Advertisement

Future of Visualization and Simulation in Neurosurgery

  • Laura Stone McGuire
  • Amanda Kwasnicki
  • Rahim Ismail
  • Talia Weiss
  • Fady T. Charbel
  • Ali Alaraj
Chapter
Part of the Comprehensive Healthcare Simulation book series (CHS)

Abstract

Technological advancement defines the practice of neurosurgery, and as the field has advanced, so have the visualization strategies that are implemented within it. Accurate and realistic visualization and simulation of surgical anatomy for practitioner training, patient education, and operative planning remains critically important. In neurosurgery, a variety of new technologies have been introduced, including three-dimensional, stereoscopic, virtual reality, augmented reality, and mixed reality platforms, all of which will be reviewed in this chapter. A sampling of each of these modalities and their utilization within neurosurgery will be explored, from Surgical Theater ® and ImmersiveTouch ® to Google Glass ®, Oculus Rift ®, Microsoft HoloLens ®, and much more.

Keywords

Neurosurgery Visualization Simulation Patient education Practitioner training 

References

  1. 1.
    Beckmann EC. CT scanning the early days. Br J Radiol. 2006;79(937):5–8.CrossRefPubMedGoogle Scholar
  2. 2.
    CT market outlook report. In: IMVinfo. http://www.imvinfo.com/index.aspx?sec=ct&sub=dis&itemid=200081. 2016. Accessed 3 Jul 2017.
  3. 3.
  4. 4.
    Damadian R, Goldsmith M, Minkoff L. NMR in cancer: XVI. FONAR image of the live human body. Physiol Chem Phys. 1977;9(1):97–100, 108.Google Scholar
  5. 5.
    Magnetic resonance imaging (MRI) exams (indicator). In: OECD-iLibrary.  https://doi.org/10.1787/1d89353f-en. Accessed 5 Jan 2017.
  6. 6.
  7. 7.
    Van der Kolk AG, Hendrikse J, Zwanenburg JJ, Visser F, Luijten PR. Clinical applications of 7T MRI in the brain. Eur J Radiol. 2013;82(5):708–18.CrossRefPubMedGoogle Scholar
  8. 8.
    Perandini S, Faccioli N, Zaccarella A, Re T, Mucelli RP. The diagnostic contribution of CT volumetric rendering techniques in routine practice. Indian J Radiol Imaging. 2010;20(2):92–7.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Alaraj A, Charbel FT, Birk D, Tobin M, Luciano C, Banerjee PP, Rizzi S, Sorenson J, Foley K, Slavin K, Roitberg B. Role of cranial and spinal virtual and augmented reality simulation using ImmersiveTouch modules in neurosurgical training. Neurosurgery. 2013;72(Suppl 1):115–23.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Alaraj A, Luciano CJ, Bailey DP, Elsenousi A, Roitberg BZ, Bernardo A, Banerjee PP, Charbel FT. Virtual reality cerebral aneurysm clipping simulation with real-time haptic feedback. Neurosurgery. 2015;11(Suppl 2):52–8.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Banerjee PP, Luciano CJ, Lemole GM, Charbel FT, Oh MY. Accuracy of ventriculostomy catheter placement using a head – and hand-tracked high-resolution virtual reality simulator with haptic feedback. J Neurosurg. 2007;107(3):515–21.CrossRefPubMedGoogle Scholar
  12. 12.
    Gasco J, Holbrook TJ, Patel A, Smith A, Paulson D, Muns A, Desai S, Moisi M, Kuo YF, Macdonald B, Ortega-Barnett J, Patterson JT. Neurosurgery simulation in residency training: feasibility, cost, and educational benefit. Neurosurgery. 2013;73(Suppl 1):39–45.CrossRefPubMedGoogle Scholar
  13. 13.
    Gasco J, Patel A, Luciano C, Holbrook T, Ortega-Barnett J, Kuo YF, Rizzi S, Kania P, Banerjee P, Roitberg BZ. A novel virtual reality simulation for hemostasis in a brain surgical cavity: perceived utility for visuomotor skills in current and aspiring neurosurgery resident. World Neurosurg. 2013;80(6):732–7.CrossRefPubMedGoogle Scholar
  14. 14.
    Gasco J, Patel A, Ortega-Barnett J, Branch D, Desai S, Kuo YF, Luciano C, Rizzi S, Kania P, Matuyauskas M, Banerjee P, Roitberg BZ. Virtual reality spine surgery simulation: an empirical study of its usefulness. Neurol Res. 2014;36(11):968–73.CrossRefPubMedGoogle Scholar
  15. 15.
    Lemole GM, Banerjee PP, Luciano C, Neckrysh S, Charbel FT. Virtual reality in neurosurgical education: part-task ventriculostomy simulation with dynamic visual and haptic feedback. Neurosurgery 2007;61(1):142–8; discussion 148–9.Google Scholar
  16. 16.
    Luciano CJ, Banerjee PP, Bellotte B, Oh GM, Lemole M, Charbel FT, Roitberg B. Learning retention of thoracic pedicle screw placement using a high-resolution augmented reality simulator with haptic feedback. Neurosurgery 2011;69(1 Suppl Operative):ons14–9; discussion ons19.Google Scholar
  17. 17.
    Luciano C, Banerjee P, Lemole GM, Charbel F. Second generation haptic ventriculostomy simulator using the ImmersiveTouch system. Stud Health Technol Inform. 2006;119:343–8.PubMedGoogle Scholar
  18. 18.
    Luciano CJ, Banerjee PP, Sorenson JM, Foley KT, Ansari SA, Rizzi S, Germanwala AV, Kranzler L, Chittiboina P, Roitberg BZ. Percutaneous spinal fixation simulation with virtual reality and haptics. Neurosurgery. 2013;72(Suppl 1):89–96.CrossRefPubMedGoogle Scholar
  19. 19.
    Shakur SF, Luciano CJ, Kania P, Roitberg BZ, Banerjee PP, Slavin KV, Sorenson J, Charbel FT, Alaraj A. Usefulness of a virtual reality percutaneous trigeminal rhizotomy simulator in neurosurgical training. Neurosurgery 2015;11(Suppl 3):420–5; discussion 425.Google Scholar
  20. 20.
    Manke K (2016). Brain surgery may get a bit easier, with augmented reality. In: Duke Today. https://today.duke.edu/2016/10/brain-surgery-may-get-bit-easier-augmented-reality. Accessed 3 Jul 2017.
  21. 21.
  22. 22.
    Yang M, Wu J, Ma L, Pan L, Li J, Chen G, Struffert T, Sun Q, Beilner J, Deuerling-Zheng Y. The value of syngo DynaPBV neuro during neuro-interventional hypotensive balloon occlusion test. Clin Neuroradiol. 2015;25(4):387–95.CrossRefPubMedGoogle Scholar
  23. 23.
    Wenger KJ, Berkefeld J, Wagner M. Flat panel detector computed tomography for the interaction between contrast-enhanced thrombi and stent retrievers in stroke therapy: a pilot study. Clin Neuroradiol. 2014;24(3):251–4.CrossRefPubMedGoogle Scholar
  24. 24.
    Faragò G, Caldiera V, Tempra G, Ciceri E. Advanced digital subtraction angiography and MR fusion imaging protocol applied to accurate placement of flow diverter device. J Neurointerv Surg. 2016;8(2):e5. https://doi.org/10.1136/neurintsurg-2014-011428.
  25. 25.
    Shakur SF, Brunozzi D, Hussein AE, Linninger A, Hsu CY, Charbel FT, Alaraj A. Validation of cerebral arteriovenous malformation hemodynamics assessed by DSA using quantitative magnetic resonance angiography: preliminary study. J Neurointerv Surg 2017. pii: neurintsurg-2017-012991.Google Scholar
  26. 26.
    BrainSuite. In: BrainSuite. http://brainsuite.org/. Accessed 3 Jul 2017.
  27. 27.
    Phillips OR, Joshi SH, Piras F, Orfei MD, Iorio M, Narr KL, Shattuck DW, Caltagirone C, Spalletta G, Di Paola M. The superficial white matter in Alzheimer’s disease. Hum Brain Mapp. 2016;37(4):1321–34.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Phillips OR, Joshi SH, Squitieri F, Sanchez-Castaneda C, Narr K, Shattuck DW, Caltagirone C, Sabatini U, Di Paola M. Major superficial white matter abnormalities in Huntington’s disease. Front Neurosci. 2016;10:197.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Wang ZI, Jones SE, Ristic AJ, Wong C, Kakisaka Y, Jin K, Schneider F, Gonzalez-Martinez JA, Mosher JC, Nair D, Burgess RC, Najm IM, Alexopoulos AV. Voxel-based morphometric MRI post-processing in MRI-negative focal cortical dysplasia followed by simultaneously recorded MEG and stereo-EEG. Epilepsy Res. 2012;100(1–2):188–93.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Wang ZI, Krishnan B, Shattuck DW, Leahy RM, Moosa AN, Wyllie E, Burgess RC, Al-Sharif NB, Joshi AA, Alexopoulos AV, Mosher JC, Udayasankar U, Pediatric Imaging, Neurocognition and Genetics Study, Jones SE. Automated MRI volumetric analysis in patients with Rasmussen syndrome. AJNR Am J Neuroradiol. 2016;37(12):2348–55.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Wang ZI, Ristic AJ, Wong CH, Jones SE, Najm IM, Schneider F, Wang S, Gonzalez-Martinez JA, Bingaman W, Alexopoulos AV. Neuroimaging characteristics of MRI-negative orbitofrontal epilepsy with focus on voxel-based morphometric MRI postprocessing. Epilepsia. 2013;54(12):2195–203.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Wang ZI, Suwanpakdee P, Jones SE, Jaisani Z, Moosa AN, Najm IM, von Podewils F, Burgess RC, Krishnan B, Prayson RA, Gonzalez-Martinez JA, Bingaman W, Alexopoulos AV. Re-review of MRI with post-processing in nonlesional patients in whom epilepsy surgery has failed. J Neurol. 2016;263(9):1736–45.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Kakisaka Y, Alkawadri R, Wang ZI, Enatsu R, Mosher JC, Dubarry AS, Alexopoulos AV, Burgess RC. Sensitivity of scalp 10-20 EEG and magnetoencephalography. Epileptic Disord. 2013;15(1):27–31.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Neyaz Z, Phadke RV, Singh V, Godbole C. Three-dimensional visualization of intracranial tumors with cortical surface and vasculature from routine MR sequences. Neurol India. 2017;65(2):333–40.CrossRefPubMedGoogle Scholar
  35. 35.
    TrueVision is 3D HD visualization for microsurgery. In: TrueVision. http://www.truevisionsys.com/visualization-neuro.html. Accessed 3 Jul 2017.
  36. 36.
  37. 37.
    Gerweck K. Dextroscope changes the neurosurgical planning paradigm 3D virtual reality system. In: Bracco Imaging Inc. http://www.braccoimaging.com/us-en/dextroscope-changes-neurosurgical-planning-paradigm-3d-virtual-reality-system. 2006. Published August 16, 2006. Accessed 3 Jul 2017.
  38. 38.
    Gerweck K. Interactive virtual reality environment transforms surgical group collaboration and education. In: Bracco Imaging Inc. http://www.braccoimaging.com/us-en/interactive-virtual-reality-environment-transforms-surgical-group-collaboration-and-education. 2006. Accessed 3 Jul 2017.
  39. 39.
    Kockro RA, Serra L, Tseng-Tsai Y, Chan C, Yih-Yian S, Gim-Guan C, Lee E, Hoe LY, Hern N, Nowinski WL. Planning and simulation of neurosurgery in a virtual reality environment. Neurosurgery 2000;46(1):118–35; discussion 135–7.Google Scholar
  40. 40.
    Gu SX, Yang DL, Cui DM, Xu QW, Che XM, Wu JS, Li WS. Anatomical studies on the temporal bridging veins with Dextroscope and its application in tumor surgery across the middle and posterior fossa. Clin Neurol Neurosurg. 2011;113(10):889–94.CrossRefPubMedGoogle Scholar
  41. 41.
    Stadie AT, Reisch R, Kockro RA, Fischer G, Schwandt E, Boor S, Stoeter P. Minimally invasive cerebral cavernoma surgery using keyhole approaches – solutions for technique-related limitations. Minim Invasive Neurosurg. 2009;52(1):9–16.CrossRefPubMedGoogle Scholar
  42. 42.
    Wang SS, Li JF, Zhang SM, Jing JJ, Xue LA. Virtual reality model of the clivus and surgical simulation via transoral or transnasal route. Int J Clin Exp Med. 2014;7(10):3270–9.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Wang SS, Zhang SM, Jing JJ. Stereoscopic virtual reality models for planning tumor resection in the sellar region. BMC Neurol. 2012;12:146.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Yang DL, Xu QW, Che XM, Wu JS, Sun B. Clinical evaluation and follow-up outcome of presurgical plan by Dextroscope: a prospective controlled study in patients with skull base tumors. Surg Neurol 2009;72(6):682–9; discussion 689.Google Scholar
  45. 45.
    Qiu TM, Zhang Y, Wu JS, Tang WJ, Zhao Y, Pan ZG, Mao Y, Zhou LF. Virtual reality presurgical planning for cerebral gliomas adjacent to motor pathways in an integrated 3-D stereoscopic visualization of structural MRI and DTI tractography. Acta Neurochir. 2010;152(11):1847–57.CrossRefPubMedGoogle Scholar
  46. 46.
    Ng I, Hwang PY, Kumar D, Lee CK, Kockro RA, Sitoh YY. Surgical planning for microsurgical excision of cerebral arterio-venous malformations using virtual reality technology. Acta Neurochir 2009;151(5):453–63; discussion 463.Google Scholar
  47. 47.
    Wong GK, Zhu CX, Ahuja AT, Poon WS. Stereoscopic virtual reality simulation for microsurgical excision of cerebral arteriovenous malformation: case illustrations. Surg Neurol 2009;72(1):69–72; discussion 72–3.Google Scholar
  48. 48.
    Di Somma A, de Notaris M, Stagno V, Serra L, Enseñat J, Alobid I, San Molina J, Berenguer J, Cappabianca P, Prats-Galino A. Extended endoscopic endonasal approaches for cerebral aneurysms: anatomical, virtual reality and morphometric study. Biomed Res Int. 2014;2014:703792.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Guo YW, Ke YQ, Zhang SZ, Wang QJ, Duan CZ, Jia HS, Zhou L, Xu RX. Combined application of virtual imaging techniques and three-dimensional computed tomographic angiography in diagnosing intracranial aneurysms. Chin Med J. 2008;121(24):2521–4.PubMedGoogle Scholar
  50. 50.
    Kockro RA, Killeen T, Ayyad A, Glaser M, Stadie A, Reisch R, Giese A, Schwandt E. Aneurysm surgery with preoperative three-dimensional planning in a virtual reality environment: technique and outcome analysis. World Neurosurg. 2016 Dec;96:489–99.CrossRefPubMedGoogle Scholar
  51. 51.
    Wong GK, Zhu CX, Ahuja AT, Poon WS. Craniotomy and clipping of intracranial aneurysm in a stereoscopic virtual reality environment. Neurosurgery 2007;61(3):564–8; discussion 568–9.Google Scholar
  52. 52.
    Serra C, Huppertz HJ, Kockro RA, Grunwald T, Bozinov O, Krayenbühl N, Bernays RL. Rapid and Accurate anatomical localization of implanted subdural electrodes in a virtual reality environment. J Neurol Surg A Cent Eur Neurosurg. 2013;74(3):175–82.CrossRefPubMedGoogle Scholar
  53. 53.
    Du ZY, Gao X, Zhang XL, Wang ZQ, Tang WJ. Preoperative evaluation of neurovascular relationships for microvascular decompression in the cerebellopontine angle in a virtual reality environment. J Neurosurg. 2010;113(3):479–85.CrossRefPubMedGoogle Scholar
  54. 54.
    González Sánchez JJ, Enseñat Nora J, Candela Canto S, Rumià Arboix J, Caral Pons LA, Oliver D, Ferrer Rodríguez E. New stereoscopic virtual reality system application to cranial nerve microvascular decompression. Acta Neurochir. 2010;152(2):355–60.CrossRefPubMedGoogle Scholar
  55. 55.
    Archavlis E, Schwandt E, Kosterhon M, Gutenberg A, Ulrich P, Nimer A, Giese A, Kantelhardt SR. A modified microsurgical endoscopic-assisted Transpedicular Corpectomy of the thoracic spine based on virtual 3-dimensional planning. World Neurosurg. 2016;91:424–33.CrossRefPubMedGoogle Scholar
  56. 56.
    Stadie AT, Kockro RA, Reisch R, Tropine A, Boor S, Stoeter P, Perneczky A. Virtual reality system for planning minimally invasive neurosurgery. Technical note. J Neurosurg. 2008;108(2):382–94.CrossRefPubMedGoogle Scholar
  57. 57.
    Schirmer CM, Mocco J, Elder JB. Evolving virtual reality simulation in neurosurgery. Neurosurgery. 2013;73(Suppl 1):127–37.CrossRefPubMedGoogle Scholar
  58. 58.
    Alaraj A, Lemole MG, Finkle JH, Yudkowsky R, Wallace A, Luciano C, Banerjee PP, Rizzi SH, Charbel FT. Virtual reality training in neurosurgery: review of current status and future applications. Surg Neurol Int. 2011;2:52.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Choudhury N, Gélinas-Phaneuf N, Delorme S, Del Maestro R. Evolving virtual reality simulation in neurosurgery. Neurosurgery. 2013;73(Suppl 1):127–37.Google Scholar
  60. 60.
    Stadie AT, Kockro RA, Serra L, Fischer G, Schwandt E, Grunert P, Reisch R. Neurosurgical craniotomy localization using a virtual reality planning system versus intraoperative image-guided navigation. Int J Comput Assist Radiol Surg. 2011;6(5):565–72.CrossRefPubMedGoogle Scholar
  61. 61.
    Surgical Theater: Precision virtual reality. In: Surgical Theater http://www.surgicaltheater.net/. Accessed 3 Jul 2017.
  62. 62.
    Bambakidis NC, Selman WR, Sloan AE. Surgical rehearsal platform: potential uses in microsurgery. Neurosurgery. 2013;73(Suppl 1):122–6.CrossRefPubMedGoogle Scholar
  63. 63.
    The CAVE Virtual reality theater. In: Electronic Visualization Laboratory. https://www.evl.uic.edu/entry.php?id=1769. Accessed 3 Jul 2017.
  64. 64.
    Brown M. CAVE2: an advanced cyberworld for data exploration. In: Electronic Visualization Laboratory https://www.evl.uic.edu/entry.php?id=1078. Accessed 3 Jul 2017.
  65. 65.
    Brown M. University of Illinois at Chicago: virtual reality’s CAVE pioneer. In: Electronic Visualization Laboratory. https://www.evl.uic.edu/entry.php?id=1093. Accessed 3 Jul 2017.
  66. 66.
    State-of-the-art virtual reality system is key to medical discovery. In: National Science Foundation. https://www.nsf.gov/news/news_summ.jsp?cntn_id=126209. 2012. Accessed 3 Jul 2017.
  67. 67.
    Brown M. UIC/EVL’s CAVE2 featured in discover magazine, July/Aug 2014 issue. In: Electronic Visualization Laboratory. https://www.evl.uic.edu/entry.php?id=1165. 2014. Accessed 3 Jul 2017.
  68. 68.
    Calì C, Baghabra J, Boges DJ, Holst GR, Kreshuk A, Hamprecht FA, Srinivasan M, Lehväslaiho H, Magistretti PJ. Three-dimensional immersive virtual reality for studying cellular compartments in 3D models from EM preparations of neural tissues. J Comp Neurol. 2016;524(1):23–38.CrossRefPubMedGoogle Scholar
  69. 69.
    Borrego A, Latorre J, Llorens R, Alcañiz M, Noé E. Feasibility of a walking virtual reality system for rehabilitation: objective and subjective parameters. J Neuroeng Rehabil. 2016;13(1):68.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Pavone EF, Tieri G, Rizza G, Tidoni E, Grisoni L, Aglioti SM. Embodying others in immersive virtual reality: electro-cortical signatures of monitoring the errors in the actions of an avatar seen from a first-person perspective. J Neurosci. 2016;36(2):268–79.CrossRefPubMedGoogle Scholar
  71. 71.
    Goble J, Hinckley K, Snell J, Pausch R, Kassell N. Two-handed spatial interface tools for neurosurgical planning. IEEE Comput. 1995:20–6.Google Scholar
  72. 72.
    Hinckley K, Pausch R, Downs JH, Proffitt D, Kassell NF. The props-based interface for neurosurgical visualization. Stud Health Technol Inform. 1997;39:552–62.PubMedGoogle Scholar
  73. 73.
    ANGIO Mentor: The most advanced endovascular training. In: Simbionix http://simbionix.com/simulators/angio-mentor/. Accessed 3 Jul 2017.
  74. 74.
    Pannell JS, Santiago-Dieppa DR, Wali AR, Hirshman BR, Steinberg JA, Cheung VJ, Oveisi D, Hallstrom J, Khalessi AA. Simulator-based angiography and endovascular neurosurgery curriculum: a longitudinal evaluation of performance following simulator-based angiography training. Cureus. 2016;8(8):e756.PubMedPubMedCentralGoogle Scholar
  75. 75.
    CAE NeuroVR. In: CAE Healthcare Inc. https://caehealthcare.com/surgical-simulation/neurovr. Accessed 3 Jul 2017.
  76. 76.
    Delorme S, Laroche D, DiRaddo R, Del Maestro RF. NeuroTouch: a physics-based virtual simulator for cranial microneurosurgery training. Neurosurgery. 2012;71(1 Suppl Operative):32–42.PubMedGoogle Scholar
  77. 77.
    Alotaibi FE, AlZhrani GA, Mullah MA, Sabbagh AJ, Azarnoush H, Winkler-Schwartz A, Del Maestro RF. Assessing bimanual performance in brain tumor resection with NeuroTouch, a virtual reality simulator. Neurosurgery 2015;11(Suppl 2):89–98; discussion 98.Google Scholar
  78. 78.
    AlZhrani G, Alotaibi F, Azarnoush H, Winkler-Schwartz A, Sabbagh A, Bajunaid K, Lajoie SP, Del Maestro RF. Proficiency performance benchmarks for removal of simulated brain tumors using a virtual reality simulator NeuroTouch. J Surg Educ. 2015;72(4):685–96.CrossRefPubMedGoogle Scholar
  79. 79.
    Cha YW, Dou M, Chabra R, Menozzi F, State A, Wallen E, Fuchs H. Immersive learning experiences for surgical procedures. Stud Health Technol Inform. 2016;220:55–62.PubMedGoogle Scholar
  80. 80.
    Ye AQ, Ajilore OA, Conte G, GadElkarim J, Thomas-Ramos G, Zhan L, Yang S, Kumar A, Magin RL, G Forbes A, Leow AD. The intrinsic geometry of the human brain connectome. Brain Inform. 2015;2:197–210.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Mosadeghi S, Reid MW, Martinez B, Rosen BT, Spiegel BM. Feasibility of an immersive virtual reality intervention for hospitalized patients: an observational cohort study. JMIR Ment Health. 2016;3(2):e28.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Nunnerley J, Gupta S, Snell D, King M. Training wheelchair navigation in immersive virtual environments for patients with spinal cord injury – end-user input to design an effective system. Disabil Rehabil Assist Technol. 2017;12(4):417–23.CrossRefPubMedGoogle Scholar
  83. 83.
    Miyake RK, Zeman HD, Duarte FH, Kikuchi R, Ramacciotti E, Lovhoiden G, Vrancken C. Vein imaging: a new method of near infrared imaging, where a processed image is projected onto the skin for the enhancement of vein treatment. Dermatol Surg. 2006;32(8):1031–8.PubMedGoogle Scholar
  84. 84.
    Mountney P, Giannarou S, Elson D, Yang GZ. Optical biopsy mapping for minimally invasive cancer screening. Med Image Comput Comput Assist Interv. 2009;12(Pt 1):483–90.PubMedGoogle Scholar
  85. 85.
    Vogt S, Khamene A, Niemann H, Sauer F. An AR System with intuitive user interface for manipulation and visualization of 3D medical data. Stud Health Technol Inform. 2004;98:397–403.PubMedGoogle Scholar
  86. 86.
    Meola A, Cutolo F, Carbone M, Cagnazzo F, Ferrari M, Ferrari V. Augmented reality in neurosurgery: a systematic review. Neurosurg Rev 2016. [Epub ahead of print].Google Scholar
  87. 87.
    Barsom EZ, Graafland M, Schijven MP. Systematic review on the effectiveness of augmented reality applications in medical training. Surg Endosc. 2016;30(10):4174–83.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Pelargos PE, Nagasawa DT, Lagman C, Tenn S, Demos JV, Lee SJ, Bui TT, Barnette NE, Bhatt NS, Ung N, Bari A, Martin NA, Yang I. Utilizing virtual and augmented reality for educational and clinical enhancements in neurosurgery. J Clin Neurosci. 2017;35:1–4.CrossRefPubMedGoogle Scholar
  89. 89.
    Ponce BA, Brabston EW, Shin Z, Watson SL, Baker D, Winn D, Guthrie BL, Shenai MB. Telemedicine with mobile devices and augmented reality for early postoperative care. Conf Proc IEEE Eng Med Biol Soc. 2016;2016:4411–4.PubMedGoogle Scholar
  90. 90.
    Shenai MB, Dillavou M, Shum C, Ross D, Tubbs RS, Shih A, Guthrie BL. Virtual interactive presence and augmented reality (VIPAR) for remote surgical assistance. Neurosurgery 2011;68(1 Suppl Operative):200–7; discussion 207.Google Scholar
  91. 91.
    Businesses have been getting hands-on with Glass Enterprise Edition. In: X Company. https://x.company/glass/. Accessed 3 Jul 2017.
  92. 92.
    Mitrasinovic S, Camacho E, Trivedi N, Logan J, Campbell C, Zilinyi R, Lieber B, Bruce E, Taylor B, Martineau D, Dumont EL, Appelboom G, Connolly ES Jr. Clinical and surgical applications of smart glasses. Technol Health Care. 2015;23(4):381–401.CrossRefPubMedGoogle Scholar
  93. 93.
    Nakhla J, Kobets A, De la Garza Ramos R, Haranhalli N, Gelfand Y, Ammar A, Echt M, Scoco A, Kinon M, Yassari R. Use of Google glass to enhance surgical education of neurosurgery residents: “proof-of-concept” study. World Neurosurg. 2017;98:711–4.CrossRefPubMedGoogle Scholar
  94. 94.
    Porras JL, Khalid S, Root BK, Khan IS, Singer RJ. Point-of-view recording devices for intraoperative neurosurgical video capture. Front Surg 2016;3:57. eCollection 2016.Google Scholar
  95. 95.
    Yoon JW, Chen RE, Han PK, Si P, Freeman WD, Pirris SM. Technical feasibility and safety of an intraoperative head-up display device during spine instrumentation. Int J Med Robot 2016. [Epub ahead of print].Google Scholar
  96. 96.
    Yoon JW, Chen RE, ReFaey K, Diaz RJ, Reimer R, Komotar RJ, Quinones-Hinojosa A, Brown BL, Wharen RE. Technical feasibility and safety of image-guided parieto-occipital ventricular catheter placement with the assistance of a wearable head-up display. Int J Med Robot 2017. [Epub ahead of print].Google Scholar
  97. 97.
    Besharati Tabrizi L, Mahvash M. Augmented reality-guided neurosurgery: accuracy and intraoperative application of an image projection technique. J Neurosurg. 2015;123(1):206–11.CrossRefPubMedGoogle Scholar
  98. 98.
    Mahvash M, Besharati Tabrizi L. A novel augmented reality system of image projection for image-guided neurosurgery. Acta Neurochir. 2013;155(5):943–7.CrossRefPubMedGoogle Scholar
  99. 99.
    Drouin S, Kochanowska A, Kersten-Oertel M, Gerard IJ, Zelmann R, De Nigris D, Bériault S, Arbel T, Sirhan D, Sadikot AF, Hall JA, Sinclair DS, Petrecca K, DelMaestro RF, Collins DL. IBIS: an OR ready open-source platform for image-guided neurosurgery. Int J Comput Assist Radiol Surg. 2017;12(3):363–78.CrossRefPubMedGoogle Scholar
  100. 100.
    Deng W, Li F, Wang M, Song Z. Easy-to-use augmented reality neuronavigation using a wireless tablet PC. Stereotact Funct Neurosurg. 2014;92(1):17–24.CrossRefPubMedGoogle Scholar
  101. 101.
    Eftekhar B. A smartphone app to assist scalp localization of superficial supratentorial lesions: technical note. World Neurosurg. 2016;85:359–63.CrossRefPubMedGoogle Scholar
  102. 102.
    Hou Y, Ma L, Zhu R, Chen X. iPhone-assisted augmented reality localization of basal ganglia hypertensive hematoma. World Neurosurg. 2016;94:480–92.CrossRefPubMedGoogle Scholar
  103. 103.
    Hou Y, Ma L, Zhu R, Chen X, Zhang JA. Low-cost iPhone-assisted augmented reality solution for the localization of intracranial lesions. PLoS One. 2016;11(7):e0159185.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Kramers M, Armstrong R, Bakhshmand SM, Fenster A, de Ribaupierre S, Eagleson R. Evaluation of a mobile augmented reality application for image guidance of neurosurgical interventions. Stud Health Technol Inform. 2014;196:204–8.PubMedGoogle Scholar
  105. 105.
    Watanabe E, Satoh M, Konno T, Hirai M, Yamaguchi T. The trans-visible navigator: a see-through neuronavigation system using augmented reality. World Neurosurg. 2016;87:399–405.CrossRefPubMedGoogle Scholar
  106. 106.
    Masutani Y, Dohi T, Yamane F, Iseki H, Takakura K. Augmented reality visualization system for intravascular neurosurgery. Comput Aided Surg. 1998;3(5):239–47.CrossRefPubMedGoogle Scholar
  107. 107.
    Martirosyan NL, Skoch J, Watson JR, Lemole GM Jr, Romanowski M, Anton R. Integration of indocyanine green videoangiography with operative microscope: augmented reality for interactive assessment of vascular structures and blood flow. Neurosurgery 2015;11(Suppl 2):252–7; discussion 257–8.Google Scholar
  108. 108.
    Cabrilo I, Bijlenga P, Schaller K. Augmented reality in the surgery of cerebral arteriovenous malformations: technique assessment and considerations. Acta Neurochir. 2014;156(9):1769–74.CrossRefPubMedGoogle Scholar
  109. 109.
    Kersten-Oertel M, Chen SS, Drouin S, Sinclair DS, Collins DL. Augmented reality visualization for guidance in neurovascular surgery. Stud Health Technol Inform. 2012;173:225–9.PubMedGoogle Scholar
  110. 110.
    Kersten-Oertel M, Gerard I, Drouin S, Mok K, Sirhan D, Sinclair DS, Collins DL. Augmented reality in neurovascular surgery: feasibility and first uses in the operating room. Int J Comput Assist Radiol Surg. 2015;10(11):1823–36.CrossRefPubMedGoogle Scholar
  111. 111.
    Almefty RO, Nakaji P. Augmented reality-enhanced navigation for extracranial-intracranial bypass. World Neurosurg. 2015;84(1):15–7.CrossRefPubMedGoogle Scholar
  112. 112.
    Cabrilo I, Schaller K, Bijlenga P. Augmented reality-assisted bypass surgery: embracing minimal invasiveness. World Neurosurg. 2015;83(4):596–602.CrossRefPubMedGoogle Scholar
  113. 113.
    Cabrilo I, Bijlenga P, Schaller K. Augmented reality in the surgery of cerebral aneurysms: a technical report. Neurosurgery 2014;10(Suppl 2):252–60; discussion 260–1.Google Scholar
  114. 114.
    Inoue D, Cho B, Mori M, Kikkawa Y, Amano T, Nakamizo A, Yoshimoto K, Mizoguchi M, Tomikawa M, Hong J, Hashizume M, Sasaki T. Preliminary study on the clinical application of augmented reality neuronavigation. J Neurol Surg A Cent Eur Neurosurg. 2013;74(2):71–6.CrossRefPubMedGoogle Scholar
  115. 115.
    Kockro RA, Tsai YT, Ng I, Hwang P, Zhu C, Agusanto K, Hong LX, Serra L. Dex-ray: augmented reality neurosurgical navigation with a handheld video probe. Neurosurgery 2009;65(4):795–807; discussion 807–8.Google Scholar
  116. 116.
