, V. Bulović, H.J. Snaith, D.S. Ginger, S.D. Stranks, Nat. Commun. 7, 11683 (2016)ADSCrossRefGoogle Scholar
  47. 47.
    M. Nonnenmacher, M.P. O’Boyle, H.K. Wickramasinghe, Appl. Phys. Lett. 58, 2921 (1991)ADSCrossRefGoogle Scholar
  48. 48.
    D. Cahen, A. Kahn, Adv. Mater. 15, 271 (2003)CrossRefGoogle Scholar
  49. 49.
    F. Fuchs, F. Caffy, R. Demadrille, T. Mélin, B. Grévin, ACS Nano 10, 739 (2016)CrossRefGoogle Scholar
  50. 50.
    W. Melitz, J. Shen, A.C. Kummel, S. Lee, Surf. Sci. Rep. 66, 1 (2011)ADSCrossRefGoogle Scholar
  51. 51.
    L. Kronik, Y. Shapira, Surf. Sci. Rep. 37, 1 (1999)ADSCrossRefGoogle Scholar
  52. 52.
    D.K. Schroder, Meas. Sci. Technol. 12, R16 (2001)ADSCrossRefGoogle Scholar
  53. 53.
    S.E. Shaheen, C.J. Brabec, N.S. Sariciftci, F. Padinger, T. Fromherz, J. Hummelen, Appl. Phys. Lett. 78, 841 (2001)ADSCrossRefGoogle Scholar
  54. 54.
    C.J. Brabec, S. Gowrisanker, J.J.M. Halls, D. Laird, S. Jia, S.P. Williams, Adv. Mater. 22, 3839 (2010)CrossRefGoogle Scholar
  55. 55.
    H. Hoppe, T. Glatzel, M. Niggemann, A. Hinsch, MCh. Lux-Steiner, N.S. Sariciftci, Nano Lett. 5, 269 (2005)ADSCrossRefGoogle Scholar
  56. 56.
    M. Chiesa, L. Bürgi, J.-S. Kim, R. Shikler, R.H. Friend, H. Sirringhaus, Nano Lett. 5, 559 (2005)ADSCrossRefGoogle Scholar
  57. 57.
    K. Maturova, M. Kemerink, M.M. Wienk, D.S.H. Charrier, R.A.J. Janssen, Adv. Funct. Mater. 19, 1379 (2009)CrossRefGoogle Scholar
  58. 58.
    H. Ishii, N. Hayashi, E. Ito, Y. Washizu, K. Sugi, Y. Kimura, M. Niwano, Y. Ouchi, K. Seki, Phys. Status Solidi (A) 201, 1075 (2004)ADSCrossRefGoogle Scholar
  59. 59.
    J. Bisquert, G. Garcia-Belmonte, J. Phys. Chem. Lett. 2, 1950 (2011)CrossRefGoogle Scholar
  60. 60.
    S. Braun, W.R. Salaneck, M. Fahlman, Adv. Mater. 21, 1450 (2009)CrossRefGoogle Scholar
  61. 61.
    M. Oehzelt, N. Koch, G. Heimel, Nat. Commun. 5, 4174 (2014)ADSCrossRefGoogle Scholar
  62. 62.
    M. Linares, D. Beljonne, J. Cornil, K. Lancaster, J.-L. Brédas, S. Verlaak, A. Mityashin, P. Heremans, A. Fuchs, C. Lennartz, J. Idé, R. Méreau, P. Aurel, L. Ducasse, F. Castet, J. Phys. Chem. C 114, 3215 (2010)CrossRefGoogle Scholar
  63. 63.
    C.D. Wessendorf, A. Perez-Rodriguez, J. Hanisch, A.P. Arndt, I. Ata, G.L. Schulz, A. Quintilla, P. Bäuerle, U. Lemmer, P. Wochner, E. Ahlswede, E. Barrena, J. Mater. Chem. A 4, 2571 (2016)CrossRefGoogle Scholar
  64. 64.
    R. García, R. Magerle, R. Perez, Nat. Mater. 6, 405 (2007)ADSCrossRefGoogle Scholar
  65. 65.
    V. Palermo, G. Ridolfi, A.M. Talarico, L. Favaretto, G. Barbarella, N. Camaioni, P. Samorì, Adv. Funct. Mater. 17, 472 (2007)CrossRefGoogle Scholar
  66. 66.
    E.J. Spadafora, R. Demadrille, B. Ratier, B. Grévin, Nano Lett. 10, 3337 (2010)ADSCrossRefGoogle Scholar
  67. 67.
    D.J. Ellison, J.Y. Kim, D.M. Stevens, C.D. Frisbie, J. Am. Chem. Soc. 133, 13802 (2011)CrossRefGoogle Scholar
  68. 68.
    G. Shao, M.S. Glaz, F. Ma, H. Ju, D.S. Ginger, ACS Nano 8, 10799 (2014)CrossRefGoogle Scholar
  69. 69.
    B. Grévin, P.-O. Schwartz, L. Biniek, M. Brinkmann, N. Leclerc, E. Zaborova, S. Méry, Beilstein J. Nanotechnol. 7, 799 (2016)CrossRefGoogle Scholar
  70. 70.
    N. Adhikari, A. Dubey, D. Khatiwada, A.F. Mitul, Q. Wang, S. Venkatesan, A. Iefanova, J. Zai, X. Qian, M. Kumar, Q. Qiao, A.C.S. Appl, Mater. Interfaces 7, 26445 (2015)CrossRefGoogle Scholar
  71. 71.
    J.-J. Li, J.-Y. Ma, Q.-Q. Ge, J.-S. Hu, D. Wang, L.-J. Wan, A.C.S. Appl, Mater. Interfaces 7, 28518 (2015)CrossRefGoogle Scholar
  72. 72.
    J.-J. Li, J.-Y. Ma, J.-S. Hu, D. Wang, L.-J. Wan, A.C.S. Appl, Mater. Interfaces 8, 26002 (2016)CrossRefGoogle Scholar
  73. 73.
    D. Kim, G.Y. Kim, C. Ko, S.R. Pae, Y.S. Lee, O. Gunawan, D.F. Ogletree, W. Jo, B. Shin, J. Phys. Chem. C 120, 21330 (2016)CrossRefGoogle Scholar
  74. 74.
    J.S. Yun, A. Ho-Baillie, S. Huang, S.H. Woo, Y. Heo, J. Seidel, F. Huang, Y.-B. Cheng, M.A. Green, J. Phys. Chem. Lett. 6, 875 (2015)CrossRefGoogle Scholar
  75. 75.
    J.S. Yun, J. Seidel, J. Kim, A.M. Soufiani, S. Huang, J. Lau, N.J. Jeon, S.I. Seok, M.A. Green, A. Ho-Baillie, Adv. Energy Mater. 6, 1600330 (2016)CrossRefGoogle Scholar
  76. 76.
    Y.C. Kim, N.J. Jeon, J.H. Noh, W.S. Yang, J. Seo, J.S. Yun, A. Ho-Baillie, S. Huang, M.A. Green, J. Seidel, T.K. Ahn, S.I. Seok, Adv. Energy Mater. 6, 1502104 (2016)CrossRefGoogle Scholar
  77. 77.
    Y. Sugawara, L. Kou, Z. Ma, T. Kamijo, Y. Naitoh, Y.J. Li, Appl. Phys. Lett. 100, 223104 (2012)ADSCrossRefGoogle Scholar
  78. 78.
    J.L. Garrett, E.M. Tennyson, M. Hu, J. Huang, J.N. Munday, M.S. Leite, Nano Lett. 17, 2554 (2017)ADSCrossRefGoogle Scholar
  79. 79.
    J.L. Garrett, J.N. Munday, Nanotechnology 27, 245705 (2016)ADSCrossRefGoogle Scholar
  80. 80.
    J. Lee, J. Kong, H. Kim, S.-O. Kang, K. Lee, Appl. Phys. Lett. 99, 243301 (2011)ADSCrossRefGoogle Scholar
  81. 81.
    J. Kong, J. Lee, Y. Jeong, M. Kim, S.-O. Kang, K. Lee, Appl. Phys. Lett. 100, 213305 (2012)ADSCrossRefGoogle Scholar
  82. 82.
