Survey on Semi-explicit Time Integration of Eddy Current Problems

  • Jennifer DutinéEmail author
  • Markus Clemens
  • Sebastian Schöps
Conference paper
Part of the Mathematics in Industry book series (MATHINDUSTRY, volume 28)


The spatial discretization of the magnetic vector potential formulation of magnetoquasistatic field problems results in an infinitely stiff differential-algebraic equation system. It is transformed into a finitely stiff ordinary differential equation system by applying a generalized Schur complement. Applying the explicit Euler time integration scheme to this system results in a small maximum stable time step size. Fast computations are required in every time step to yield an acceptable overall simulation time. Several acceleration methods are presented.



This work was supported by the German Research Foundation DFG (grant numbers CL143/11-1, SCHO1562/1-1). The third author is supported by the Excellence Initiative of the German Federal and State Governments and The Graduate School of Computational Engineering at TU Darmstadt.


  1. 1.
    Schöps, S., Bartel, A., Clemens, M.: Higher order half-explicit time integration of eddy current problems using domain substructuring. IEEE Trans. Magn. 48(2), 623–626 (2012)CrossRefGoogle Scholar
  2. 2.
    Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, 2nd rev. edn. Springer, Berlin (1996)Google Scholar
  3. 3.
    Yioultsis, T.V., Charitou, K.S., Antonopoulos, C.S., Tsiboukis, T.D.: A finite difference time domain scheme for transient eddy current problems. IEEE Trans. Magn. 37(5), 3145–3149 (2001)CrossRefGoogle Scholar
  4. 4.
    Außerhofer, S., Bíro, O., Preis, K.: Discontinuous Galerkin finite elements in time domain eddy-current problems. IEEE Trans. Magn. 45(3), 1300–1303 (2009)CrossRefGoogle Scholar
  5. 5.
    Clemens, M., Schöps, S., De Gersem, H., Bartel, A.: Decomposition and regularization of nonlinear anisotropic curl-curl DAEs. COMPEL 30(6), 1701–1714 (2011)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Dutiné, J., Clemens, M., Schöps, S., Wimmer, G.: Explicit time integration of transient eddy current problems. Int J Numer Model. e2227 (2017)
  7. 7.
    Clemens, M., Wilke, M., Schuhmann, R., Weiland, T.: Subspace projection extrapolation scheme for transient field simulations. IEEE Trans. Magn. 40(2), 934–937 (2004)CrossRefGoogle Scholar
  8. 8.
    Dutiné, J., Clemens, M., Schöps, S.: Multiple right-hand side techniques in semi-explicit time integration methods for transient eddy-current problems. IEEE Trans. Magn. 53(6), 1–4 (2017)CrossRefGoogle Scholar
  9. 9.
    Dutiné, J., Clemens, M., Schöps, S.: Explicit time integration of eddy current problems using a selective matrix update strategy. Compel 36(5), 1364–1371 (2017)CrossRefGoogle Scholar
  10. 10.
    Monk, P.: Finite Element Methods for Maxwell’s Equations. Oxford University Press, Oxford (2003)CrossRefGoogle Scholar
  11. 11.
    Jin, J.-M.: The Finite Element Method in Electromagnetics, 3rd edn. Wiley-IEEE Press, Hoboken (2014)zbMATHGoogle Scholar
  12. 12.
    Chatterjee, A.: An introduction to the proper orthogonal decomposition. Curr. Sci. 78(7), 808–817 (2000)Google Scholar
  13. 13.
    Trefethen, L.N., Bau, D.: Numerical Linear Algebra. Society for Industrial and Applied Mathematics, Philadelphia (1997)CrossRefGoogle Scholar
  14. 14.
    Nakata, T., Fujiwara, K.: Results for benchmark problem 10 (steel plates around a coil). COMPEL 9(3), 181–192 (1990)CrossRefGoogle Scholar
  15. 15.
    Kameari, A.: Calculation of transient 3D eddy current using edge-elements. IEEE Trans. Magn. 26(2), 466–469 (1990)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Jennifer Dutiné
    • 1
    Email author
  • Markus Clemens
    • 1
  • Sebastian Schöps
    • 2
  1. 1.University of WuppertalWuppertalGermany
  2. 2.Graduate School CETechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations