Advertisement

Proteolytic Processing of Filovirus Glycoproteins

  • Viktor Volchkov
  • Hans Dieter Klenk
Chapter

Abstract

Filoviruses (Marburg virus and Ebola virus) have a single envelope glycoprotein (GP) that initiates infection. GP is a class I fusion protein that forms trimeric spikes composed of heterodimers of the subunits GP1 and GP2. GP1 and GP2 are derived from the precursor pre-GP by furin cleavage during exocytosis. GP1 contains a receptor-binding core topped by a glycan cap and a heavily glycosylated mucin-like domain, while GP2 contains a fusion loop and a membrane anchor. After entering cells by macropinocytosis, the glycan cap and the mucin-like domain are removed from GP1 by endosomal cathepsins B and L exposing the binding site for the Niemann-Pick C1 receptor. It appears that there is no strict requirement for specific proteases involved in GP processing. Thus, furin is not indispensible for GP1-2 cleavage, and GP1 may be trimmed not only by cathepsins B and L but also by other endosomal proteases.

Two soluble glycoproteins of Ebola virus are also processed by host proteases. A significant amount of GP1,2 is cleaved by the metalloprotease TACE and shed from the surface of infected cells (GP1,2 delta). The secreted protein sGP is derived from the precursor pre-sGP by furin cleavage.

Keywords

Filoviruses Marburg virus Ebola virus Class I fusion protein Mucin-like domain Glycan cap Glycoprotein shedding Proprotein convertases Furin Cathepsin Metalloprotease TACE Macropinocytosis Niemann-Pick C1 receptor 