    R. Saive, M. Scherer, C. Mueller, D. Daume, J. Schinke, M. Kroeger, W. Kowalsky, Adv. Funct. Mater. 23, 5854 (2013)CrossRefGoogle Scholar
  83. 83.
    M.D. Clark, M.L. Jespersen, R.J. Patel, B.J. Leever, A.C.S. Appl, Mater. Interfaces 5, 4799 (2013)CrossRefGoogle Scholar
  84. 84.
    B. Cao, X. He, C.R. Fetterly, B.C. Olsen, E.J. Luber, J.M. Buriak, A.C.S. Appl, Mater. Interfaces 8, 18238 (2016)CrossRefGoogle Scholar
  85. 85.
    L. Bürgi, H. Sirringhaus, R.H. Friend, Appl. Phys. Lett. 80, 2913 (2002)ADSCrossRefGoogle Scholar
  86. 86.
    R. Saive, C. Mueller, J. Schinke, R. Lovrincic, W. Kowalsky, Appl. Phys. Lett. 103, 243303 (2013)ADSCrossRefGoogle Scholar
  87. 87.
    M. Scherer, R. Saive, D. Daume, M. Kröger, W. Kowalsky, AIP Adv. 3, 092134 (2013)ADSCrossRefGoogle Scholar
  88. 88.
    Q. Chen, L. Mao, Y. Li, T. Kong, N. Wu, C. Ma, S. Bai, Y. Jin, D. Wu, W. Lu, B. Wang, L. Chen, Nat. Commun. 6, 7745 (2015)ADSCrossRefGoogle Scholar
  89. 89.
    A. Guerrero, E.J. Juarez-Perez, J. Bisquert, I. Mora-Sero, G. Garcia-Belmonte, Appl. Phys. Lett. 105, 133902 (2014)ADSCrossRefGoogle Scholar
  90. 90.
    V.W. Bergmann, S.A.L. Weber, F.J. Ramos, M.K. Nazeeruddin, M. Grätzel, D. Li, A.L. Domanski, I. Lieberwirth, S. Ahmad, R. Berger, Nat. Commun. 5, 5001 (2014)CrossRefGoogle Scholar
  91. 91.
    V.W. Bergmann, Y. Guo, H. Tanaka, I.M. Hermes, D. Li, A. Klasen, S.A. Bretschneider, E. Nakamura, R. Berger, S.A.L. Weber, A.C.S. Appl, Mater. Interfaces 8, 19402 (2016)CrossRefGoogle Scholar
  92. 92.
    M. Takihara, T. Takahashi, T. Ujihara, Appl. Phys. Lett. 93, 021902 (2008)ADSCrossRefGoogle Scholar
  93. 93.
    Ł. Borowik, H. Lepage, N. Chevalier, D. Mariolle, O. Renault, Nanotechnology 25, 265703 (2014)ADSCrossRefGoogle Scholar
  94. 94.
    P.A. Fernández Garrillo, Ł. Borowik, F. Caffy, R. Demadrille, B. Grévin, ACS Appl. Mater. Interfaces 8, 31460 (2016)CrossRefGoogle Scholar
  95. 95.
    F. Caffy, N. Delbosc, P. Chávez, P. Lévêque, J. Faure-Vincent, J.-P. Travers, D. Djurado, J. Pécaut, B. Grévin, N. Lemaitre, N. Leclerc, R. Demadrille, Polym. Chem. 7, 4160 (2016)CrossRefGoogle Scholar
  96. 96.
    L. Kaake, X.-D. Dang, W.L. Leong, Y. Zhang, A. Heeger, T.-Q. Nguyen, Adv. Mater. 25, 1706 (2013)CrossRefGoogle Scholar
  97. 97.
    Z. Schumacher, Y. Miyahara, A. Spielhofer, P. Grutter, Phys. Rev. Applied 5, 044018 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.National Center for Scientific Research – CNRS, UMR5819 CEA-CNRS-UGA, CEA-INAC/SYMMESGrenoble Cedex 9France

Personalised recommendations