Advertisement

Factorization Method and General Second Order Linear Difference Equation

  • Alina Dobrogowska
  • Mahouton Norbert Hounkonnou
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 230)

Abstract

This paper addresses an investigation on a factorization method for difference equations. It is proved that some classes of second order linear difference operators, acting in Hilbert spaces, can be factorized using a pair of mutually adjoint first order difference operators. These classes encompass equations of hypergeometric type describing classical orthogonal polynomials of a discrete variable.

Keywords

Second order difference equations Factorization method Raising and lowering operators Discrete polynomials 

Notes

Acknowledgements

AD is partially supported by the Santander Universidades grant. She also would like to thank the organizers of ICDDEA 2017 in Amadora, Portugal, for their hospitality.

References

  1. 1.
    Álvarez-Nodarse, R., Atakishiyev, N.M., Costas-Santos, R.S.: Factorization of the hypergeometric-type difference equation on non-uniform lattices: dynamical algebra. J. Phys. A Math. Gen. 38, 153–174 (2005)Google Scholar
  2. 2.
    Álvarez-Nodarse, R., Atakishiyev, N.M., Costas-Santos, R.S.: Factorization of the hypergeometric-type difference equation on the uniform lattice. ETNA Electronic Transactions on Numerical Analysis 27, 34–50 (2007)Google Scholar
  3. 3.
    Bangerezako, G., Hounkonnou, M.N.: The transformation of polynomial eigenfunctions of linear second order difference operators: a special case of Meixner polynomials. J. Phys. A Math. Gen. 34, 1–14 (2001)Google Scholar
  4. 4.
    Bangerezako, G., Hounkonnou, M.N.: The transformation of polynomial eigenfunctions of linear second-order q-difference operators: a special case of q-Jacobi polynomials. In: Proceedings of the Second International Workshop on Contemporary Problems in Mathematical Physics, vol. 2, pp. 427–439. World Scientific Publishing, Singapore (2002)Google Scholar
  5. 5.
    Bangerezako, G., Hounkonnou, M.N.: The Factorization method for the general second order q-difference equation and the Laguerre-Hahn polynomials on the general q-lattice. J. Phys. A Math. Gen. 36, 765–773 (2003)Google Scholar
  6. 6.
    Darboux, G.: Sur une proposition relative aux equations lineaires. C. R. Acad. Sci. Paris 94, 1456–1459 (1882)Google Scholar
  7. 7.
    Dirac, P.A.M.: The Principles of Quantum Mechanics. Clarendon Press, Oxford (1947)Google Scholar
  8. 8.
    Dobrogowska, A., Filipuk, G.: Factorization method applied to second-order \((q, h)\)-difference operators. Int. J. Differ. Equ. 11(1), 3–17 (2016)Google Scholar
  9. 9.
    Dobrogowska, A., Jakimowicz, G.: Factorization method for \((q,h)\)-Hahn orthogonal polynomials. Geometric Methods in Physics. Part of the Series Trends in Mathematics, pp. 237–246. Springer International Publishing, Birkhäuser, Switzerland, Basel (2015)Google Scholar
  10. 10.
    Dobrogowska, A., Jakimowicz, G.: Factorization method applied to the second order difference equations. Appl. Math. Lett. 74, 161–166 (2017)Google Scholar
  11. 11.
    Dobrogowska, A., Odzijewicz, A.: Second order \(q\)-difference equations solvable by factorization method. J. Comput. Appl. Math. 193(1), 319–346 (2006)Google Scholar
  12. 12.
    Dobrogowska, A., Odzijewicz, A.: Solutions of the \(q\)-deformed Schrödinger equation for special potentials. J. Phys. A Math. Theor. 40(9), 2023–2036 (2007)Google Scholar
  13. 13.
    Dong, S.-H.: Factorization Method in Quantum Mechanics. Kluwer Academic Press, Springer (2007)Google Scholar
  14. 14.
    Fernández, D.J.: New hydrogen-like potentials. Lett. Math. Phys. 8, 337–343 (1984)Google Scholar
  15. 15.
    Gesztesy, F., Teschl, G.: Commutation methods for Jacobi operators. J. Differ. Equ. 128, 252–299 (1996)Google Scholar
  16. 16.
    Goliński, T., Odzijewicz, A.: Factorization method for second order functional equations. J. Comput. Appl. Math. 176(2), 331–355 (2005)Google Scholar
  17. 17.
    Infeld, L., Hull, T.E.: The Factorization Method. Rev. Mod. Phys. 23, 21–68 (1951)Google Scholar
  18. 18.
    de Lange, O.L., Raab, R.E.: Operator Methods in Quantum Mechanics. Claredon Press, Oxford (1991)Google Scholar
  19. 19.
    Mielnik, B.: Factorization method and new potentials with the oscillator spectrum. J. Math. Phys. 25, 3387 (1984)Google Scholar
  20. 20.
    Mielnik, B., Nieto, L.M., Rosas-Ortiz, O.: The finite difference algorithm for higer order supersymmetry. Phys. Lett. A 269(2), 70–78 (2000)Google Scholar
  21. 21.
    Mielnik, B., Rosas-Ortiz, O.: Factorization: little or great algorithm? J. Phys. A Math. Gen. 37, 10007 (2004)Google Scholar
  22. 22.
    Miller Jr., W.: Lie theory and difference equations. I. J. Math. Anal. Appl. 28, 383–399 (1969)Google Scholar
  23. 23.
    Miller Jr., W.: Lie theory and \(q\)-difference equations. SIAM J. Math. Anal. 1(2), 171–188 (1970)Google Scholar
  24. 24.
    Nikiforov, A.F., Suslov, S.K., Uvarov, V.B.: Classical Orthogonal Polynomials of a Discrete Variable. Springer Series in Computational Physices. Springer, Berlin (1991)Google Scholar
  25. 25.
    Schrödinger, E.: A method of determining quantum-mechanical eigenvalues and eigenfunctions. Proc. Roy Irish Acad. Sect. A 46, 9–16 (1940)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Alina Dobrogowska
    • 1
  • Mahouton Norbert Hounkonnou
    • 2
  1. 1.Institute of MathematicsUniversity of BiałystokBiałystokPoland
  2. 2.International Chair in Mathematical Physics and Applications (ICMPA–UNESCO Chair)University of Abomey-CalaviCotonouRepublic of Benin

Personalised recommendations