Skip to main content

Gradient-Enhanced Polynomial Chaos Methods for Circuit Simulation

  • Conference paper
  • First Online:
Scientific Computing in Electrical Engineering

Part of the book series: Mathematics in Industry ((TECMI,volume 28))

Abstract

Uncertainty Quantification (UQ) is an important and emerging topic in electronic design automation (EDA), as parametric uncertainties are a significant concern for the design of integrated circuits. Historically, various sampling methods such as Monte Carlo (MC) and Latin Hypercube Sampling (LHS) have been employed, but these methods can be prohibitively expensive. Polynomial Chaos Expansion (PCE) methods are often proposed as an alternative to sampling. PCE methods have a number of variations, representing tradeoffs. Regression-based PCE methods, for example, can be applied to existing sample sets and don’t require specific quadrature points. However, this comes at the cost of accuracy. In this paper we explore the idea of enhancing regression-based PCE methods using gradient information. The gradient information is provided by an intrusive adjoint sensitivity algorithm embedded in the circuit simulator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McKay, M.D., Beckman, R.J., Conover, W.J.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21(2), 239–245 (1979)

    MathSciNet  MATH  Google Scholar 

  2. Stein, M.: Large sample properties of simulations using Latin hypercube sampling. Technometrics 29(2), 143–151 (1987)

    Article  MathSciNet  Google Scholar 

  3. Strunz, K., Su, Q.: Stochastic formulation of SPICE-type electronic circuit simulation with polynomial chaos. ACM Trans. Model. Comput. Simul. 18(4), 15:1–15:23 (2008)

    Article  Google Scholar 

  4. Hocevar, D.E., Yang, P., Trick, T.N., Epler, B.D.: Transient sensitivity computation for MOSFET circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. CAD-4(4), 609–620 (1985)

    Article  Google Scholar 

  5. Gu, B., Gullapalli, K., Zhang, Y., Sundareswaran, S.: Faster statistical cell characterization using adjoint sensitivity analysis. In: Custom Integrated Circuits Conference, 2008, CICC 2008, pp. 229–232. IEEE, New York (2008)

    Google Scholar 

  6. Meir, A., Roychowdhury, J.: BLAST: Efficient computation of nonlinear delay sensitivities in electronic and biological networks using barycentric Lagrange enabled transient adjoint analysis. In: DAC’12: Proceedings of the 2012 Design Automation Conference, pp. 301–310. ACM, New York (2012)

    Google Scholar 

  7. Alekseev, A.K., Navon, I.M., Zelentsov, M.E.: The estimation of functional uncertainty using polynomial chaos and adjoint equations. Int. J. Numer. Methods Fluids 67(3), 328–341 (2011)

    Article  MathSciNet  Google Scholar 

  8. Keiter, E.R., Aadithya, K.V., Mei, T., Russo, T.V., Schiek, R.L., Sholander, P.E., Thornquist, H.K., Verley, J.C.: Xyce parallel electronic simulator: users’ guide, version 6.6. Technical Report SAND2016-11716, Sandia National Laboratories, Albuquerque, NM (2016)

    Google Scholar 

  9. Adams, B.M., Bauman, L.E., Bohnhoff, W.J., Dalbey, K.R., Eddy, J.P., Ebeida, M.S., Eldred, M.S., Hough, P.D., Hu, K.T., Jakeman, J.D., Rushdi, A., Swiler, L.P., Stephens, J.A., Vigil, D.M., Wildey, T.M.: Dakota, a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis: version 6.2 users manual. Technical Report SAND2014-4633, Sandia National Laboratories, Albuquerque, NM (Updated May 2015). Available online from http://dakota.sandia.gov/documentation.html

  10. Phipps, E.T., Gay, D.M.: Sacado Automatic Differentiation Package (2011). http://trilinos.sandia.gov/packages/sacado/

  11. Xiu, D., Karniadakis, G.M.: The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24(2), 619–644 (2002)

    Article  MathSciNet  Google Scholar 

  12. Xiu, D.: Numerical Methods for Stochastic Computations: A Spectral Method Approach. Princeton University Press, Princeton (2010)

    Google Scholar 

  13. Wiener, N.: The homogeneous chaos. Am. J. Math. 60, 897–936 (1938)

    Article  MathSciNet  Google Scholar 

  14. Smolyak, S.: Quadrature and interpolation formulas for tensor products of certain classes of functions. Dokl. Akad. Nauk SSSR 4, 240–243 (1963)

    Google Scholar 

  15. Stroud, A.: Approximate Calculation of Multiple Integrals. Prentice Hall, Upper Saddle River (1971)

    Google Scholar 

  16. Constantine, P.G., Eldred, M.S., Phipps, E.T.: Sparse pseudospectral approximation method. Comput. Methods Appl. Mech. Eng. 229–232, 1–12 (2012)

    Article  MathSciNet  Google Scholar 

  17. Walters, R.W.: Towards stochastic fluid mechanics via polynomial chaos. In: Proceedings of the 41st AIAA Aerospace Sciences Meeting and Exhibit, AIAA-2003-0413, Reno, NV (2003)

    Google Scholar 

  18. Hampton, J., Doostan, A.: Coherence motivated sampling and convergence analysis of least squares polynomial chaos regression. Comput. Methods Appl. Mech. Eng. 290, 73–97 (2015)

    Article  MathSciNet  Google Scholar 

  19. Blatman, G., Sudret, B.: Adaptive sparse polynomial chaos expansion based on least angle regression. J. Comput. Phys. 230(6), 2345–2367 (2011)

    Article  MathSciNet  Google Scholar 

  20. Doostan, A., Owhadi, H.: A non-adapted sparse approximation of PDEs with stochastic inputs. J. Comput. Phys. 230(8), 3015–3034 (2011)

    Article  MathSciNet  Google Scholar 

  21. Peng, J., Hampton, J., Doostan, A.: On polynomial chaos expansion via gradient-enhanced l1-minimization. J. Comput. Phys. 310, 440–458 (2016)

    Article  MathSciNet  Google Scholar 

  22. Adams, B.M., Bauman, L.E., Bohnhoff, W.J., Dalbey, K.R., Eddy, J.P., Ebeida, M.S., Eldred, M.S., Hough, P.D., Hu, K.T., Jakeman, J.D., Rushdi, A., Swiler, L.P., Stephens, J.A., Vigil, D.M., Wildey, T.M.: Dakota, a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis: version 6.2 theory manual. Technical Report SAND2014-4253, Sandia National Laboratories, Albuquerque, NM (Updated May 2015). Available online from http://dakota.sandia.gov/documentation.html

  23. Chauhan, Y.S., Venugopalan, S., Chalkiadaki, M.A., Karim, M.A.U., Agarwal, H., Khandelwal, S., Paydavosi, N., Duarte, J.P., Enz, C.C., Niknejad, A.M., Hu, C.: BSIM6: analog and RF compact model for bulk MOSFET. IEEE Trans. Electron Devices 61(2), 234–244 (2014)

    Article  Google Scholar 

  24. Günther, M., Feldmann, U.: The DAE-index in electric circuit simulation. Math. Comput. Simul. 39(5–6), 573–582 (1995)

    Article  MathSciNet  Google Scholar 

  25. Bächle, S.: Index reduction for differential-algebraic equations in circuit simulation. Technical Report MATHEON 141, Technical University of Berlin, Germany (2004)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the anonymous reviewers for their careful reading of the manuscript and their valuable suggestions to improve various aspects of this paper.

This work was sponsored by the Laboratory Directed Research and Development (LDRD) Program at Sandia National Laboratories. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric R. Keiter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Keiter, E.R., Swiler, L.P., Wilcox, I.Z. (2018). Gradient-Enhanced Polynomial Chaos Methods for Circuit Simulation. In: Langer, U., Amrhein, W., Zulehner, W. (eds) Scientific Computing in Electrical Engineering. Mathematics in Industry(), vol 28. Springer, Cham. https://doi.org/10.1007/978-3-319-75538-0_6

Download citation

Publish with us

Policies and ethics