References

  1. Aleksandrowicz P, Marzi A, Biedenkopf N, Beimforde N, Becker S, Hoenen T, Feldmann H, Schnittler HJ. Ebola virus enters host cells by macropinocytosis and clathrin-mediated endocytosis. J Infect Dis. 2011;204(Suppl 3):S957–67.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Althoff K, Müllberg J, Aasland D, Voltz N, Kallen K, Grötzinger J, Rose-John S. Recognition sequences and structural elements contribute to shedding susceptibility of membrane proteins. Biochem J. 2001;353(Pt 3):663–72.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bornholdt ZA, Ndungo E, Fusco ML, Bale S, Flyak AI, Crowe JE Jr, Chandran K, Saphire EO. Host-primed Ebola virus GP exposes a hydrophobic NPC1 receptor-binding pocket, revealing a target for broadly neutralizing antibodies. MBio. 2016;7(1):e02154-15.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Brecher M, Schornberg KL, Delos SE, Fusco ML, Saphire EO, White JM. Cathepsin cleavage potentiates the Ebola virus glycoprotein to undergo a subsequent fusion-relevant conformational change. J Virol. 2012;86(1):364–72.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Carette JE, Raaben M, Wong AC, Herbert AS, Obernosterer G, Mulherkar N, Kuehne AI, Kranzusch PJ, Griffin AM, Ruthel G, Dal Cin P, Dye JM, Whelan SP, Chandran K, Brummelkamp TR. Ebola virus entry requires the cholesterol transporter Niemann-Pick C1. Nature. 2011;477(7364):340–3.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Chandran K, Sullivan NJ, Felbor U, Whelan SP, Cunningham JM. Endosomal proteolysis of the Ebola virus glycoprotein is necessary for infection. Science. 2005;308(5728):1643–5.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Côté M, Misasi J, Ren T, Bruchez A, Lee K, Filone CM, Hensley L, Li Q, Ory D, Chandran K, Cunningham J. Small molecule inhibitors reveal Niemann-Pick C1 is essential for Ebola virus infection. Nature. 2011;477(7364):344–8.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Dolnik O, Volchkova V, Garten W, Carbonnelle C, Becker S, Kahnt J, Ströher U, Klenk HD, Volchkov V. Ectodomain shedding of the glycoprotein GP of Ebola virus. EMBO J. 2004;23(10):2175–84.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Dolnik O, Volchkova VA, Escudero-Perez B, Lawrence P, Klenk HD, Volchkov VE. Shedding of Ebola virus surface glycoprotein is a mechanism of self-regulation of cellular cytotoxicity and has a direct effect on virus infectivity. J Infect Dis. 2015;212(Suppl 2):S322–8.CrossRefPubMedGoogle Scholar
  10. Dube D, Brecher MB, Delos SE, Rose SC, Park EW, Schornberg KL, Kuhn JH, White JM. The primed ebolavirus glycoprotein (19-kilodalton GP1,2): sequence and residues critical for host cell binding. J Virol. 2009;83(7):2883–91.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Escudero-Pérez B, Volchkova VA, Dolnik O, Lawrence P, Volchkov VE. Shed GP of Ebola virus triggers immune activation and increased vascular permeability. PLoS Pathog. 2014;10(11):e1004509.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Gallaher WR. Similar structural models of the transmembrane proteins of Ebola and avian sarcoma viruses. Cell. 1996;85(4):477–8.CrossRefPubMedGoogle Scholar
  13. Gnirss K, Kühl A, Karsten C, Glowacka I, Bertram S, Kaup F, Hofmann H, Pöhlmann S. Cathepsins B and L activate Ebola but not Marburg virus glycoproteins for efficient entry into cell lines and macrophages independent of TMPRSS2 expression. Virology. 2012;424(1):3–10.CrossRefPubMedGoogle Scholar
  14. Goldman SD, Krise JP. Niemann-Pick C1 functions independently of Niemann-Pick C2 in the initial stage of retrograde transport of membrane-impermeable lysosomal cargo. J Biol Chem. 2010;285(7):4983–94.CrossRefPubMedGoogle Scholar
  15. Hashiguchi T, Fusco ML, Bornholdt ZA, Lee JE, Flyak AI, Matsuoka R, Kohda D, Yanagi Y, Hammel M, Crowe JE Jr, Saphire EO. Structural basis for Marburg virus neutralization by a cross-reactive human antibody. Cell. 2015;160(5):904–12.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Ito H, Watanabe S, Takada A, Kawaoka Y. Ebola virus glycoprotein: proteolytic processing, acylation, cell tropism, and detection of neutralizing antibodies. J Virol. 2001;75(3):1576–80.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Jeffers SA, Sanders DA, Sanchez A. Covalent modifications of the Ebola virus glycoprotein. J Virol. 2002;76(24):12463–72.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Kaletsky RL, Simmons G, Bates P. Proteolysis of the Ebola virus glycoproteins enhances virus binding and infectivity. J Virol. 2007;81(24):13378–84.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Lee JE, Fusco ML, Hessell AJ, Oswald WB, Burton DR, Saphire EO. Structure of the Ebola virus glycoprotein bound to an antibody from a human survivor. Nature. 2008;454(7201):177–82.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Lee JE, Saphire EO. Ebolavirus glycoprotein structure and mechanism of entry. Future Virol. 2009;4(6):621–35.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Malashkevich VN, Schneider BJ, McNally ML, Milhollen MA, Pang JX, Kim PS. Core structure of the envelope glycoprotein GP2 from Ebola virus at 1.9-A resolution. Proc Natl Acad Sci U S A. 1999;96(6):2662–7.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Marzi A, Reinheckel T, Feldmann H. Cathepsin B & L are not required for Ebola virus replication. PLoS Negl Trop Dis. 2012;6(12):e1923.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Misasi J, Chandran K, Yang JY, Considine B, Filone CM, Côté M, Sullivan N, Fabozzi G, Hensley L, Cunningham J. Filoviruses require endosomal cysteine proteases for entry but exhibit distinct protease preferences. J Virol. 2012;86(6):3284–92.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Nanbo A, Imai M, Watanabe S, Noda T, Takahashi K, Neumann G, Halfmann P, Kawaoka Y. Ebolavirus is internalized into host cells via macropinocytosis in a viral glycoprotein-dependent manner. PLoS Pathog. 2010;6(9):e1001121.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Neumann G, Feldmann H, Watanabe S, Lukashevich I, Kawaoka Y. Reverse genetics demonstrates that proteolytic processing of the Ebola virus glycoprotein is not essential for replication in cell culture. J Virol. 2002;76(1):406–10.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Neumann G, Geisbert TW, Ebihara H, Geisbert JB, Daddario-DiCaprio KM, Feldmann H, Kawaoka Y. Proteolytic processing of the Ebola virus glycoprotein is not critical for Ebola virus replication in nonhuman primates. J Virol. 2007;81(6):2995–8.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Saeed MF, Kolokoltsov AA, Albrecht T, Davey RA. Cellular entry of Ebola virus involves uptake by a macropinocytosis-like mechanism and subsequent trafficking through early and late endosomes. PLoS Pathog. 2010;6(9):e1001110.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Sanchez A, Trappier SG, Mahy BW, Peters CJ, Nichol ST. The virion glycoproteins of Ebola viruses are encoded in two reading frames and are expressed through transcriptional editing. Proc Natl Acad Sci U S A. 1996;93(8):3602–7.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Sanchez A, Yang ZY, Xu L, Nabel GJ, Crews T, Peters CJ. Biochemical analysis of the secreted and virion glycoproteins of Ebola virus. J Virol. 1998;72(8):6442–7.PubMedPubMedCentralGoogle Scholar
  30. Sanchez A. Analysis of filovirus entry into vero e6 cells, using inhibitors of endocytosis, endosomal acidification, structural integrity, and cathepsin (B and L) activity. J Infect Dis. 2007;196(Suppl 2):S251–8.CrossRefPubMedGoogle Scholar
  31. Schornberg K, Matsuyama S, Kabsch K, Delos S, Bouton A, White J. Role of endosomal cathepsins in entry mediated by the Ebola virus glycoprotein. J Virol. 2006;80(8):4174–8.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Spence JS, Krause TB, Mittler E, Jangra RK, Chandran K. Direct visualization of Ebola virus fusion triggering in the endocytic pathway. MBio. 2016;7(1):e01857-15.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Volchkov VE, Becker S, Volchkova VA, Ternovoj VA, Kotov AN, Netesov SV, Klenk HD. GP mRNA of Ebola virus is edited by the Ebola virus polymerase and by T7 and vaccinia virus polymerases. Virology. 1995;214(2):421–30.CrossRefPubMedGoogle Scholar
  34. Volchkov VE, Blinov VM, Netesov SV. The envelope glycoprotein of Ebola virus contains an immunosuppressive-like domain similar to oncogenic retroviruses. FEBS Lett. 1992;305(3):181–4.CrossRefPubMedGoogle Scholar
  35. Volchkov VE, Feldmann H, Volchkova VA, Klenk HD. Processing of the Ebola virus glycoprotein by the proprotein convertase furin. Proc Natl Acad Sci U S A. 1998a;95(10):5762–7.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Volchkov VE, Volchkova VA, Dolnik O, Feldmann H, Klenk HD. Polymorphism of filovirus glycoproteins. Adv Virus Res. 2005;64:359–81.CrossRefPubMedGoogle Scholar
  37. Volchkov VE, Volchkova VA, Mühlberger E, Kolesnikova LV, Weik M, Dolnik O, Klenk HD. Recovery of infectious Ebola virus from complementary DNA:RNA editing of the GP gene and viral cytotoxicity. Science. 2001;291:1965–9.CrossRefPubMedGoogle Scholar
  38. Volchkov VE, Volchkova VA, Slenczka W, Klenk HD, Feldmann H. Release of viral glycoproteins during Ebola virus infection. Virology. 1998b;245(1):110–9.CrossRefPubMedGoogle Scholar
  39. Volchkov VE, Volchkova VA, Ströher U, Becker S, Dolnik O, Cieplik M, Garten W, Klenk HD, Feldmann H. Proteolytic processing of Marburg virus glycoprotein. Virology. 2000;268(1):1–6.CrossRefPubMedGoogle Scholar
  40. Volchkova VA, Feldmann H, Klenk HD, Volchkov VE. The nonstructural small glycoprotein sGP of Ebola virus is secreted as an antiparallel-orientated homodimer. Virology. 1998;250(2):408–14.CrossRefPubMedGoogle Scholar
  41. Volchkova VA, Klenk HD, Volchkov VE. Delta-peptide is the carboxy-terminal cleavage fragment of the nonstructural small glycoprotein sGP of Ebola virus. Virology. 1999;265(1):164–71.CrossRefPubMedGoogle Scholar
  42. Wang H, Shi Y, Song J, Qi J, Lu G, Yan J, Gao GF. Ebola viral glycoprotein bound to its endosomal receptor Niemann-Pick C1. Cell. 2016;164(1–2):258–68.CrossRefPubMedGoogle Scholar
  43. Weissenhorn W, Calder LJ, Wharton SA, Skehel JJ, Wiley DC. The central structural feature of the membrane fusion protein subunit from the Ebola virus glycoprotein is a long triple-stranded coiled coil. Proc Natl Acad Sci U S A. 1998a;95(11):6032–6.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Weissenhorn W, Carfí A, Lee KH, Skehel JJ, Wiley DC. Crystal structure of the Ebola virus membrane fusion subunit, GP2, from the envelope glycoprotein ectodomain. Mol Cell. 1998b;2(5):605–16.CrossRefPubMedGoogle Scholar
  45. Wool-Lewis RJ, Bates P. Endoproteolytic processing of the Ebola virus envelope glycoprotein: cleavage is not required for function. J Virol. 1999;73(2):1419–26.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CIRI, INSERM U111Université LyonLyonFrance
  2. 2.Institute of VirologyPhilipps-University MarburgMarburgGermany

Personalised recommendations