Fuel Processing for Solid Oxide Fuel Cells

  • Izabela S. Pieta
  • Alessandro Donazzi
  • Carlo Resini
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

Fuel flexibility is a major advantage of SOFC technology. In addition to H2, operations with synthesis gas, biogas, alcohols, and light hydrocarbons are feasible provided that appropriate conditions are respected. The chapter reviews the operational modes and the anodic materials that have been proposed in the literature to run SOFCs with non-H2 fuels, as well as the methods that can be applied to clean the fuel feedstock from impurities (tars and species based on sulfur, nitrogen, and halogen). SOFC stacks can be run under four main configurations, depending on the position of the reformer (external or integrated) and on the possibility of directly processing the incoming fuel in the anodic electrode (Sect. 4.3). The feasibility of direct reforming or oxidation operations needs to be evaluated based on thermodynamic (Sect. 4.4) and kinetic considerations (Sect. 4.5), in order to avoid impairing the anode due to carbon formation or poisoning with impurities. Although they are still the most widespread choice, the behavior of standard Ni-YSZ cermet anodes (Sect. 4.6) poses problems in terms of sulfur and C tolerance, especially when the steam supply is lowered to achieve direct oxidation modes. Several strategies can be adopted to overcome these issues, by modification of the anodic materials (Sect. 4.7): Ni can be partially substituted or alloyed with transition or noble metals; Ni can be entirely replaced by different metals or oxides; protective barriers or oxide ion transferring or storing materials (MIEC, OSM) can be added to the standard Ni-YSZ cermet. In the case of external reforming solutions, the catalyst also experiences coking and poisoning issues, and its lifetime can be improved by strategies similar to those applied in SOFC anodes (Sect. 4.8). Several methods are available to remove impurities from feedstock: Those based on the use of alkaline sorbents and on catalytic decomposition are reviewed (Sect. 4.9).

Keywords

Reforming Direct oxidation Cleaning Alternative fuels 

References

  1. 1.
    Nigam P, Singh A (2011) Production of liquid biofuels from renewable resources. Prog Energry Combust Sci 37:52–68CrossRefGoogle Scholar
  2. 2.
    Olah GA, Prakash GKS (2007) US Patent No. 7906559 B2Google Scholar
  3. 3.
    Román-Leshkov Y, Barrett CJ, Liu ZY et al (2007) Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates. Nature 447:982–986CrossRefGoogle Scholar
  4. 4.
    Mascal EBN, Angew M (2008) Direct, high-yield conversion of cellulose into biofuel. Chem Int Ed 47:7924–7926CrossRefGoogle Scholar
  5. 5.
    Alonso DM, Bond JQ, Dumesic JA (2010) Catalytic conversion of biomass to biofuels. Green Chem 12:1493–1513CrossRefGoogle Scholar
  6. 6.
    Naik S, Goud V, Rout P (2010) Production of first and second generation biofuels: a comprehensive review. Renew Sustain Energy Rev 14:578–597CrossRefGoogle Scholar
  7. 7.
    Liu G, Yan B, Chen G (2013) Technical review on jet fuel production. Renew Sustain Energy Rev 25:59–70CrossRefGoogle Scholar
  8. 8.
    Damartzis T, Zabaniotou A (2011) Thermochemical conversion of biomass to second generation biofuels through integrated process design—a review. Renew Sustain Energy Rev 15:366–378CrossRefGoogle Scholar
  9. 9.
    Lasa H, Salaices E, Mazumder J (2011) Catalytic steam gasification of biomass: catalysts, thermodynamics and kinetics. Chem Rev 111:5404–5433CrossRefGoogle Scholar
  10. 10.
    Cotana F, Cavalaglio G, Gelosi M (2014) Production of bioethanol in a second generation prototype from pine wood chips. Energy Proc 45:42–51CrossRefGoogle Scholar
  11. 11.
    Abdollahifar M, Haghighi M, Babaluo AA (2014) Syngas production via dry reforming of methane over Ni/Al2O3–MgO. J Ind Energy Chem 20:1845–1851CrossRefGoogle Scholar
  12. 12.
    Jankhah S, Abatzoglou N, Gitzhofer F (2008) Thermal and catalytic dry reforming and cracking of ethanol for hydrogen and carbon nano laments’ production. Int J Hydrogen Energy 33:4769CrossRefGoogle Scholar
  13. 13.
    Agrafiotis C, Roeb M, Sattler C (2015) A review on solar thermal syngas production via redox pair-based water/carbon dioxide splitting thermochemical cycles. Renew Sustain Energy Rev 42:254–285CrossRefGoogle Scholar
  14. 14.
    Staniforth J, Kendall K (1998) Biogas powering a small tubular solid oxide fuel cell. J Power Sources 71:275–277CrossRefGoogle Scholar
  15. 15.
    Bonura G, Cannilla C, Frusteri F (2012) Ceria gadolinia supported NiCu catalyst: a suitable system for dry reforming of biogas to feed a solid oxide fuel cell (SOFC). Appl Catal B Env 121–122:135–147CrossRefGoogle Scholar
  16. 16.
    Dietrich R, Oelze J, Lindermeir A (2014) Power generation from biogas using SOFC—results for a 1 kWe demonstration unit. Fuel Cells 14:239–250CrossRefGoogle Scholar
  17. 17.
    Miyake M, Iwami M, Goto K et al (2017) Intermediate-temperature solid oxide fuel cell employing reformed effective biogas: Power generation and inhibition of carbon deposition. J Power Sources 340:319–324CrossRefGoogle Scholar
  18. 18.
    Sigot L, Obis MF, Benbelkacem H (2016) Comparing the performance of a 13X zeolite and an impregnated activated carbon for H2S removal from biogas to fuel an SOFC: Influence of water. Int J Hydrogen Energy 41:18533–18541CrossRefGoogle Scholar
  19. 19.
    Shiratori Y, Sakamoto M (2016) Performance improvement of direct internal reforming solid oxide fuel cell fuelled by H2S-contaminated biogas with paper-structured catalyst technology. J Power Sources 332:170–179CrossRefGoogle Scholar
  20. 20.
    Moulod M, Jalali A, Asmatulu R (2016) Biogas derived from municipal solid waste to generate electrical power through solid oxide fuel cells. Int J Energy Res 40:L2091–L2104CrossRefGoogle Scholar
  21. 21.
    Hauptmeier K, Penkuhn M, Tsatsaronis G (2016) Economic assessment of a solid oxide fuel cell system for biogas utilization in sewage plants. Energy Fuels 117:361–368Google Scholar
  22. 22.
    Piroonlerkgul P, Assabumrungrat S, Laosiripojana N et al (2008) Selection of appropriate fuel processor for biogas-fuelled SOFC system. Chem Eng J 140:341–351CrossRefGoogle Scholar
  23. 23.
    Chiodo V, Galvagno A, Lanzini A (2015) Biogas reforming process investigation for SOFC application. Energy Convers Manage 98:252–258CrossRefGoogle Scholar
  24. 24.
    Van J, Membrez Y, Bucheli O (2010) Biogas as a fuel source for SOFC co-generators. J Power Sources 127:300–312Google Scholar
  25. 25.
    Tjaden B, Gandiglio M, Lanzini A (2014) Small-scale biogas-SOFC plant: technical analysis and assessment of different fuel reforming options. Energy Fuels 28:4216–4232CrossRefGoogle Scholar
  26. 26.
    Murphy D, Richards A, Colclasure A (2012) Biogas fuel reforming for solid oxide fuel cells. J Renew Sustain Energy 10(1063/1):3697857Google Scholar
  27. 27.
    Shiratori Y, Ijichi T, Oshima T (2010) Internal reforming SOFC running on biogas. Int J Hydrogen Energy 35:7905–7912CrossRefGoogle Scholar
  28. 28.
    Authayanun S, Pornjarungsak T, Prukpraipadung T (2016) SOFC running on steam reforming of biogas external and internal reforming. Chem Eng Trans 52(1):173.  https://doi.org/10.3303/CET1652061CrossRefGoogle Scholar
  29. 29.
    Colmenares JC, Quintero RF, Pieta I (2016) Catalytic dry reforming for biomass-based fuels processing: progress and future perspectives. Energy Technol 4:881–890CrossRefGoogle Scholar
  30. 30.
    Kaltschmitt T, Deutschmann O (2012) Fuel processing for fuel cells, 1st edn. Adv Chem Eng.  https://doi.org/10.1016/b978-0-12-386874-9.00001-4CrossRefGoogle Scholar
  31. 31.
    Brus G (2012) Experimental and numerical studies on chemically reacting gas flow in the porous structure of a solid oxide fuel cells internal fuel reformer. Int J Hydrogen Energy 37:17225–17234CrossRefGoogle Scholar
  32. 32.
    Braun R, Vincent T, Zhu H (2012) Chapter 7—Analysis, optimization, and control of solid-oxide fuel cell systems, 1st edn. Fuel Cell Eng.  https://doi.org/10.1016/b978-0-12-386874-9.00011-7CrossRefGoogle Scholar
  33. 33.
    Brandon NNP, Thompsett D (2005) Fuel cells compendium. ElsevierGoogle Scholar
  34. 34.
    Bertoldi M, Bucheli O, Ravagni A (2015) Development, manufacturing and deployment of SOFC-based products at SOLIDpower. ECS Trans 68:117–123CrossRefGoogle Scholar
  35. 35.
    Borglum BP, Ghezel-Ayagh H (2015) Development of solid oxide fuel cells at versa power systems and FuelCell energy. ECS Trans 68:89–94CrossRefGoogle Scholar
  36. 36.
    Bucheli O, Bertoldi M, Modena S (2013) Development and manufacturing of SOFC-based products at SOFCpower SpA. ECS Trans 57:81–88CrossRefGoogle Scholar
  37. 37.
    Miyamoto K, Mihara M, Oozawa H (2015) Recent progress of SOFC combined cycle system with segmented-in-series tubular type cell stack at MHPS. ECS Trans 68:51–58CrossRefGoogle Scholar
  38. 38.
    Strohbach T, Mittmann F, Walter C (2015) Sunfire industrial SOC stacks and modules. ECS Trans 68:125–129CrossRefGoogle Scholar
  39. 39.
    Suzuki M, Takuwa Y, Inoue S (2013) Durability verification of residential SOFC CHP system. ECS Trans 57:309–314CrossRefGoogle Scholar
  40. 40.
    Sohn S, Baek S, Nam J (2016) Two-dimensional micro/macroscale model for intermediate-temperature solid oxide fuel cells considering the direct internal reforming of methane. Int J Hydrogen Energy 41:5582–5597CrossRefGoogle Scholar
  41. 41.
    Mogensen D, Grunwaldt J, Hendriksen P (2011) Internal steam reforming in solid oxide fuel cells: status and opportunities of kinetic studies and their impact on modelling. J Power Sources 196:25–38.  https://doi.org/10.1016/j.jpowsour.2010.06.091CrossRefGoogle Scholar
  42. 42.
    Braun R, Klein S, Reindl D (2006) Evaluation of system configurations for solid oxide fuel cell-based micro-combined heat and power generators in residential applications. J Power Sources 158:1290–1305CrossRefGoogle Scholar
  43. 43.
    Huang G, John B (2009) Solid oxide fuel cell technology principles, performance and operations. Woodhead Publishing Limited, Cambridge, UKCrossRefGoogle Scholar
  44. 44.
    Liu M, Aravind PV (2014) The fate of tars under solid oxide fuel cell conditions: a review. Appl Therm Eng 70:687–693CrossRefGoogle Scholar
  45. 45.
    Offer GJ, Mermelstein J, Brightman E (2009) Thermodynamics and kinetics of the interaction of carbon and sulfur with solid oxide fuel cell anodes. J Am Ceram Soc 92:763–780CrossRefGoogle Scholar
  46. 46.
    Sasaki K, Teraoka Y (2003) Equilibria in fuel cell gases: I. Equilibrium compositions and reforming conditions. J Electrochem Soc 150:A878–A884CrossRefGoogle Scholar
  47. 47.
    Sasaki K, Teraoka Y (2003) Equilibria in fuel cell gases: II. The C–H–O ternary diagrams. J Electrochem Soc 150:A885–A888CrossRefGoogle Scholar
  48. 48.
    Singh D, Hernández-Pacheco E, Hutton PN (2005) Carbon deposition in an SOFC fueled by tar-laden biomass gas: a thermodynamic analysis. J Power Sources 142:194–199CrossRefGoogle Scholar
  49. 49.
    Norheim A, Lindberg D, Hustad JE (2009) Equilibrium calculations of the composition of trace compounds from biomass gasification in the solid oxide fuel cell operating temperature interval. Energy Fuels 23:920–925CrossRefGoogle Scholar
  50. 50.
    Argyle DM, Bartholomew HC (2015) Heterogeneous catalyst deactivation and regeneration: a review. Catalysts 5:145–269CrossRefGoogle Scholar
  51. 51.
    Bartholomew CH (1982) Carbon deposition in steam reforming and methanation. Cat Rev 24:67–112CrossRefGoogle Scholar
  52. 52.
    Bartholomew CH (2001) Mechanisms of catalyst deactivation. Appl Cat A Gen 212:17–60CrossRefGoogle Scholar
  53. 53.
    Schluckner C, Subotić V, Lawlor V (2016) Numerical SOFC anode catalyst occupation study: internal reforming of carbonaceous fuel mixtures. J Electrochem Soc 163:F761–F770CrossRefGoogle Scholar
  54. 54.
    Yurkiv V, Latz A, Bessler WG (2013) Modeling and simulation the influence of solid carbon formation on SOFC performance and degradation. ECS Trans 57:2637–2647CrossRefGoogle Scholar
  55. 55.
    Gupta GK, Dean AM, Ahn K (2006) Comparison of conversion and deposit formation of ethanol and butane under SOFC conditions. J Power Sources 158:497–503CrossRefGoogle Scholar
  56. 56.
    Gupta GK, Hecht ES, Zhu H (2006) Gas-phase reactions of methane and natural-gas with air and steam in non-catalytic regions of a solid-oxide fuel cell. J Power Sources 156:434–447CrossRefGoogle Scholar
  57. 57.
    Sheng CY, Dean AM (2004) Importance of gas-phase kinetics within the anode channel of a solid-oxide fuel cell. J Phys Chem A 108:3772–3783CrossRefGoogle Scholar
  58. 58.
    Kim H, Lu C, Worrell WL (2002) Cu–Ni cermet anodes for direct oxidation of methane in solid-oxide fuel cells. J Electrochem Soc 149:A247–A250CrossRefGoogle Scholar
  59. 59.
    Kim T, Liu G, Boaro M (2006) A study of carbon formation and prevention in hydrocarbon-fueled SOFC. J Power Sources 155:231–238CrossRefGoogle Scholar
  60. 60.
    Ormerod R (2003) High temperature and solid oxide fuel cells, pp 333–361.  https://doi.org/10.1016/b978-185617387-2/50029-5
  61. 61.
    Ormerod R (2003) Solid oxide fuel cells. Chem Soc Rev.  https://doi.org/10.1039/b105764mCrossRefGoogle Scholar
  62. 62.
    Shaikh S, Muchtar A, Somalu M (2015) A review on the selection of anode materials for solid-oxide fuel cells. Renew Sustain Energy Rev 51:1–8CrossRefGoogle Scholar
  63. 63.
    Mobius H-H (1997) On the history of solid electrolyte fuel cells. J Solid State Electrochem 1:2–16CrossRefGoogle Scholar
  64. 64.
    Prakash BS, Kumar SS, Aruna S (2014) Properties and development of Ni-YSZ as an anode material in solid oxide fuel cell: a review. Renew Sustain Energy Rev 36:149–179CrossRefGoogle Scholar
  65. 65.
    Farhad S, Yoo Y, Hamdullahpur F (2010) Effects of fuel processing methods on industrial scale biogas-fuelled solid oxide fuel cell system for operating in wastewater treatment plants. J Power Sources 195:1446–1453CrossRefGoogle Scholar
  66. 66.
    Jiang S, Chan S (2004) A review of anode materials development in solid oxide fuel cells. J Mat Sci 39:4405–4439CrossRefGoogle Scholar
  67. 67.
    Johnson G, Hjalmarsson P, Norrman K (2016) Biogas catalytic reforming studies on nickel-based solid oxide fuel cell anodes. Fuel Cells 16:219–234CrossRefGoogle Scholar
  68. 68.
    Klemensø T, Chung C, Larsen P (2005) The mechanism behind redox instability of anodes in high-temperature SOFCs. J Electrochem Soc 152:A2186CrossRefGoogle Scholar
  69. 69.
    Boldrin P, Ruiz-Trejo E, Mermelstein J (2016) Strategies for carbon and sulfur tolerant solid oxide fuel cell materials, incorporating lessons from heterogeneous catalysis. Chem Rev 116:13633–13684 CrossRefGoogle Scholar
  70. 70.
    Galea N, Knapp D, Ziegler T (2007) Density functional theory studies of methane dissociation on anode catalysts in solid-oxide fuel cells: Suggestions for coke reduction. J Cat 247:20–33CrossRefGoogle Scholar
  71. 71.
    Mette K (2014) Stable performance of Ni catalysts in the dry reforming of methane at high temperatures for the efficient conversion of CO2 into syngas. ChemCatChem 6:100–104CrossRefGoogle Scholar
  72. 72.
    Bengaard H, Nørskov J, Sehested J (2002) Steam reforming and graphite formation on Ni catalysts. J Catal 209:365–384CrossRefGoogle Scholar
  73. 73.
    Cassidy M, Connor PA, Irvine JTS et al (2016) Anodes A2. In: Kendall M (ed) High-temperature solid oxide fuel cells for the 21st century. Academic Press, Boston, pp 133–160CrossRefGoogle Scholar
  74. 74.
    Cimenti M, Alzate-Restrepo V, Hill JM (2010) Direct utilization of methanol on impregnated Ni/YSZ and Ni–Zr0.35Ce0.65O2/YSZ anodes for solid oxide fuel cells. J Power Sources 195:4002–4012CrossRefGoogle Scholar
  75. 75.
    Cimenti M, Buccheri MA, Hill JM (2012) Direct utilization of methanol and ethanol on La0.75Sr0.25Cr0.5Mn0.5O3−δ anodes for solid oxide fuel cells. Electrocatalysis 3:59–67CrossRefGoogle Scholar
  76. 76.
    Dicks AL (1998) Advances in catalysts for internal reforming in high temperature fuel cells. J Power Sources 71:111–122CrossRefGoogle Scholar
  77. 77.
    Ge XN, Chan SH, Liu QL et al (2012) Solid oxide fuel cell anode materials for direct hydrocarbon utilization. Adv Ener Mat 2:1156–1181CrossRefGoogle Scholar
  78. 78.
    Irvine JTS (2009) Perovskite Oxide Anodes for SOFCs. In: Ishihara T (ed) Perovskite oxide for solid oxide fuel cells. Springer US, Boston, MA, pp 167–182CrossRefGoogle Scholar
  79. 79.
    Mahato N, Banerjee A, Gupta A et al (2015) Progress in material selection for solid oxide fuel cell technology: a review. Progr Mater Sci 72:141–337CrossRefGoogle Scholar
  80. 80.
    Wang W, Su C, Wu Y et al (2013) Progress in solid oxide fuel cells with nickel-based anodes operating on methane and related fuels. Chem Rev 113:8104–8151CrossRefGoogle Scholar
  81. 81.
    Qu J, Wang W, Chen Y et al (2015) Ethylene glycol as a new sustainable fuel for solid oxide fuel cells with conventional nickel-based anodes. Appl Energy 148:1–9CrossRefGoogle Scholar
  82. 82.
    Won JY, Sohn HJ, Song RH et al (2009) Glycerol as a bioderived sustainable fuel for solid-oxide fuel cells with internal reforming. ChemSusChem 2:1028–1031CrossRefGoogle Scholar
  83. 83.
    Sasaki K, Watanabe K, Teraoka Y (2004) Direct-alcohol SOFCs: current-voltage characteristics and fuel gas compositions. J Electrochem Soc 151:A965–A970CrossRefGoogle Scholar
  84. 84.
    Jiang Y, Virkar AV (2001) A high performance, anode-supported solid oxide fuel cell operating on direct alcohol. J Electrochem Soc 148:A706–A709CrossRefGoogle Scholar
  85. 85.
    Saunders GJ, Kendall K (2002) Reactions of hydrocarbons in small tubular SOFCs. J Power Sources 106:258–263CrossRefGoogle Scholar
  86. 86.
    Chen Y, Su C, Zheng T et al (2012) Coke-free direct formic acid solid oxide fuel cells operating at intermediate temperatures. J Power Sources 220:147–152CrossRefGoogle Scholar
  87. 87.
    Nahar G, Kendall K (2011) Biodiesel formulations as fuel for internally reforming solid oxide fuel cell. Fuel Proc Tech 92:1345–1354CrossRefGoogle Scholar
  88. 88.
    Shiratori Y, Tran TQ, Takahashi Y (2011) Application of biofuels to solid oxide fuel cell. ECS Trans 35:2641–2651CrossRefGoogle Scholar
  89. 89.
    Su C, Ran R, Wang W et al (2011) Coke formation and performance of an intermediate-temperature solid oxide fuel cell operating on dimethyl ether fuel. J Power Sources 196:1967–1974CrossRefGoogle Scholar
  90. 90.
    Chen K, Zhang L, Gholizadeh M (2016) Feasibility of tubular solid oxide fuel cells directly running on liquid biofuels. Chem Eng Sci 154:108–118CrossRefGoogle Scholar
  91. 91.
    Bierschenk DM, Pillai MR, Lin Y (2010) Effect of ethane and propane in simulated natural gas on the operation of Ni–YSZ anode supported solid oxide fuel cells. Fuel Cells 10:1129–1134CrossRefGoogle Scholar
  92. 92.
    Lin Y, Zhan Z, Barnett SA (2006) Improving the stability of direct-methane solid oxide fuel cells using anode barrier layers. J Power Sources 158:1313–1316CrossRefGoogle Scholar
  93. 93.
    Lo Faro M, Reis RM, Saglietti GGA et al (2014) Nickel–copper/gadolinium-doped ceria (CGO) composite electrocatalyst as a protective layer for a solid-oxide fuel cell anode fed with ethanol. ChemElectroChem 1:1395–1402CrossRefGoogle Scholar
  94. 94.
    Lo Faro M, Trocino S, Zignani SC et al (2016) Nickel–iron/gadolinium-doped ceria (CGO) composite electrocatalyst as a protective layer for a solid-oxide fuel cell anode fed with biofuels. ChemCatChem 8:648–655CrossRefGoogle Scholar
  95. 95.
    Nobrega SD, Galesco MV, Girona K et al (2012) Direct ethanol solid oxide fuel cell operating in gradual internal reforming. J Power Sources 213:156–159CrossRefGoogle Scholar
  96. 96.
    Nobrega SD, Gelin P, Georges S (2014) A fuel-flexible solid oxide fuel cell operating in gradual internal reforming. J Electrochem Soc 161:F354–F359CrossRefGoogle Scholar
  97. 97.
    Rosensteel WA, Babiniec SM, Storjohann DD (2012) Use of anode barrier layers in tubular solid-oxide fuel cells for robust operation on hydrocarbon fuels. J Power Sources 205:108–113CrossRefGoogle Scholar
  98. 98.
    Tao Z, Hou G, Xu N et al (2014) A highly coking-resistant solid oxide fuel cell with a nickel doped ceria: Ce1−xNixO2−y reformation layer. Int J Hydrogen Energy 39:5113–5120CrossRefGoogle Scholar
  99. 99.
    Zhan ZL, Barnett SA (2005) An octane-fueled solid oxide fuel cell. Science 308:844–847CrossRefGoogle Scholar
  100. 100.
    Besenbacher F, Chorkendorff I, Clausen B et al (1998) Design of a surface alloy catalyst for steam reforming. Science 279:1913–1915CrossRefGoogle Scholar
  101. 101.
    Nielsen LP, Besenbacher F, Stensgaard I et al (1993) Initial growth of Au on Ni(110): surface alloying of immiscible metals. Phys Rev Lett 71:754–757CrossRefGoogle Scholar
  102. 102.
    Kratzer P, Hammer B, Nørskov J (1996) A theoretical study of CH4 dissociation on pure and gold-alloyed Ni(111) surfaces. J Chem Phys 105:5595–5604CrossRefGoogle Scholar
  103. 103.
    Nabae Y, Yamanaka I (2009) Alloying effects of Pd and Ni on the catalysis of the oxidation of dry CH4 in solid oxide fuel cells. App Catal A Gen 369:119–124CrossRefGoogle Scholar
  104. 104.
    Wu X, Tian Y, Zhang J et al (2016) Enhanced electrochemical performance and carbon anti-coking ability of solid oxide fuel cells with silver modified nickel-yttrium stabilized zirconia anode by electroless plating. J Power Sources 301:143–150CrossRefGoogle Scholar
  105. 105.
    Wu X, Zhou X, Tian Y et al (2015) Preparation and electrochemical performance of silver impregnated Ni-YSZ anode for solid oxide fuel cell in dry methane. Int J Hydrogen Energy 40:16484–16493CrossRefGoogle Scholar
  106. 106.
    Babaei A, Zhang L, Liu E et al (2012) Performance and carbon deposition over Pd nanoparticle catalyst promoted Ni/GDC anode of SOFCs in methane, methanol and ethanol fuels. Int J Hydrogen Energy 37:15301–15310CrossRefGoogle Scholar
  107. 107.
    Ramos IAC, Montini T, Lorenzut B et al (2012) Hydrogen production from ethanol steam reforming on M/CeO2/YSZ (M = Ru, Pd, Ag) nanocomposites. Catal Today 180:96–104CrossRefGoogle Scholar
  108. 108.
    Sun LL, Liu LL, Luo LH et al (2016) Facile synthesis of flower-like Pd catalyst for direct ethanol solid oxide fuel cell. J Fuel Chem Techn 44:607–612CrossRefGoogle Scholar
  109. 109.
    Takeguchi T, Kikuchi R, Yano T et al (2003) Effect of precious metal addition to Ni-YSZ cermet on reforming of CH4 and electrochemical activity as SOFC anode. Catal Today 84:217–222CrossRefGoogle Scholar
  110. 110.
    Torniainen PM, Chu X, Schmidt LD (1994) Comparison of monolith-supported metals for the direct oxidation of methane to syngas. J Catal 146:1–10CrossRefGoogle Scholar
  111. 111.
    Donazzi A, Michael BC, Schmidt LD (2008) Chemical and geometric effects of Ce and washcoat addition on catalytic partial oxidation of CH4 on Rh probed by spatially resolved measurements. J Catal 260:270–275CrossRefGoogle Scholar
  112. 112.
    Nikolla E, Holewinski A, Schwank J et al (2006) Controlling carbon surface chemistry by alloying: carbon tolerant reforming catalyst. J Am Chem Soc 128:11354–11355CrossRefGoogle Scholar
  113. 113.
    Bardini L, Pappacena A, Dominguez-Escalante M et al (2016) Structural and electrocatalytic properties of molten core Sn@SnOx nanoparticles on ceria. Appl Catal B Env 197:254–261CrossRefGoogle Scholar
  114. 114.
    Kan H, Lee H (2010) Sn-doped Ni/YSZ anode catalysts with enhanced carbon deposition resistance for an intermediate temperature SOFC. Appl Catal B Env 97:108–114CrossRefGoogle Scholar
  115. 115.
    Gorte RJ, Vohs JM (2011) Catalysis in solid oxide fuel cells. Ann Rev Chem Biomol Eng 2:9–30CrossRefGoogle Scholar
  116. 116.
    Lu C, Worrell WL, Gorte RJ et al (2003) SOFCs for direct oxidation of hydrocarbon fuels with samaria-doped ceria electrolyte. J Electrochem Soc 150:A354–A358CrossRefGoogle Scholar
  117. 117.
    Lu C, Worrell WL, Vohs JM et al (2003) A comparison of Cu-ceria-SDC and Au-ceria-SDC composites for SOFC anodes. J Electrochem Soc 150:A1357–A1359CrossRefGoogle Scholar
  118. 118.
    McIntosh S, Gorte RJ (2004) Direct hydrocarbon solid oxide fuel cells. Chem Rev 104:4845–4866CrossRefGoogle Scholar
  119. 119.
    Jung SW, Vohs JM, Gorte RJ (2007) Preparation of SOFC anodes by electrodeposition. J Electrochem Soc 154:B1270–B1275CrossRefGoogle Scholar
  120. 120.
    Vohs JM, Gorte RJ (2009) High-performance SOFC cathodes prepared by infiltration. Adv Mater 21:943–956CrossRefGoogle Scholar
  121. 121.
    Liu Z, Liu B, Ding D et al (2013) Fabrication and modification of solid oxide fuel cell anodes via wet impregnation/infiltration technique. J Power Sources 237:243–259CrossRefGoogle Scholar
  122. 122.
    Xie Z, Xia C, Zhang M et al (2006) Ni1−xCux alloy-based anodes for low-temperature solid oxide fuel cells with biomass-produced gas as fuel. J Power Sources 161:1056–1061CrossRefGoogle Scholar
  123. 123.
    Zhou ZF, Kumar R, Thakur ST et al (2007) Direct oxidation of waste vegetable oil in solid-oxide fuel cells. J Power Sources 171:856–860CrossRefGoogle Scholar
  124. 124.
    Fuerte A, Valenzuela RX, Escudero MJ et al (2014) Study of a SOFC with a bimetallic Cu–Co–ceria anode directly fuelled with simulated biogas mixtures. Int J Hydrogen Energy 39:4060–4066CrossRefGoogle Scholar
  125. 125.
    Jung S, Gross MR, Gorte RJ et al (2006) Electrodeposition of Cu into a highly porous Ni∕YSZ cermet. J Electrochem Soc 153:A1539–A1543CrossRefGoogle Scholar
  126. 126.
    Ye F, Mori T, Ou DR et al (2010) Effect of nickel diffusion on the microstructure of Gd-doped ceria (GDC) electrolyte film supported by Ni–GDC cermet anode. Solid State Ion 181:646–652CrossRefGoogle Scholar
  127. 127.
    Gross MD, Vohs JM, Gorte RJ (2006) Enhanced thermal stability of Cu-based SOFC anodes by electrodeposition of Cr. J Electrochem Soc 153:A1386–A1390CrossRefGoogle Scholar
  128. 128.
    Trovarelli A (1996) Catalytic properties of ceria and CeO2 containing materials. Catal Rev 38:439–520CrossRefGoogle Scholar
  129. 129.
    Park JS, Hasson ID, Gross MD et al (2011) A high-performance solid oxide fuel cell anode based on lanthanum strontium vanadate. J Power Sources 196:7488–7494CrossRefGoogle Scholar
  130. 130.
    Kaur G, Basu S (2014) Study of carbon deposition behavior on Cu–Co/CeO2–YSZ anodes for direct butane solid oxide fuel cells. Fuel Cells 14:1006–1013CrossRefGoogle Scholar
  131. 131.
    Armstrong EN, Park JW, Minh NQ (2012) High-performance direct ethanol solid oxide fuel cells. ECS Trans 45:499–507CrossRefGoogle Scholar
  132. 132.
    Murray E, Tsai T, Barnett S (1999) A direct-methane fuel cell with a ceria-based anode. Nature 400:649–651CrossRefGoogle Scholar
  133. 133.
    Chen Y, Bunch J, Jin C et al (2012) Performance enhancement of Ni-YSZ electrode by impregnation of Mo0.1Ce0.9O2+δ. J Power Sources 204:40–45CrossRefGoogle Scholar
  134. 134.
    Islam S, Hill JM (2014) Barium oxide promoted Ni/YSZ solid-oxide fuel cells for direct utilization of methane. J Mat Chem A 2:1922–1929CrossRefGoogle Scholar
  135. 135.
    Gómez S, Hotza D (2016) Current developments in reversible solid oxide fuel cell. Renew Sustain Energy Rev 61:155–174CrossRefGoogle Scholar
  136. 136.
    Steele BCH, Middleton PH, Rudkin RA (1990) Material science aspects of SOFC technology with special reference to anode development. Solid State Ion 40:388–393CrossRefGoogle Scholar
  137. 137.
    Tao S, Irvine JTS (2004) Discovery and characterization of novel oxide anodes for solid oxide fuel cells. Chem Rec 4:83–95CrossRefGoogle Scholar
  138. 138.
    Peña MA, Fierro JLG (2001) Chemical structures and performance of perovskite oxides. Chem Rev 101:1981–2018CrossRefGoogle Scholar
  139. 139.
    Tao S, Irvine JTS (2003) A redox-stable efficient anode for solid-oxide fuel cells. Nat Mater 2:320–323CrossRefGoogle Scholar
  140. 140.
    Rath MK, Choi BH, Lee KT (2012) Properties and electrochemical performance of La0.75Sr0.25Cr0.5Mn0.5O3−δ–La0.2Ce0.8O2−δ composite anodes for solid oxide fuel cells. J Power Sources 213:55–62CrossRefGoogle Scholar
  141. 141.
    Huang B, Zhu XJ, Hu WQ et al (2010) Characterization of the Ni-ScSZ anode with a LSCM–CeO2 catalyst layer in thin film solid oxide fuel cell running on ethanol fuel. J Power Sources 195:3053–3059CrossRefGoogle Scholar
  142. 142.
    Aguilar L, Zha S, Li S et al (2004) Sulfur-tolerant materials for the hydrogen sulfide SOFC. Electrochem Solid State Lett 7:A324–A326CrossRefGoogle Scholar
  143. 143.
    Cooper M, Channa K, De Silva R et al (2010) Comparison of LSV/YSZ and LSV/GDC SOFC anode performance in coal syngas containing H2S. J Electrochem Soc 157:B1713–B1718CrossRefGoogle Scholar
  144. 144.
    Ge X, Zhang L, Fang Y (2011) Robust solid oxide cells for alternate power generation and carbon conversion. RSC Adv 1:715–724CrossRefGoogle Scholar
  145. 145.
    Huang YH, Dass RI, Xing ZL et al (2006) Double perovskites as anode materials for solid-oxide fuel cells. Science 312:254CrossRefGoogle Scholar
  146. 146.
    Sengodan S, Choi S, Jun A et al (2015) Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells. Nat Mater 14:205–209CrossRefGoogle Scholar
  147. 147.
    Yang C, Yang Z, Jin C et al (2012) Sulfur-tolerant redox-reversible anode material for direct hydrocarbon solid oxide fuel cells. Adv Mater 24:1439–1443CrossRefGoogle Scholar
  148. 148.
    Madsen BD, Kobsiriphat W, Wang Y (2007) Nucleation of nanometer-scale electrocatalyst particles in solid oxide fuel cell anodes. J Power Sources 166:64–67CrossRefGoogle Scholar
  149. 149.
    Neagu D, Tsekouras G, Miller DN et al (2013) Irvine, in situ growth of nanoparticles through control of non-stoichiometry. Nat Chem 5(2013):916–923CrossRefGoogle Scholar
  150. 150.
    Gao Y, Chen D, Saccoccio M et al (2016) From material design to mechanism study: nanoscale Ni exsolution on a highly active A-site deficient anode material for solid oxide fuel cells. Nano Energy 27:499–508CrossRefGoogle Scholar
  151. 151.
    Lo Faro M, Antonucci V, Antonucci PL et al (2012) Fuel flexibility: a key challenge for SOFC technology. Fuel 102:554–559CrossRefGoogle Scholar
  152. 152.
    Lo Faro M, La Rosa D, Nicotera I et al (2009) Electrochemical investigation of a propane-fed solid oxide fuel cell based on a composite Ni–perovskite anode catalyst. Appl Catal B Env 89:49–57CrossRefGoogle Scholar
  153. 153.
    Lo Faro M, Minutoli M, Monforte G et al (2011) Glycerol oxidation in solid oxide fuel cells based on a Ni-perovskite electrocatalyst. Biomass Bioener 35:1075–1084CrossRefGoogle Scholar
  154. 154.
    Lo Faro M, Stassi A, Antonucci V et al (2011) Direct utilization of methanol in solid oxide fuel cells: an electrochemical and catalytic study. Int J Hydrogen Energy 36:9977–9986CrossRefGoogle Scholar
  155. 155.
    Ye XF, Wang SR, Wang ZR et al (2008) Use of La0.75Sr0.25Cr0.5Mn0.5O3 materials in composite anodes for direct ethanol solid oxide fuel cells. J Power Sources 183:512–517CrossRefGoogle Scholar
  156. 156.
    Jiang SP, Ye Y, He T et al (2008) Nanostructured palladium–La0.75Sr0.25Cr0.5Mn0.5O3/Y2O3–ZrO2 composite anodes for direct methane and ethanol solid oxide fuel cells. J Power Sources 185:179–182CrossRefGoogle Scholar
  157. 157.
    Kobsiriphat W, Madsen BD, Wang Y et al (2009) La0.8Sr0.2Cr1−xRuxO3−δ–Gd0.1Ce0.9O1.95 solid oxide fuel cell anodes: Ru precipitation and electrochemical performance. Solid State Ion 180:257–264CrossRefGoogle Scholar
  158. 158.
    Kobsiriphat W, Madsen BD, Wang Y et al (2010) Nickel- and ruthenium-doped lanthanum chromite anodes: effects of nanoscale metal precipitation on solid oxide fuel cell performance. J Electrochem Soc 157:B279–B284CrossRefGoogle Scholar
  159. 159.
    Monteiro N, Nóbrega S, Fonseca FC (2011) Ceramic Oxide Anode with Precipitated Catalytic Nanoparticles for Ethanol Fueled SOFC. ECS Trans 35:1601–1609CrossRefGoogle Scholar
  160. 160.
    Monteiro NK, Noronha FB, da Costa LOO et al (2012) A direct ethanol anode for solid oxide fuel cell based on a chromite-manganite with catalytic ruthenium nanoparticles. Int J Hydrogen Energy 37:9816–9829CrossRefGoogle Scholar
  161. 161.
    Barison S, Fabrizio M, Mortalò C et al (2010) Novel Ru/La0.75Sr0.25Cr0.5Mn0.5O3−δ catalysts for propane reforming in IT-SOFCs. Solid State Ion 181:285–291CrossRefGoogle Scholar
  162. 162.
    Sun YF, Li JH, Cui L et al (2015) A-site-deficiency facilitated in situ growth of bimetallic Ni–Fe nano-alloys: a novel coking-tolerant fuel cell anode catalyst. Nanoscale 7:11173–11181CrossRefGoogle Scholar
  163. 163.
    Adijanto L, Padmanabhan VB, Gorte RJ et al (2012) Polarization-induced hysteresis in CuCo-doped rare earth vanadates SOFC anodes. J Electrochem Soc 159:F751–F756CrossRefGoogle Scholar
  164. 164.
    Cheekatamarla PK, Finnerty CM (2006) Reforming catalysts for hydrogen generation in fuel cell applications. J Power Sources 160:490–499CrossRefGoogle Scholar
  165. 165.
    Dal Santo V, Gallo A, Naldoni A et al (2012) Bimetallic heterogeneous catalysts for hydrogen production. Catal Today 197:190–205CrossRefGoogle Scholar
  166. 166.
    Mattos LV, Jacobs G, Davis BH et al (2012) Production of hydrogen from ethanol: review of reaction mechanism and catalyst deactivation. Chem Rev 112:4094–4123CrossRefGoogle Scholar
  167. 167.
    Nahar G, Dupont V (2014) Hydrogen production from simple alkanes and oxygenated hydrocarbons over ceria–zirconia supported catalysts: Review. Ren Sustain Energy Rev 32:777–796CrossRefGoogle Scholar
  168. 168.
    Pakhare D, Spivey J (2014) A review of dry (CO2) reforming of methane over noble metal catalysts. Chem Soc Rev 43:7813–7837CrossRefGoogle Scholar
  169. 169.
    Trimm DL (1999) Catalysts for the control of coking during steam reforming. Catal Today 49:3–10CrossRefGoogle Scholar
  170. 170.
    Trimm DL, Önsan ZI (2001) On board fuel conversion for hydrogen-fuel-cell-driven vehicles. Catal Rev 43:31–84CrossRefGoogle Scholar
  171. 171.
    Sutton D, Kelleher B, Ross JRH (2001) Review of literature on catalysts for biomass gasification. Fuel Proc Tech 73:155–173CrossRefGoogle Scholar
  172. 172.
    Krishnan GN, Wood BJ, Brittain RD et al (1996) Vaporization of alkali and trace metal impurities in coal gasification and combustion systems. Universität Karlsruhe, pp 651–663Google Scholar
  173. 173.
    Dou B, Wang C, Chen H et al (2012) Research progress of hot gas filtration, desulphurization and HCl removal in coal-derived fuel gas: a review. Chem Eng Res Design 90:1901–1917CrossRefGoogle Scholar
  174. 174.
    Chyang C, Han Y, Zhong Z (2009) Study of HCl absorption by CaO at high temperature. Ener Fuels 23:3948–3953CrossRefGoogle Scholar
  175. 175.
    Cao J, Zhong W, Jin B (2014) Treatment of hydrochloric acid in flue gas from municipal solid waste incineration with Ca–Mg–Al mixed oxides at medium-high temperatures. Energy Fuels 28:4112–4117CrossRefGoogle Scholar
  176. 176.
    Mitchell SC (1998) Hot gas cleanup of sulphur, nitrogen, minor, and trace elements. Technical report, IEA Coal ResearchGoogle Scholar
  177. 177.
    Weinell CE, Jensen IJ, Dam-Johansen K (1992) Hydrogen chloride reaction with lime and limestone: kinetics and sorption capacity. Ind Eng Chem Res 31:164–171CrossRefGoogle Scholar
  178. 178.
    Hofbauer H, Rauch R, Ripfel-Nitsche K (2007) Gas cleaning for synthesis applications. University of Technology, ViennaGoogle Scholar
  179. 179.
    Wang W, Ye Z, Bjerle I (1996) Influence of n-alkanes on the cold flow properties of their solution in different solvent systems. Fuel 75:207–212CrossRefGoogle Scholar
  180. 180.
    Fusch Y, Schwerdtfeger K (1996) Hot dechlorination and hot desulfurization of reducing gases with lime pellets. Universität Karlsruhe, pp 426–438Google Scholar
  181. 181.
    Bartoňová L (2014) Effect of CaO, Al2O3 and Fe2O3 in coal ash on the retention of acid-forming elements during coal combustion. WSEAS Trans Power Syst 9:486–494Google Scholar
  182. 182.
    Duo W, Kirkby NF, Seville JPK et al (1996) Kinetics of HCl reactions with calcium and sodium sorbents for IGCC fuel gas cleaning. Chem Eng Sci 51:2541–2546CrossRefGoogle Scholar
  183. 183.
    Nunokawa M, Kobayashi M, Shirai H (2008) Halide compound removal from hot coal-derived gas with reusable sodium-based sorbent. Powder Tech 180:216–221CrossRefGoogle Scholar
  184. 184.
    Fujita S, Suzuki K, Ohkawa M et al (2001) Reaction of hydrogrossular with hydrogen chloride gas at high temperature. Chem Mater 13:2523–2527CrossRefGoogle Scholar
  185. 185.
    Lee M, Wang Z, Chang J (2003) Activated-carbon-supported NaOH for removal of HCl from reformer process streams. Ind Eng Chem Res 42:6166–6170CrossRefGoogle Scholar
  186. 186.
    Cho M, Jung S, Kim J (2010) Pyrolysis of mixed plastic wastes for the recovery of benzene, toluene, and xylene (BTX) aromatics in a fluidized bed and chlorine removal by applying various additives. Energy Fuels 24:1389–1395CrossRefGoogle Scholar
  187. 187.
    Kameda T, Uchiyama N, Yoshioka T (2010) Treatment of gaseous hydrogen chloride using Mg–Al layered double hydroxide intercalated with carbonate ion. Chemosphere 81:658–662CrossRefGoogle Scholar
  188. 188.
    Kameda T, Uchiyama N, Yoshioka T (2011) Removal of HCl, SO2, and NO by treatment of acid gas with Mg–Al oxide slurry. Chemosphere 82:587–591CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Izabela S. Pieta
    • 1
  • Alessandro Donazzi
    • 2
  • Carlo Resini
    • 3
  1. 1.Institute of Physical Chemistry, Polish Academy of SciencesWarsawPoland
  2. 2.Dipartimento di EnergiaPolitecnico di MilanoMilanItaly
  3. 3.International Iberian Nanotechnology LaboratoryBragaPortugal

Personalised recommendations