Advertisement

Electro-Thermal Simulations with Skin-Layers and Contacts

  • Christoph Winkelmann
  • Raffael Casagrande
  • Ralf Hiptmair
  • Philipp-Thomas Müller
  • Jörg Ostrowski
  • Thomas Werder Schläpfer
Conference paper
Part of the Mathematics in Industry book series (MATHINDUSTRY, volume 28)

Abstract

We show a coupled electro-thermal simulation of a large, complex industrial device that yields a steady state temperature distribution with only small deviations from measurements. Firstly, the Ohmic losses in the conductors are calculated by a FEM-solver for the time-harmonic full Maxwell equations. To this end, we introduce a model to account for electric contact resistances, and a gradient based error indicator for adaptive mesh refinement. Secondly, the steady state temperature distribution is computed by a commercial CFD solver, taking into account convective and radiative cooling to balance the Ohmic heating. Theoretical arguments and simulation results hint that good predictions of total Ohmic losses and temperature distributions can be obtained on comparably coarse meshes which do not fully resolve the skin layer.

Notes

Acknowledgements

This work has been co-funded by the Swiss Commission for Technology and Innovation (CTI).

References

  1. 1.
    Kaufmann, C., Günther, M., Klagges, D., Knorrenschild, M., Richwin, M., Schöps, S., ter Maten, J.: Efficient frequency-transient co-simulation of coupled heat-electromagnetic problems. J. Math. Ind. 4, 1 (2014)Google Scholar
  2. 2.
    Hiptmair, R., Krämer, F., Ostrowski, J.: A robust Maxwell formulation for all frequencies. IEEE Trans. Magn. 44(6), 682–685 (2008)Google Scholar
  3. 3.
  4. 4.
    Holm, R.: Electric Contacts Handbook. Springer, New York (1958)Google Scholar
  5. 5.
    Mueller, P.T.: Macroscopic Electro Thermal Simulation of Contact Resistances. Bachelor’s thesis, Rheinisch-Westfälische Technische Hochschule RWTH Aachen, Aachen (2016)Google Scholar
  6. 6.
    Beck, R., Hiptmair, R., Hoppe, R.H.W., Wohlmuth, B.: Residual based a posteriori error estimators for eddy current computation. ESAIM: Math. Model. Numer. Anal. 34(1), 159–182 (2000)Google Scholar
  7. 7.
    Becker, R., Rannacher, R.: An optimal control approach to a posteriori error estimation in finite element methods. Acta Numer. 10, 1–102 (2001)Google Scholar
  8. 8.
    Schöberl, J.: A posteriori error estimates for Maxwell equations. Math. Comput. 77(262), 633–649 (2008)Google Scholar
  9. 9.
    Harbrecht, H.: On output functionals of boundary value problems on stochastic domains. Math. Methods Appl. Sci. 33(1), 91–102 (2010)Google Scholar
  10. 10.
    Casagrande, R., Winkelmann, C., Hiptmair, R., Ostrowski, J.: A Trefftz method for the time-harmonic eddy current equation. In: Scientific Computing in Electrical Engineering SCEE 2016Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Christoph Winkelmann
    • 1
    • 2
  • Raffael Casagrande
    • 2
  • Ralf Hiptmair
    • 2
  • Philipp-Thomas Müller
    • 3
  • Jörg Ostrowski
    • 1
  • Thomas Werder Schläpfer
    • 1
  1. 1.ABB Switzerland Ltd.Corporate ResearchBaden-DättwilSwitzerland
  2. 2.ETH ZürichSeminar for Applied MathematicsZürichSwitzerland
  3. 3.RWTH AachenAachenGermany

Personalised recommendations