Advertisement

\(\mathcal {SATYA}\): Defending Against Adversarial Attacks Using Statistical Hypothesis Testing

  • Sunny RajEmail author
  • Laura Pullum
  • Arvind Ramanathan
  • Sumit Kumar Jha
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10723)

Abstract

The paper presents a new defense against adversarial attacks for deep neural networks. We demonstrate the effectiveness of our approach against the popular adversarial image generation method DeepFool. Our approach uses Wald’s Sequential Probability Ratio Test to sufficiently sample a carefully chosen neighborhood around an input image to determine the correct label of the image. On a benchmark of 50,000 randomly chosen adversarial images generated by DeepFool we demonstrate that our method \(\mathcal {SATYA}\) is able to recover the correct labels for 95.76% of the images for CaffeNet and 97.43% of the correct label for GoogLeNet.

Notes

Acknowledgments

The authors would like to thank the US Air Force for support provided through the AFOSR Young Investigator Award to Sumit Jha. The authors acknowledge support from the National Science Foundation Software & Hardware Foundations #1438989 and Exploiting Parallelism & Scalability #1422257 projects. This material is based upon work supported by the Air Force Office of Scientific Research under award number FA9550-16-1-0255. This research was partially supported by ORNL’s Laboratory Directed Research and Development (LDRD) proposal 7899. This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy.

References

  1. 1.
    Denton, E.L., Chintala, S., Fergus, R., et al.: Deep generative image models using a Laplacian pyramid of adversarial networks. In: Advances in Neural Information Processing Systems, pp. 1486–1494 (2015)Google Scholar
  2. 2.
    Fawzi, A., Fawzi, O., Frossard, P.: Analysis of classifiers’ robustness to adversarial perturbations. arXiv preprint arXiv:1502.02590 (2015)
  3. 3.
    Fawzi, A., Fawzi, O., Frossard, P.: Fundamental limits on adversarial robustness. In: Proceedings of ICML, Workshop on Deep Learning (2015)Google Scholar
  4. 4.
    Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)Google Scholar
  5. 5.
    Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014)
  6. 6.
    Grosse, K., Manoharan, P., Papernot, N., Backes, M., McDaniel, P.D.: On the (statistical) detection of adversarial examples. CoRR abs/1702.06280 (2017). http://arxiv.org/abs/1702.06280
  7. 7.
    Hendrik Metzen, J., Genewein, T., Fischer, V., Bischoff, B.: On detecting adversarial perturbations. ArXiv e-prints, February 2017Google Scholar
  8. 8.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 25, pp. 1097–1105. Curran Associates Inc., New York (2012). http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf Google Scholar
  9. 9.
    Kurakin, A., Goodfellow, I., Bengio, S.: Adversarial machine learning at scale. arXiv preprint arXiv:1611.01236 (2016)
  10. 10.
    Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014)
  11. 11.
    Miyato, T., Maeda, S.I., Koyama, M., Nakae, K., Ishii, S.: Distributional smoothing with virtual adversarial training. arXiv preprint arXiv:1507.00677 (2015)
  12. 12.
    Moosavi-Dezfooli, S.M., Fawzi, A., Frossard, P.: DeepFool: a simple and accurate method to fool deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2574–2582 (2016)Google Scholar
  13. 13.
    Muller, M.E.: A note on a method for generating points uniformly on n-dimensional spheres. Commun. ACM 2(4), 19–20 (1959). http://doi.acm.org/10.1145/377939.377946 CrossRefzbMATHGoogle Scholar
  14. 14.
    Nguyen, A., Yosinski, J., Clune, J.: Deep neural networks are easily fooled: high confidence predictions for unrecognizable images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 427–436 (2015)Google Scholar
  15. 15.
    Papernot, N., McDaniel, P., Goodfellow, I.: Transferability in machine learning: from phenomena to black-box attacks using adversarial samples. arXiv preprint arXiv:1605.07277 (2016)
  16. 16.
    Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z.B., Swami, A.: The limitations of deep learning in adversarial settings. In: 2016 IEEE European Symposium on Security and Privacy (EuroS&P), pp. 372–387. IEEE (2016)Google Scholar
  17. 17.
    Raj, S., Ramanathan, A., Pullum, L.L., Jha, S.K.: Testing autonomous cyber-physical systems using fuzzing features derived from convolutional neural networks. In: ACM SIGBED International Conference on Embedded Software (EMSOFT). ACM, Seoul (2017)Google Scholar
  18. 18.
    Ramanathan, A., Pullum, L.L., Hussain, F., Chakrabarty, D., Jha, S.K.: Integrating symbolic and statistical methods for testing intelligent systems: applications to machine learning and computer vision. In: 2016 Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 786–791. IEEE (2016)Google Scholar
  19. 19.
    Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. (IJCV) 115(3), 211–252 (2015)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Sabour, S., Cao, Y., Faghri, F., Fleet, D.J.: Adversarial manipulation of deep representations. arXiv preprint arXiv:1511.05122 (2015)
  21. 21.
    Shaham, U., Yamada, Y., Negahban, S.: Understanding adversarial training: increasing local stability of neural nets through robust optimization. arXiv preprint arXiv:1511.05432 (2015)
  22. 22.
    Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.E., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. CoRR abs/1409.4842 (2014). http://arxiv.org/abs/1409.4842
  23. 23.
    Wald, A.: Sequential Analysis. Wiley, Hoboken (1947)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Sunny Raj
    • 1
    Email author
  • Laura Pullum
    • 2
  • Arvind Ramanathan
    • 2
  • Sumit Kumar Jha
    • 1
  1. 1.Computer Science DepartmentUniversity of Central FloridaOrlandoUSA
  2. 2.Computational Science and Engineering DivisionOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations