Advertisement

Concurrent Aerobic and Strength Training for Body Composition and Health

  • Eurico Nestor Wilhelm
  • Ronei Silveira PintoEmail author
Chapter

Abstract

For most people, exercise training is among the major modifiable factors to improve body composition and ameliorate cardiometabolic risk factors, but several exercise-induced adaptations are mode-specific. Concurrent endurance and strength training is particularly relevant to improve overall health as it combines the benefits of each single exercise modality to bring about local (e.g. trained skeletal muscles) and systemic physiological adaptations. This chapter will discuss current evidence regarding the benefits of concurrent training on body composition and health-related aspects. The applicability and usefulness of concurrent training to improve total and abdominal body fat will be reviewed, followed by a discussion of the potential benefits of combining strength and endurance exercise in health-related biomarkers, such as blood glucose, circulating lipids and blood pressure.

Keywords

Fat mass Visceral fat Lipoproteins Glucose Blood pressure Vascular health 

References

  1. 1.
    WHO. Obesity and overweight—fact sheet [internet]. World Health Organization. 2017. http://www.who.int/mediacentre/factsheets/fs311/en/
  2. 2.
    Haslam D, Sattar N, Lean M. Obesity—time to wake up. BMJ. 2006;333(7569):640–2.CrossRefGoogle Scholar
  3. 3.
    Ross R, Dagnone D, Jones PJH, Smith H, Paddags A, Hudson R, et al. Reduction in obesity and related comorbid conditions after diet-induced weight loss or exercise-induced weight loss in men. A randomized, controlled trial. Ann Intern Med. 2000;133(2):92–103.CrossRefGoogle Scholar
  4. 4.
    Hickson RC. Interference of strength development by simultaneously training for strength and endurance. Eur J Appl Physiol Occup Physiol. 1980;45(2–3):255–63.CrossRefGoogle Scholar
  5. 5.
    Häkkinen K, Alen M, Kraemer WJ, Gorostiaga E, Izquierdo M, Rusko H, et al. Neuromuscular adaptations during concurrent strength and endurance training versus strength training. Eur J Appl Physiol. 2003;89(1):42–52.CrossRefGoogle Scholar
  6. 6.
    Donges CE, Duffield R, Guelfi KJ, Smith GC, Adams DR, Edge JA. Comparative effects of single-mode vs. duration-matched concurrent exercise training on body composition, low-grade inflammation, and glucose regulation in sedentary, overweight, middle-aged men. Appl Physiol Nutr Metab. 2013;38(7):779–88.CrossRefGoogle Scholar
  7. 7.
    Schumann M, Küüsmaa M, Newton RU, Sirparanta A-I, Syväoja H, Häkkinen A, et al. Fitness and lean mass increases during combined training independent of loading order. Med Sci Sport Exerc. 2014;46(9):1758–68.CrossRefGoogle Scholar
  8. 8.
    Sillanpää E, Laaksonen DE, Häkkinen A, Karavirta L, Jensen B, Kraemer WJ, et al. Body composition, fitness, and metabolic health during strength and endurance training and their combination in middle-aged and older women. Eur J Appl Physiol. 2009;106(2):285–96.CrossRefGoogle Scholar
  9. 9.
    Eklund D, Häkkinen A, Laukkanen JA, Balandzic M, Nyman K, Häkkinen K. Fitness, body composition and blood lipids following 3 concurrent strength and endurance training modes. Appl Physiol Nutr Metab. 2016;41(7):767–74.CrossRefGoogle Scholar
  10. 10.
    Monteiro PA, Chen KY, Lira FS, Saraiva BTC, Antunes BMM, Campos EZ, et al. Concurrent and aerobic exercise training promote similar benefits in body composition and metabolic profiles in obese adolescents. Lipids Health Dis. 2015;14(1):153.CrossRefGoogle Scholar
  11. 11.
    Willis LH, Slentz CA, Bateman LA, Shields AT, Piner LW, Bales CW, et al. Effects of aerobic and/or resistance training on body mass and fat mass in overweight or obese adults. J Appl Physiol. 2012;113(12):1831–7.CrossRefGoogle Scholar
  12. 12.
    Wilson JM, Marin PJ, Rhea MR, Wilson SM, Loenneke JP, Anderson JC. Concurrent training: a meta-analysis examining interference of aerobic and resistance exercises. J Strength Cond Res. 2012;26(8):2293–307.CrossRefGoogle Scholar
  13. 13.
    Bouchard C, Tremblay A, Nadeau A, Dussault J, Després J-P, Threiault G, et al. Long-term exercise training with constant energy intake. 1: effect on body composition and selected metabolic variables. Int J Obes. 1990;14:57–73.PubMedGoogle Scholar
  14. 14.
    Howald H, Hoppeler H, Claassen H, Mathieu O, Straub R. Influences of endurance training on the ultrastructural composition of the different muscle fiber types in humans. Pflügers Arch Eur J Physiol. 1985;403(4):369–76.CrossRefGoogle Scholar
  15. 15.
    Calles-Escandón J, Goran MI, O’Connell M, Nair KS, Danforth E. Exercise increases fat oxidation at rest unrelated to changes in energy balance or lipolysis. Am J Physiol Endocrinol Metab. 1996;270:E1009–14.CrossRefGoogle Scholar
  16. 16.
    Friedlander AL, Casazza GA, Horning MA, Buddinger TF, Brooks GA. Effects of exercise intensity and training on lipid metabolism in young women. Am J Physiol Endocrinol Metab. 2011;275(5 Pt 1):853–63.Google Scholar
  17. 17.
    Sparti A, DeLany JP, de la Bretonne JA, Sander GE, Bray GA. Relationship between resting metabolic rate and the composition of the fat-free mass. Metabolism. 1997;46(10):1225–30.CrossRefGoogle Scholar
  18. 18.
    Byrne HK, Wilmore JH. The effects of a 20-week exercise training program on resting metabolic rate in previously sedentary, moderately obese women. Int J Sport Nutr Exerc Metab. 2001;11:15–31.CrossRefGoogle Scholar
  19. 19.
    Huxley R, Mendis S, Zheleznyakov E, Reddy S, Chan J. Body mass index, waist circumference and waist:hip ratio as predictors of cardiovascular risk—a review of the literature. Eur J Clin Nutr. 2010;64(1):16–22.CrossRefGoogle Scholar
  20. 20.
    Fox CS, Massaro JM, Hoffmann U, Pou KM, Maurovich-Horvat P, Liu C-Y, et al. Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation. 2007;116(1):39–48.CrossRefGoogle Scholar
  21. 21.
    Kaul S, Rothney MP, Peters DM, Wacker WK, Davis CE, Shapiro MD, et al. Dual-energy x-ray absorptiometry for quantification of visceral fat. Obesity. 2012;20(6):1313–8.CrossRefGoogle Scholar
  22. 22.
    Pouliot M-C, Després J, Lemieux S, Moorjani S, Bouchard C, Tremblay A, et al. Waist circunference and abdominal sagittal diameter: best simple anthropometric indexes of abdominal visceral adipose tissue accumulation and related cardiovascular risk in men and women. Am J Cardiol. 1994;73(1):460–8.CrossRefGoogle Scholar
  23. 23.
    Ismail I, Keating SE, Baker MK, Johnson NA. A systematic review and meta-analysis of the effect of aerobic vs. resistance exercise training on visceral fat. Obes Rev. 2012;13(1):68–91.CrossRefGoogle Scholar
  24. 24.
    Dutheil F, Lac G, Lesourd B, Chapier R, Walther G, Vinet A, et al. Different modalities of exercise to reduce visceral fat mass and cardiovascular risk in metabolic syndrome: the RESOLVE* randomized trial. Int J Cardiol. 2013;168(4):3634–42.CrossRefGoogle Scholar
  25. 25.
    Schwingshackl L, Dias S, Strasser B, Hoffmann G. Impact of different training modalities on anthropometric and metabolic characteristics in overweight/obese subjects: a systematic review and network meta-analysis. PLoS One. 2013;8(12):e82853.CrossRefGoogle Scholar
  26. 26.
    Cadore EL, Izquierdo M, Pinto SS, Alberton CL, Pinto RS, Baroni BM, et al. Neuromuscular adaptations to concurrent training in the elderly: effects of intrasession exercise sequence. Age (Omaha). 2013;35(3):891–903.CrossRefGoogle Scholar
  27. 27.
    Pinto S, Cadore E, Alberton C, Zaffari P, Bagatini N, Baroni B, et al. Effects of intra-session exercise sequence during water-based concurrent training. Int J Sports Med. 2013;35(1):41–8.CrossRefGoogle Scholar
  28. 28.
    Wilhelm EN, Rech A, Minozzo F, Botton CE, Radaelli R, Teixeira BC, et al. Concurrent strength and endurance training exercise sequence does not affect neuromuscular adaptations in older men. Exp Gerontol. 2014;60:207–14.CrossRefGoogle Scholar
  29. 29.
    Collins MA, Snow TK. Are adaptations to combined endurance and strength training affected by the sequence of training? J Sports Sci. 1993;11(6):485–91.CrossRefGoogle Scholar
  30. 30.
    Chtara M, Chaouachi A, Levin GT, Chaouachi M, Chamari K, Amri M, et al. Effect of concurrent endurance and circuit resistance training sequence on muscular strength and power development. J Strength Cond Res. 2008;22(4):1037–45.CrossRefGoogle Scholar
  31. 31.
    Gravelle BL, Blessing DL. Physiological adaptation in women concurrently training for strength and endurance. J Strength Cond Res. 2000;14(1):5–13.Google Scholar
  32. 32.
    de Souza EO, Tricoli V, Franchini E, Paulo AC, Regazzini M, Ugrinowitsch C. Acute effect of two aerobic exercise modes on maximum strength and strength endurance. J Strength Cond Res. 2007;21(4):1286–90.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Wilhelm EN, Radaelli R, Perin D, Cunha GS, Cadore EL, Laitano O, et al. The influence of running and cycling on subsequent maximal muscular performance. Isokinet Exerc Sci. 2014;22(2):115–22.CrossRefGoogle Scholar
  34. 34.
    Thornton MK, Potteiger JA. Effects of resistance exercise bouts of different intensities but equal work on EPOC. Med Sci Sport Exerc. 2002;34(4):715–22.CrossRefGoogle Scholar
  35. 35.
    Durstine JL, Grandjean PW, Davis PG, Ferguson MA, Alderson NL, DuBose KD. Blood lipid and lipoprotein adaptations to exercise: a quantitative analysis. Sport Med. 2001;31(15):1033–62.CrossRefGoogle Scholar
  36. 36.
    Kodama S, Tanaka S, Saito K, Shu M, Sone Y, Onitake F, et al. Effect of aerobic exercise training on serum levels of high-density lipoprotein cholesterol. Arch Intern Med. 2007;167(10):999–1008.CrossRefGoogle Scholar
  37. 37.
    Kelley GA, Kelley KS. Impact of progressive resistance training on lipids and lipoproteins in adults: a meta-analysis of randomized controlled trials. Prev Med (Baltim). 2009;48(1):9–19.CrossRefGoogle Scholar
  38. 38.
    Balducci S, Zanuso S, Cardelli P, Salvi L, Bazuro A, Pugliese L, et al. Effect of high- versus low-intensity supervised aerobic and resistance training on modifiable cardiovascular risk factors in type 2 diabetes; the Italian Diabetes and Exercise Study (IDES). PLoS One. 2012;7(11):e49297.CrossRefGoogle Scholar
  39. 39.
    Tseng M-L, Ho C-C, Chen S-C, Huang Y-C, Lai C-H, Liaw Y-P. A simple method for increasing levels of high-density lipoprotein cholesterol: a pilot study of combination aerobic- and resistance-exercise training. Int J Sport Nutr Exerc Metab. 2013;23(3):271–81.CrossRefGoogle Scholar
  40. 40.
    Singh IM, Shishehbor MH, Ansell BJ. High-density lipoprotein as a therapeutic target. J Am Med Assoc. 2007;298(7):786–98.CrossRefGoogle Scholar
  41. 41.
    Libardi CA, de Souza GV, Cavaglieri CR, Madruga VA, Chacon-Mikahil MPT. Effect of resistance, endurance, and concurrent training on TNF-α, IL-6, and CRP. Med Sci Sport Exerc. 2012;44(1):50–6.CrossRefGoogle Scholar
  42. 42.
    Schwingshackl L, Missbach B, Dias S, König J, Hoffmann G. Impact of different training modalities on glycaemic control and blood lipids in patients with type 2 diabetes: a systematic review and network meta-analysis. Diabetologia. 2014;57(9):1789–97.CrossRefGoogle Scholar
  43. 43.
    Colberg SR, Albright AL, Blissmer BJ, Braun B, Chasan-Taber L, Fernhall B, et al. Exercise and type 2 diabetes: American College of Sports Medicine and the American Diabetes Association: joint position statement. Med Sci Sport Exerc. 2010;42(12):2282–303.CrossRefGoogle Scholar
  44. 44.
    Diabetes Prevention Program Research Group, Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346(6):393–403.CrossRefGoogle Scholar
  45. 45.
    Anderssen SA, Carroll S, Urdal P, Holme I. Combined diet and exercise intervention reverses the metabolic syndrome in middle-aged males: results from the Oslo Diet and Exercise Study. Scand J Med Sci Sports. 2007;17(6):687–95.CrossRefGoogle Scholar
  46. 46.
    Umpierre D, Ribeiro PAB, Kramer C, Leitão CB, Zucatti ATN, Azevedo MJ, et al. Physical activity advice only or structured exercise training and association with HbA 1c levels in type 2 diabetes. JAMA. 2011;305(17):1790.CrossRefGoogle Scholar
  47. 47.
    Boulé NG, Kenny GP, Haddad E, Wells GA, Sigal RJ. Meta-analysis of the effect of structured exercise training on cardiorespiratory fitness in type 2 diabetes mellitus. Diabetologia. 2003;46(8):1071–81.CrossRefGoogle Scholar
  48. 48.
    Sigal RJ, Kenny GP, Boulé NG, Wells GA, Prud’homme D, Fortier M, et al. Effects of aerobic training, resistance training, or both on glycemic control in type 2 diabetes. Ann Intern Med. 2007;147:357–69.CrossRefGoogle Scholar
  49. 49.
    Church TS, Blair SN, Cocreham S, Johnson W, Kramer K, Mikus CR, et al. Effects of aerobic and resistance training on hemoglobin A 1c levels in patients with type 2 diabetes. JAMA. 2010;304(20):2253–62.CrossRefGoogle Scholar
  50. 50.
    Umpierre D, Ribeiro PAB, Schaan BD, Ribeiro JP. Volume of supervised exercise training impacts glycaemic control in patients with type 2 diabetes: a systematic review with meta-regression analysis. Diabetologia. 2013;56(2):242–51.CrossRefGoogle Scholar
  51. 51.
    Whelton PK, Carey RM, Aronow WS, Casey DE, Collins KJ, Dennison Himmelfarb C, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice guidelines. Hypertension. 2017;71(6):e13–e115.PubMedGoogle Scholar
  52. 52.
    Pescatello LS, Franklin BA, Fagard R, Farqhar WB, Kelley GA, Ray CA. American College of Sports Medicine position stand. Exercise and hypertension. Med Sci Sport Exerc. 2004;36(3):533–53.CrossRefGoogle Scholar
  53. 53.
    Pescatello LS, MacDonald HV, Lamberti L, Johnson BT. Exercise for hypertension: a prescription update integrating existing recommendations with emerging research. Curr Hypertens Rep. 2015;17(11):87.CrossRefGoogle Scholar
  54. 54.
    Corso LML, MacDonald HV, Johnson BT, Farinatti P, Livingston J, Zaleski AL, et al. Is concurrent training efficacious antihypertensive therapy? A meta-analysis. Med Sci Sport Exerc. 2016;48(12):2398–406.CrossRefGoogle Scholar
  55. 55.
    Fagard RH, Cornelissen VA. Effect of exercise on blood pressure control in hypertensive patients. Eur J Cardiovasc Prev Rehabil. 2007;14(1):12–7.CrossRefGoogle Scholar
  56. 56.
    DeSouza CA, Shapiro LF, Clevenger CM, Dinenno FA, Monahan KD, Tanaka H, et al. Regular aerobic exercise prevents and restores age-related declines in endothelium-dependent vasodilation in healthy men. Circulation. 2000;102(12):1351–7.CrossRefGoogle Scholar
  57. 57.
    Rush JWE, Denniss SG, D a G. Vascular nitric oxide and oxidative stress: determinants of endothelial adaptations to cardiovascular disease and to physical activity. Can J Appl Physiol. 2005;30(4):442–74.CrossRefGoogle Scholar
  58. 58.
    Olson TP, Dengel DR, Leon AS, Schmitz KH. Moderate resistance training and vascular health in overweight women. Med Sci Sport Exerc. 2006;38(9):1558–64.CrossRefGoogle Scholar
  59. 59.
    Padilla J, Simmons GH, Bender SB, Arce-Esquivel AA, Whyte JJ, Laughlin MH. Vascular effects of exercise: endothelial adaptations beyond active muscle beds. Physiology. 2011;26(3):132–45.CrossRefGoogle Scholar
  60. 60.
    Maiorana A, O’Driscoll G, Cheetham C, Dembo L, Stanton K, Goodman C, et al. The effect of combined aerobic and resistance exercise training on vascular function in type 2 diabetes. J Am Coll Cardiol. 2001;38(3):860–6.CrossRefGoogle Scholar
  61. 61.
    Vona M, Codeluppi GM, Iannino T, Ferrari E, Bogousslavsky J, von Segesser LK. Effects of different types of exercise training followed by detraining on endothelium-dependent dilation in patients with recent myocardial infarction. Circulation. 2009;119(12):1601–8.CrossRefGoogle Scholar
  62. 62.
    Okamoto T, Masuhara M, Ikuta K. Combined aerobic and resistance training and vascular function: effect of aerobic exercise before and after resistance training. J Appl Physiol. 2007;103(5):1655–61.CrossRefGoogle Scholar
  63. 63.
    Goto K, Higashiyama M, Ishii N, Takamatsu K. Prior endurance exercise attenuates growth hormone response to subsequent resistance exercise. Eur J Appl Physiol. 2005;94(3):333–8.CrossRefGoogle Scholar
  64. 64.
    Napoli R, Guardasole V, Angelini V, D’Amico F, Zarra E, Matarazzo M, et al. Acute effects of growth hormone on vascular function in human subjects. J Clin Endocrinol Metab. 2003;88(6):2817–20.CrossRefGoogle Scholar
  65. 65.
    Mitchell GF, Hwang S-J, Vasan RS, Larson MG, Pencina MJ, Hamburg NM, et al. Arterial stiffness and cardiovascular events: the Framingham Heart Study. Circulation. 2010;121(4):505–11.CrossRefGoogle Scholar
  66. 66.
    Miyachi M. Effects of resistance training on arterial stiffness: a meta-analysis. Br J Sports Med. 2013;47(6):393–6.CrossRefGoogle Scholar
  67. 67.
    Rakobowchuk M, McGowan CL, de Groot PC, Bruinsma D, Hartman JW, Phillips SM, et al. Effect of whole body resistance training on arterial compliance in young men. Exp Physiol. 2005;90(4):645–51.CrossRefGoogle Scholar
  68. 68.
    Kawano H, Tanaka H, Miyachi M. Resistance training and arterial compliance: keeping the benefits while minimizing the stiffening. J Hypertens. 2006;24(9):1753–9.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Eurico Nestor Wilhelm
    • 1
    • 2
  • Ronei Silveira Pinto
    • 2
    Email author
  1. 1.Physical Education School, Federal University of Pelotas (UFPel)PelotasBrazil
  2. 2.Exercise Research Laboratory, Physical Education SchoolFederal University of Rio Grande do Sul (UFRGS)Porto AlegreBrazil

Personalised recommendations