Advertisement

Evaluation of Capacitive EMG Sensor Geometries by Simulation and Measurement

  • Theresa RolandEmail author
  • Sabrina Mairhofer
  • Wolfgang Roland
  • Christian Diskus
  • Sebastian Amsuess
  • Michael Friedrich Russold
  • Christoph Wolf
  • Werner Baumgartner
Conference paper
Part of the Mathematics in Industry book series (MATHINDUSTRY, volume 28)

Abstract

Myoelectric prostheses use electromyography (EMG) signals to control the movements of the prosthesis. EMG-signals are electric potentials on the skin which originate from voluntarily contracted muscles within a person’s residual limb. Thus prostheses of this type utilize the residual neuro-muscular system of the human body to control the functions of an electrically powered prosthesis. Standard measurements are done using conductive electrodes on the skin surface. For technical reasons a capacitive coupling of the EMG to the prosthesis control would be preferable. To design optimal settings of the sensors, a detailed knowledge of the temporal electric potential distribution is vital. Here we show the simulation of the EMG using finite elements employing COMSOL based on MRI data. Then a node-based approach in MATLAB was derived and the comparison with the FE-results show that this approach yields excellent results and offers the advantage of high speed computation which allows for optimization of the sensor geometry. The simulation results were verified using measurements on volunteers showing that indeed our model assumptions and simplifications made are valid. The developed nodal analysis model enables fast and simple determination of the optimal prostheses-sensor geometry for the individual amputee.

Notes

Acknowledgements

This work was supported by Otto Bock Healthcare GmbH and the Linz Center of Mechatronics.

References

  1. 1.
    Heuer, S.: Ambient capacitive ECG measurement-electrodes, systems and concepts (“Ambiente kapazitive EKG-Messung - Elektroden, Systeme und Konzepte”). Dissertation, Karlsruher Institute for Technology, Rottweil (2011)Google Scholar
  2. 2.
    Roland, T., Amsuess, S., Russold, M.F., Wolf, C., Baumgartner, W.: Capacitive sensing of surface EMG for upper limb prostheses control. Procedia Eng. 168, 155–158 (2016). https://www.sciencedirect.com/science/article/pii/S1877705816335007 CrossRefGoogle Scholar
  3. 3.
    Honeder, J.L.: A quasi-stationary approach to the approximate solution of finite element analysis applied to EMG modeling. Master’s thesis, Technikum Wien, Vienna (2013)Google Scholar
  4. 4.
    Rosenfalck, P.: Intra- and extracellular potential fields of active nerve and muscle fibres. Acta Phys. Scand. Suppl. 321, 1–168 (1969)Google Scholar
  5. 5.
    Bakshi, U.A., Bakshi, A.V.: Circuit Analysis. Technical Publications, Pune (2007)Google Scholar
  6. 6.
    Andreassen, S., Arendt-Nielsen, L.: Muscle fibre conduction velocity in motor units of the human anterior tibial muscle: a new size principle parameter. J. Physiol. 391, 561–571 (1987)CrossRefGoogle Scholar
  7. 7.
    Bruns, T., Praun, N.: Biofeedback - Ein Handbuch für die therapeutische Praxis. Vadenhoeck & Ruprecht, Göttingen (2002)Google Scholar
  8. 8.
    Hermens, H.J., Freriks, B., Disselhorst-Klug, C., Rau, G.: Development of recommendations for SEMG sensors and sensor placement procedures. J. Electromyogr. Kinesiol. 10, 361–374 (2000)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Theresa Roland
    • 1
    Email author
  • Sabrina Mairhofer
    • 1
  • Wolfgang Roland
    • 2
  • Christian Diskus
    • 3
  • Sebastian Amsuess
    • 4
  • Michael Friedrich Russold
    • 4
  • Christoph Wolf
    • 1
  • Werner Baumgartner
    • 1
  1. 1.Institute for Biomedical MechatronicsJohannes Kepler University LinzLinzAustria
  2. 2.Institute of Polymer Extrusion and CompoundingJohannes Kepler University LinzLinzAustria
  3. 3.Institute for Microelectronics and MicrosensorsJohannes Kepler University LinzLinzAustria
  4. 4.Otto Bock Healthcare Products GmbHResearch and DevelopmentViennaAustria

Personalised recommendations