Preliminary Numerical Study on Electrical Stimulation at Alloplastic Reconstruction Plates of the Mandible

  • Ursula van RienenEmail author
  • Ulf Zimmermann
  • Hendrikje Raben
  • Peer W. Kämmerer
Conference paper
Part of the Mathematics in Industry book series (MATHINDUSTRY, volume 28)


It is well known that external biophysical stimulation via application of electric currents enhances bone healing and restores its structural strength. However, it has not yet been applied to treat large bone defects. We conducted a first study on application of electrical stimulation for intrinsic activation of bone healing processes in critical size defects of the facial skeleton. Basing on CT images of a patient with a critical size defect, a volume conductor model has been set up in which the stimulation electrodes are integrated. The problem can be modelled as a stationary current problem. It is solved by the finite element method. Different stimulation sites are studied with respect to the desired therapeutic range of the electric field strength. In future works, the model shall be further refined. The long-range aim is a patient-specific simulation within the therapy planning.



This work was partly supported by the German Science Foundation (DFG) in the scope of the project DFG RI 814/24-1 and by a grant of the Federal State of Mecklenburg-Vorpommern.


  1. 1.
    Maurer, P., Eckert, A.W., Kriwalsky, M.S., Schubert, J.: Scope and limitations of methods of mandibular reconstruction: a long-term follow-up. Br. J. Oral Maxillofac. Surg. 48, 100–104 (2010)CrossRefGoogle Scholar
  2. 2.
    Fukada, E., Yasuda, I.: On the piezoelectric effect of bone. J. Phys. Soc. Jpn. 12, 1158–1162 (1957)CrossRefGoogle Scholar
  3. 3.
    Bassett, C.A., Pawluk, R.J., Pilla, A.A.: Acceleration of fracture repair by electromagnetic fields. a surgically noninvasive method. Ann. N. Y. Acad. Sci. 238, 242–262 (1974)Google Scholar
  4. 4.
    Pollack, S.R., Petrov, N., Salzstein, R., Brankov, G., Blagoeva, R.: An anatomical model for streaming potentials in osteons. J. Biomech. 17, 627–636 (1984)CrossRefGoogle Scholar
  5. 5.
    Riddle, R.C., Donahue, H.J.: From streaming-potentials to shear stress: 25 years of bone cell mechanotransduction. J. Orthop. Res. 27, 143–149 (2009)CrossRefGoogle Scholar
  6. 6.
    Kraus, W.: Magnetic field therapy and magnetically induced electrostimulation in orthopedics. Orthopaede 13, 78–92 (1984)Google Scholar
  7. 7.
    Potratz, C., Kluess, D., Ewald, H., van Rienen, U.: Multiobjective optimization of an electrostimulative acetabular revision system. IEEE Trans. Biomed. Eng. 57, 460–468 (2010)CrossRefGoogle Scholar
  8. 8.
    Klüß, D., Souffrant, R., Ewald, E., van Rienen, U., Bader, R., Mittelmeier, W.: Acetabuläre Hüftendoprothese mit einer Vorrichtung zur Elektrostimulation des Knochens. Patent (DE202008015661 U1) (2009)Google Scholar
  9. 9.
    Su, Y., Souffrant, R., Kluess, D., Ellenrieder, M., Mittelmeier, W., van Rienen, U., Bader, R.: Evaluation of electric field distribution in electromagnetic stimulation of human femoral head. Bioelectromagnetics 35, 547–558 (2014)CrossRefGoogle Scholar
  10. 10.
    Shayesteh, Y.S., Eslami, B., Dehghan, M.M., Vaziri, H., Alikhassi, M., Mangoli, A., Khojasteh, A.: The effect of a constant electrical field on osseointegration after immediate implantation in dog mandibles: a preliminary study. J. Prosthodont. 16, 337–342 (2007)CrossRefGoogle Scholar
  11. 11.
    Shigino, T., Ochi, M., Kagami, H., Sakaguchi, K., Nakade, O.: Application of capacitively coupled electric field enhances periimplant osteogenesis in the dog mandible. Int. J. Prosthodont. 13, 365–372 (2000)Google Scholar
  12. 12.
    Kämmerer, P.W., Klein, M.O., Moergel, M., Gemmel, M., Draenert, G.F.: Local and systemic risk factors influencing the long-term success of angular stable alloplastic reconstruction plates of the mandible. J. Craniomaxillofac. Surg. 42, e271–e276 (2014)CrossRefGoogle Scholar
  13. 13.
    Malmivuo, J., Plonsey, R.: Bioelectromagnetism: Principles and Applications of Bioelectric and Biomagnetic Fields. Oxford University Press, New York (1995)CrossRefGoogle Scholar
  14. 14.
    Gabriel, S., Lau, R.W., Gabriel, C.: The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys. Med. Biol. 41, 2251–2269 (1996)CrossRefGoogle Scholar
  15. 15.
    Schmidt, C., Zimmermann, U., van Rienen, U.: Modeling of an optimized electrostimulative hip revision system under consideration of uncertainty in the conductivity of bone tissue. IEEE J. Biomed. Health Inform. 19, 1321–1330 (2015)CrossRefGoogle Scholar
  16. 16.
    Plonsey, R., Heppner, D.B.: Considerations of quasi-stationarity in electrophysiological systems. Bull. Math. Biophys. 29, 657–664 (1967)CrossRefGoogle Scholar
  17. 17.
    van Rienen, U., Flehr, J., Schreiber, U., Motrescu, V.: Modeling and simulation of electro-quasistatic fields. In: Modeling, Simulation, and Optimization of Integrated Circuits. International Series of Numerical Mathematics, vol. 146, pp. 17–31. Birkhäuser, Basel (2003)Google Scholar
  18. 18.
    van Rienen, U., Flehr, J., Schreiber, U., Schulze, S., Gimsa, U., Baumann, W., Weiss, D., Gimsa, J., Benecke, R., Pau, H.W.: Electro-quasistatic simulations in bio-systems engineering and medical engineering. Adv. Radio Sci. 3, 39–49 (2005)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ursula van Rienen
    • 1
    Email author
  • Ulf Zimmermann
    • 1
  • Hendrikje Raben
    • 1
  • Peer W. Kämmerer
    • 2
  1. 1.Institute of General Electrical EngineeringUniversity of RostockRostockGermany
  2. 2.Department of Oral, Maxillofacial and Plastic SurgeryUniversity Medical Centre RostockRostockGermany

Personalised recommendations