Advertisement

Modelling and Simulation of Electrically Controlled Droplet Dynamics

  • Yun OuédraogoEmail author
  • Erion Gjonaj
  • Thomas Weiland
  • Herbert De Gersem
  • Christoph Steinhausen
  • Grazia Lamanna
  • Bernhard Weigand
  • Andreas Preusche
  • Andreas Dreizler
Conference paper
Part of the Mathematics in Industry book series (MATHINDUSTRY, volume 28)

Abstract

The electrohydrodynamics of millimetric droplets under the influence of slowly varying electric fields is considered. Strong electric fields applied on liquids induce forces driving fluid motion. This effect can be used, among others, in on-demand droplet generators. In this work, we discuss a convection-conduction model for the simulation of droplet motion in strong electric fields. The model focuses on robustness with respect to topology changes and on dynamic charging effects in liquids. We illustrate the model with the simulation of electrically driven droplet generation. The simulated dynamics for droplets with different conductivities are compared with experiments.

Notes

Acknowledgements

This work is funded by the German Research Foundation in the framework of the Collaborative Research Center Transregio 75.

References

  1. 1.
    Weckenmann, F., Bork, B., Oldenhof, E., Lamanna, G., Weigand, B., Boehm, B., Dreizler, A.: Single acetone droplets at supercritical pressure: droplet generation and characterization of PLIFP. Z. Phys. Chem.-Int. J. Res. Phys. Chem. Chem. Phys. 225, 1417–1431 (2011)Google Scholar
  2. 2.
    Melcher, J.R., Taylor, G.I.: Electrohydrodynamics: a review of the role of interfacial shear stresses. Annu. Rev. Fluid Mech. 1(1), 111–146 (1969)CrossRefGoogle Scholar
  3. 3.
    Saville, D.A.: Electrohydrodynamics: the Taylor-Melcher leaky dielectric model. Annu. Rev. Fluid Mech. 29(1), 27–64 (1997)MathSciNetCrossRefGoogle Scholar
  4. 4.
  5. 5.
    Roisman, I.V., Opfer, L., Tropea, C., Raessi, M., Mostaghimi, J., Chandra, S.: Drop impact onto a dry surface: role of the dynamic contact angle. Colloids Surf. A Physicochem. Eng. Asp. 322(1–3), 183–191 (2008)CrossRefGoogle Scholar
  6. 6.
    Hirt, C.W., Nichols, B.D.: Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39(1), 201–225 (1981)CrossRefGoogle Scholar
  7. 7.
    Tomar, G., Gerlach, D., Biswas, G., Alleborn, N., Sharma, A., Durst, F., Welch, S.W.J., Delgado, A.: Two-phase electrohydrodynamic simulations using a volume-of-fluid approach. J. Comput. Phys. 227(2), 1267–1285 (2007)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Rohlfs, W., Dietze, G.F., Haustein, H.D., Kneer, R.: Two-phase electrohydrodynamic simulations using a volume-of-fluid approach: a comment. J. Comput. Phys. 231(12), 4454–4463 (2012)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Yun Ouédraogo
    • 1
    Email author
  • Erion Gjonaj
    • 1
  • Thomas Weiland
    • 1
  • Herbert De Gersem
    • 1
  • Christoph Steinhausen
    • 2
  • Grazia Lamanna
    • 2
  • Bernhard Weigand
    • 2
  • Andreas Preusche
    • 3
  • Andreas Dreizler
    • 3
  1. 1.Institut für Theorie Elektromagnetischer FelderTechnische Universität DarmstadtDarmstadtGermany
  2. 2.Institut für Thermodynamik der Luft- und RaumfahrtUniversität StuttgartStuttgartGermany
  3. 3.Fachgebiet für Reaktive Strömungen und MesstechnikTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations