Robust Optimization of an RFIC Isolation Problem Under Uncertainties

  • Piotr PutekEmail author
  • Rick Janssen
  • Jan Niehof
  • E. Jan W. ter Maten
  • Roland Pulch
  • Michael Günther
  • Bratislav Tasić
Conference paper
Part of the Mathematics in Industry book series (MATHINDUSTRY, volume 28)


Modern electronics systems involved in communication and identification impose demanding constraints on both reliability and robustness of components. On the one hand, it results from the influence of manufacturing tolerances within the continuous down-scaling process into the output characteristics of electronic devices. On the other hand, the increasing integration process of various systems on a single die force a circuit designer to make some trade-offs in preventing interference issues and in compensating coupling effects. Thus, constraints in terms of statistical moments have come in a natural way into optimization formulations of electronics products under uncertainties. Therefore, in this paper, for the careful assessment of the propagation of uncertainties through a model of a device a type of Stochastic Collocation Method (SCM) with Polynomial Chaos (PC) was used. In this way a response surface model can be included in a stochastic, constrained optimization problem. We have illustrated our methodology on a Radio Frequency Integrated Circuit (RFIC) isolation problem. Achieved results for the optimization confirmed efficiency and robustness of the proposed methodology.



The nanoCOPS (Nanoelectronic COupled Problems Solutions) project is supported by the European Union in the FP7-ICT-2013-11 Program under the grant agreement number 619166.


  1. 1.
    Chapter SC 47A:  Integrated circuits.
  2. 2.
    Chua, L.O., Lin, P.M.: Computer Aided Analysis of Electronic Circuits: Algorithms & Computational Techniques. Prentice-Hall, Englewood Cliffs (1975)Google Scholar
  3. 3.
    Collin, R.E.: Field Theory of Guided Waves. IEEE, New York (1990)CrossRefGoogle Scholar
  4. 4.
    Dakota 6.2, Sandia National Laboratories (2015).
  5. 5.
    Di Bucchianico, A., ter Maten, J., Pulch, R., Janssen, R., Niehof, J., Hanssen, J., Kapora, S.: Robust and efficient uncertainty quantification and validation of RFIC isolation. Radioengineering 23, 308–318 (2014)Google Scholar
  6. 6.
    Feldmann, U., Günther, M.: CAD-based electric-circuit modeling in industry I: mathematical structure and index of network equations. Surv. Math. Ind. 8(2), 97–129 (1999)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Gharpurey, R., Meyer, R.G.: Modeling and analysis of substrate coupling in integrated circuits. IEEE J. Solid State Circuits 31(3), 344–353 (1996)CrossRefGoogle Scholar
  8. 8.
    Kapora, S., Hanssen, M., Niehof, J., Sandifort, Q.: Methodology for interference analysis during early design stages of high-performance mixed-signal ICs. In: Proceedings of 2015 10th International Workshop on the Electromagnetic Compatibility of Integrated Circuits (EMC Compo), Edinburgh, November 10–13, pp. 67–71 (2015)Google Scholar
  9. 9.
    Momentum Keysight Technologies.
  10. 10.
    Niehof, J., van Sinderen, J.: Preventing RFIC interference issues: a modeling methodology for floorplan development and verification of isolation- and grounding strategies. In: Proceedings of 2011 15th IEEE Workshop on Signal Propagation on Interconnects (SPI), Naples, pp. 11–14 (2011)Google Scholar
  11. 11.
    Putek, P., Crevecoeur, G., Slodička, M., van Keer, R., Van de Wiele, B., Dupré, L.: Space mapping methodology for defect recognition in eddy current testing—type NDT. COMPEL 31(3), 881–894 (2012)CrossRefGoogle Scholar
  12. 12.
    Putek, P., Meuris, P., Günther, M., ter Maten, E.J.W., Pulch, R., Wieers, A., Schoenmaker, W.: Uncertainty quantification in electro-thermal coupled problems based on a power transistor device. IFAC-PapersOnLine 48, 938–939 (2015)CrossRefGoogle Scholar
  13. 13.
    Putek, P., Janssen, R., Niehof, J., ter Maten, E.J.W., Pulch, R., Tasić, B., Günther, M.: Nanoelectronic coupled problem solutions: uncertainty quantification of RFIC interference. CASA-report, vol. 1622. Technische Universiteit Eindhoven, Eindhoven (2016)Google Scholar
  14. 14.
    Putek, P., Meuris, P., Pulch, R., ter Maten, E.J.W., Schoenmaker, W., Günther, M.: Uncertainty quantification for robust topology optimization of power transistor devices. IEEE Trans. Magn. 52, 1700104 (2016)CrossRefGoogle Scholar
  15. 15.
    Stanisavljevicć, M., Schmid, A., Leblebici, Y.: Reliability of Nanoscale Sircuits and Systems: Methodologies and Circuit Architectures. Springer, New York (2011)CrossRefGoogle Scholar
  16. 16.
    Sudret, B.: Global sensitivity analysis using polynomial chaos expansion. Reliab. Eng. Syst. Saf. 93(7), 964–979 (2008)CrossRefGoogle Scholar
  17. 17.
    Xiu, D.: Numerical Methods for Stochastic Computations—A Spectral Method Approach. Princeton University Press, Princeton (2010)zbMATHGoogle Scholar
  18. 18.
    Yildiz, Ö.F.: Analysis of electromagnetic interference variability on RF integrated circuits. MSc. thesis, Technische Universität Hamburg (2016)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Piotr Putek
    • 1
    Email author
  • Rick Janssen
    • 2
  • Jan Niehof
    • 2
  • E. Jan W. ter Maten
    • 1
  • Roland Pulch
    • 3
  • Michael Günther
    • 1
  • Bratislav Tasić
    • 2
  1. 1.Bergische Universität WuppertalWuppertalGermany
  2. 2.NXP SemiconductorsEindhovenThe Netherlands
  3. 3.Institute of Mathematics and Computer ScienceErnst-Moritz-Arndt-Universität GreifswaldGreifswaldGermany

Personalised recommendations