    Low D, Lee CK, Dip LL, Ng WH, Ang BT, Ng I. Augmented reality neurosurgical planning and navigation for surgical excision of parasagittal, falcine and convexity meningiomas. Br J Neurosurg. 2010;24(1):69–74.CrossRefPubMedGoogle Scholar
  117. 117.
    Kawamata T, Iseki H, Shibasaki T, Hori T. Endoscopic augmented reality navigation system for endonasal transsphenoidal surgery to treat pituitary tumors: technical note. Neurosurgery. 2002;50(6):1393–7.PubMedGoogle Scholar
  118. 118.
    Li L, Yang J, Chu Y, Wu W, Xue J, Liang P, Chen L. A novel augmented reality navigation system for endoscopic sinus and skull base surgery: a feasibility study. PLoS One. 2016;11(1):e0146996.CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Cabrilo I, Sarrafzadeh A, Bijlenga P, Landis BN, Schaller K. Augmented reality-assisted skull base surgery. Neurochirurgie. 2014;60(6):304–6.CrossRefPubMedGoogle Scholar
  120. 120.
    Finger T, Schaumann A, Schulz M, Thomale UW. Augmented reality in intraventricular neuroendoscopy. Acta Neurochir. 2017;159(6):1033–41.CrossRefPubMedGoogle Scholar
  121. 121.
    Sun GC, Chen XL, Hou YZ, Yu XG, Ma XD, Liu G, Liu L, Zhang JS, Tang H, Zhu RY, Zhou DB, Xu BN. Image-guided endoscopic surgery for spontaneous supratentorial intracerebral hematoma. J Neurosurg. 2017:127(3):537–542. https://doi.org/10.3171/2016.7.JNS16932.
  122. 122.
    Elmi-Terander A, Skulason H, Söderman M, Racadio J, Homan R, Babic D, van der Vaart N, Nachabe R. Surgical navigation technology based on augmented reality and integrated 3D intraoperative imaging: a spine cadaveric feasibility and accuracy study. Spine (Phila Pa 1976). 2016;41(21):E1303–11.CrossRefGoogle Scholar
  123. 123.
    Bardeen L. Stryker chooses Microsoft HoloLens to bring operating room design into the future with 3D. In: Microsoft Devices Blog. https://blogs.windows.com/devices/2017/02/21/stryker-chooses-microsoft-hololens-bring-operating-room-design-future-3d/#bO8jgYtmDfSqUyzf.97. 2017. Published February 21, 2017. Accessed 3 Jul 2017.
  124. 124.
    Robertson A. Microsoft HoloLens could help surgeons operate on your spine. In: The Verge. https://www.theverge.com/2017/5/5/15557790/scopis-medical-microsoft-hololens-ar-spine-surgery. 2017 Accessed 3 Jul 2017.
  125. 125.
    Ackerman D. HP’s mixed reality headset gets ready for holiday wishlists. In: CNET. https://www.cnet.com/products/hp-windows-mixed-reality-headset/preview/. 2017. Accessed 25 Jul 2017.
  126. 126.
    Jacob MG, Wachs JP, Packer RA. Hand-gesture-based sterile interface for the operating room using contextual cues for the navigation of radiological images. J Am Med Inform Assoc. 2013;20(e1):e183–6.CrossRefPubMedGoogle Scholar
  127. 127.
    Ma M, Fallavollita P, Habert S, Weidert S, Navab N. Device- and system-independent personal touchless user interface for operating rooms : one personal UI to control all displays in an operating room. Int J Comput Assist Radiol Surg. 2016;11(6):853–61.CrossRefPubMedGoogle Scholar
  128. 128.
    Park BJ, Jang T, Choi JW, Kim N. Gesture-controlled interface for contactless control of various computer programs with a hooking-based keyboard and mouse-mapping technique in the operating room. Comput Math Methods Med. 2016;2016:5170379.PubMedPubMedCentralGoogle Scholar
  129. 129.
    Wachs JP, Stern HI, Edan Y, Gillam M, Handler J, Feied C, Smith M. A gesture-based tool for sterile browsing of radiology images. J Am Med Inform Assoc. 2008;15(3):321–3.CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Madhavan K, Kolcun JPG, Chieng LO, Wang MY. Augmented-reality integrated robotics in neurosurgery: are we there yet? Neurosurg Focus. 2017;42(5):E3.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Laura Stone McGuire
    • 1
  • Amanda Kwasnicki
    • 1
  • Rahim Ismail
    • 2
  • Talia Weiss
    • 3
  • Fady T. Charbel
    • 1
  • Ali Alaraj
    • 1
  1. 1.Department of NeurosurgeryUniversity of Illinois at ChicagoChicagoUSA
  2. 2.Department of NeurosurgeryUniversity of Rochester Medical CenterRochesterUSA
  3. 3.College of Applied Health SciencesUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations