Proteolytic Activation of Paramyxoviruses and Pneumoviruses

  • Everett Clinton Smith
  • Rebecca Ellis DutchEmail author


Viruses in the families Paramyxoviridae and Pneumoviridae infect multiple animal species, and infection can result in varying disease severity. Membrane fusion is an obligate early step during infection and is driven primarily by viral fusion (F) proteins present on the viral envelope. F-mediated membrane fusion begins with insertion of a hydrophobic fusion peptide into the cell membrane and, through a series of conformational changes, culminates in the merger of both the viral and cellular membranes. Proteolytic processing N-terminal to the fusion peptide enables insertion into the cellular membrane, making this cleavage event an essential step in F-promoted membrane fusion. While all F proteins are cleaved by host proteases, the protease utilized and location of F cleavage vary widely among paramyxo- and pneumoviruses. With some paramyxoviruses, proteolytic activation of the hemagglutinin-neuraminidase (HN) glycoprotein has also been observed involving removal of a C-terminal extension from a precursor that blocks the attachment function of this protein. The availability of protein structures and extensive studies on the spatial and temporal processing details have illuminated many important aspects of proteolytic activation of these proteins. However, why such disparate proteolytic cleavage pathways evolved and to what extent they affect pathogenesis are less well understood.


Paramyxovirus Pneumovirus Proteolytic cleavage Furin Cathepsin Fusion protein Membrane fusion Measles virus Mumps virus Hendra virus Nipah virus Respiratory syncytial virus Human metapneumovirus 


  1. Aerts L, Hamelin ME, Rheaume C, Lavigne S, Couture C, Kim W, Susan-Resiga D, Prat A, Seidah NG, Vergnolle N, et al. Modulation of protease activated receptor 1 influences human metapneumovirus disease severity in a mouse model. PLoS One. 2013;8:e72529.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Afonso CL, Amarasinghe GK, Banyai K, Bao Y, Basler CF, Bavari S, Bejerman N, Blasdell KR, Briand FX, Briese T, et al. Taxonomy of the order Mononegavirales: update 2016. Arch Virol. 2016;161:2351–60.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Ambrose MR, Hetherington SV, Watson AS, Scroggs RA, Portner A. Molecular evolution of the F glycoprotein of human parainfluenza virus type 1. J Infect Dis. 1995;171:851–6.CrossRefPubMedGoogle Scholar
  4. Authier F, Posner BI, Bergeron JJ. Endosomal proteolysis of internalized proteins. FEBS Lett. 1996;389:55–60.CrossRefPubMedGoogle Scholar
  5. Barrett T, Clarke DK, Evans SA, Rima BK. The nucleotide sequence of the gene encoding the F protein of canine distemper virus: a comparison of the deduced amino acid sequence with other paramyxoviruses. Virus Res. 1987;8:373–86.CrossRefPubMedGoogle Scholar
  6. Begona Ruiz-Arguello M, Gonzalez-Reyes L, Calder LJ, Palomo C, Martin D, Saiz MJ, Garcia-Barreno B, Skehel JJ, Melero JA. Effect of proteolytic processing at two distinct sites on shape and aggregation of an anchorless fusion protein of human respiratory syncytial virus and fate of the intervening segment. Virology. 2002;298:317–26.CrossRefPubMedGoogle Scholar
  7. Biacchesi S, Skiadopoulos MH, Tran KC, Murphy BR, Collins PL, Buchholz UJ. Recovery of human metapneumovirus from cDNA: optimization of growth in vitro and expression of additional genes. Virology. 2004;321:247–59.CrossRefPubMedGoogle Scholar
  8. Bose S, Jardetzky TS, Lamb RA. Timing is everything: fine-tuned molecular machines orchestrate paramyxovirus entry. Virology. 2015;479-480:518–31.CrossRefPubMedGoogle Scholar
  9. Bukreyev A, Whitehead SS, Murphy BR, Collins PL. Recombinant respiratory syncytial virus from which the entire SH gene has been deleted grows efficiently in cell culture and exhibits site-specific attenuation in the respiratory tract of the mouse. J Virol. 1997;71:8973–82.PubMedPubMedCentralGoogle Scholar
  10. Chang A, Dutch RE. Paramyxovirus fusion and entry: multiple paths to a common end. Virus. 2012;4:613–36.CrossRefGoogle Scholar
  11. Chua KB, Bellini WJ, Rota PA, Harcourt BH, Tamin A, Lam SK, Ksiazek TG, Rollin PE, Zaki SR, Shieh W, et al. Nipah virus: a recently emergent deadly paramyxovirus. Science. 2000;288:1432–5.CrossRefPubMedGoogle Scholar
  12. Cifuentes-Munoz N, Sun W, Ray G, Schmitt PT, Webb S, Gibson K, Dutch RE, Schmitt AP. Mutations in the transmembrane domain and cytoplasmic tail of hendra virus fusion protein disrupt virus-like-particle assembly. J Virol. 2017;91:pii: e00152-17.CrossRefGoogle Scholar
  13. Collins PL, Crowe JE. Respiratory syncytial virus and metapneumovirus. In: Knipe DM, Howley PM, editors. Fields virology. Philadelphia: Lippincott, Williams and Wilkins; 2007. p. 1601–46.Google Scholar
  14. Connolly SA, Leser GP, Yin HS, Jardetzky TS, Lamb RA. Refolding of a paramyxovirus F protein from prefusion to postfusion conformations observed by liposome binding and electron microscopy. Proc Natl Acad Sci U S A. 2006;103:17903–8.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Craft WW Jr, Dutch RE. Sequence motif upstream of the Hendra virus fusion protein cleavage site is not sufficient to promote efficient proteolytic processing. Virology. 2005;341:130–40.CrossRefPubMedGoogle Scholar
  16. Diederich S, Moll M, Klenk HD, Maisner A. The nipah virus fusion protein is cleaved within the endosomal compartment. J Biol Chem. 2005;280:29899–903.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Diederich S, Sauerhering L, Weis M, Altmeppen H, Schaschke N, Reinheckel T, Erbar S, Maisner A. Activation of the Nipah virus fusion protein in MDCK cells is mediated by cathepsin B within the endosome-recycling compartment. J Virol. 2012;86:3736–45.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Diederich S, Thiel L, Maisner A. Role of endocytosis and cathepsin-mediated activation in Nipah virus entry. Virology. 2008;375:391–400.CrossRefPubMedGoogle Scholar
  19. Dutch RE, Hagglund RN, Nagel MA, Paterson RG, Lamb RA. Paramyxovirus fusion (F) protein: a conformational change on cleavage activation. Virology. 2001;281:138–50.CrossRefPubMedGoogle Scholar
  20. El Najjar F, Lampe L, Baker ML, Wang LF, Dutch RE. Analysis of cathepsin and furin proteolytic enzymes involved in viral fusion protein activation in cells of the bat reservoir host. PLoS One. 2015;10:e0115736.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Franke J, Batts WN, Ahne W, Kurath G, Winton JR. Sequence motifs and prokaryotic expression of the reptilian paramyxovirus fusion protein. Arch Virol. 2006;151:449–64.CrossRefPubMedGoogle Scholar
  22. Freiberg AN, Worthy MN, Lee B, Holbrook MR. Combined chloroquine and ribavirin treatment does not prevent death in a hamster model of Nipah and Hendra virus infection. J Gen Virol. 2010;91:765–72.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Gonzalez-Reyes L, Ruiz-Arguello MB, Garcia-Barreno B, Calder L, Lopez JA, Albar JP, Skehel JJ, Wiley DC, Melero JA. Cleavage of the human respiratory syncytial virus fusion protein at two distinct sites is required for activation of membrane fusion. Proc Natl Acad Sci U S A. 2001;98:9859–64.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Gotoh B, Ogasawara T, Suzuki H, Asaka J, Shimokata K, Rott R, Nagai Y. Expression of factor X and its significance for the determination of paramyxovirus tropism in the chick embryo. EMBO J. 1992;11:2197–202.Google Scholar
  25. Gotoh B, Ogasawara T, Toyoda T, Inocencio M, Hamaguchi M, Nagai Y. An endoprotease homologous to the blood clotting factor X as a determinant of viral tropism in chick embryo. EMBO J. 1990;9:4189–95.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Hardes K, Becker GL, Lu Y, Dahms SO, Kohler S, Beyer W, Sandvig K, Yamamoto H, Lindberg I, Walz L, et al. Novel furin inhibitors with potent anti-infectious activity. ChemMedChem. 2015;10:1218–31.CrossRefPubMedGoogle Scholar
  27. Herfst S, Mas V, Ver LS, Wierda RJ, Osterhaus AD, Fouchier RA, Melero JA. Low pH induced membrane fusion mediated by human metapneumoviruses F protein is a rare, strain dependent phenomenon. J Virol. 2008;82:8891–5.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Hidaka Y, Kanda T, Iwasaki K, Nomoto A, Shioda T, Shibuta H. Nucleotide sequence of a Sendai virus genome region covering the entire M gene and the 3′ proximal 1013 nucleotides of the F gene. Nucleic Acids Res. 1984;12:7965–73.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Johnston GP, Contreras EM, Dabundo J, Henderson BA, Matz KM, Ortega V, Ramirez A, Park A, Aguilar HC. Cytoplasmic motifs in the nipah virus fusion protein modulate virus particle assembly and egress. J Virol. 2017;91:pii: e02150-16.CrossRefGoogle Scholar
  30. Jordans S, Jenko-Kokalj S, Kuhl NM, Tedelind S, Sendt W, Bromme D, Turk D, Brix K. Monitoring compartment-specific substrate cleavage by cathepsins B, K, L, and S at physiological pH and redox conditions. BMC Biochem. 2009;10:23.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kido H, Sakai K, Kishino Y, Tashiro M. Pulmonary surfactant is a potential endogenous inhibitor of proteolytic activation of Sendai virus and influenza A virus. FEBS Lett. 1993;322:115–9.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Kido H, Yokogoshi Y, Sakai K, Tashiro M, Kishino Y, Fukutomi A, Katunuma N. Isolation and characterization of a novel trypsin-like protease found in rat bronchiolar epithelial Clara cells. J Biol Chem. 1992;267:13573–9.PubMedPubMedCentralGoogle Scholar
  33. Kim SH, Xiao S, Shive H, Collins PL, Samal SK. Mutations in the fusion protein cleavage site of avian paramyxovirus serotype 4 confer increased replication and syncytium formation in vitro but not increased replication and pathogenicity in chickens and ducks. PLoS One. 2013;8:e50598.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kim YH, Donald JE, Grigoryan G, Leser GP, Fadeev AY, Lamb RA, DeGrado WF. Capture and imaging of a prehairpin fusion intermediate of the paramyxovirus PIV5. Proc Natl Acad Sci U S A. 2011;108:20992–7.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Klein-Szanto AJ, Bassi DE. Proprotein convertase inhibition: paralyzing the cell’s master switches. Biochem Pharmacol. 2017;140:8–15.CrossRefPubMedGoogle Scholar
  36. Klenk H-D, Garten W. Host cell proteases controlling virus pathogenicity. Trends Microbiol. 1994;2:39–43.CrossRefPubMedGoogle Scholar
  37. Krzyzaniak MA, Zumstein MT, Gerez JA, Picotti P, Helenius A. Host cell entry of respiratory syncytial virus involves macropinocytosis followed by proteolytic activation of the F protein. PLoS Pathog. 2013;9:e1003309.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Lamb RA, Parks GD. Paramyxoviridae: the viruses and their replication. In: Knipe DM, Howley PM, editors. Fields virology. Philadelphia: Lippincott Williams and Wilkins; 2013. p. 1449–96.Google Scholar
  39. Li Z, Xu J, Patel J, Fuentes S, Lin Y, Anderson D, Sakamoto K, Wang LF, He B. Function of the small hydrophobic protein of J paramyxovirus. J Virol. 2011;85:32–42.CrossRefPubMedGoogle Scholar
  40. Ling R, Sinkovic S, Toquin D, Guionie O, Eterradossi N, Easton AJ. Deletion of the SH gene from avian metapneumovirus has a greater impact on virus production and immunogenicity in turkeys than deletion of the G gene or M2-2 open reading frame. J Gen Virol. 2008;89:525–33.CrossRefPubMedGoogle Scholar
  41. Marsh GA, de Jong C, Barr JA, Tachedjian M, Smith C, Middleton D, Yu M, Todd S, Foord AJ, Haring V, et al. Cedar virus: a novel Henipavirus isolated from Australian bats. PLoS Pathog. 2012;8:e1002836.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Masante C, El Najjar F, Chang A, Jones A, Moncman CL, Dutch RE. The human metapneumovirus small hydrophobic protein has properties consistent with those of a viroporin and can modulate viral fusogenic activity. J Virol. 2014;88:6423–33.CrossRefPubMedPubMedCentralGoogle Scholar
  43. McLellan JS, Chen M, Leung S, Graepel KW, Du X, Yang Y, Zhou T, Baxa U, Yasuda E, Beaumont T, et al. Structure of RSV fusion glycoprotein trimer bound to a prefusion-specific neutralizing antibody. Science. 2013;340:1113–7.CrossRefPubMedPubMedCentralGoogle Scholar
  44. McLellan JS, Yang Y, Graham BS, Kwong PD. Structure of respiratory syncytial virus fusion glycoprotein in the postfusion conformation reveals preservation of neutralizing epitopes. J Virol. 2011;85:7788–96.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Meulendyke KA, Wurth MA, McCann RO, Dutch RE. Endocytosis plays a critical role in proteolytic processing of the Hendra virus fusion protein. J Virol. 2005;79:12643–9.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Michalski WP, Crameri G, Wang L, Shiell BJ, Eaton B. The cleavage activation and sites of glycosylation in the fusion protein of hendra virus. Virus Res. 2000;69:83–93.CrossRefPubMedGoogle Scholar
  47. Moll M, Diederich S, Klenk HD, Czub M, Maisner A. Ubiquitous activation of the Nipah virus fusion protein does not require a basic amino acid at the cleavage site. J Virol. 2004;78:9705–12.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Murakami M, Towatari T, Ohuchi M, Shiota M, Akao M, Okumura Y, Parry MA, Kido H. Mini-plasmin found in the epithelial cells of bronchioles triggers infection by broad-spectrum influenza A viruses and Sendai virus. Eur J Biochem/FEBS. 2001;268:2847–55.CrossRefGoogle Scholar
  49. Murray K, Selleck P, Hooper P, Hyatt A, Gould A, Gleeson L, Westbury H, Hiley Lea. A morbillivirus that caused fatal disease in horses and humans. Science. 1995;268:94–7.CrossRefPubMedGoogle Scholar
  50. Nagai Y, Hamaguchi M, Toyoda T. Molecular biology of Newcastle disease virus. Prog Vet Microbiol Immunol. 1989;5:16–64.PubMedGoogle Scholar
  51. Nagai Y, Klenk H-D. Activation of precursors to both glycoproteins of Newcastle disease virus by proteolytic cleavage. Virology. 1977;77:125–34.CrossRefPubMedGoogle Scholar
  52. Nagai Y, Klenk H-D, Rott R. Proteolytic cleavage of the viral glycoproteins and its significance for the virulence of Newcastle disease virus. J Virol. 1976;20:501–8.Google Scholar
  53. Pager CT, Craft WW Jr, Patch J, Dutch RE. A mature and fusogenic form of the Nipah virus fusion protein requires proteolytic processing by cathepsin L. Virology. 2006;346:251–7.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Pager CT, Dutch RE. Cathepsin L is involved in proteolytic processing of the Hendra virus fusion protein. J Virol. 2005;79:12714–20.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Pallister J, Middleton D, Crameri G, Yamada M, Klein R, Hancock TJ, Foord A, Shiell B, Michalski W, Broder CC, et al. Chloroquine administration does not prevent Nipah virus infection and disease in ferrets. J Virol. 2009;83:11979–82.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Paterson RG, Harris TJR, Lamb RA. Fusion protein of the paramyxovirus simian virus 5: nucleotide sequence of mRNA predicts a highly hydrophobic glycoprotein. Proc Natl Acad Sci U S A. 1984;81:6706–10.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Paterson RG, Russell CJ, Lamb RA. Fusion protein of the paramyxovirus SV5: destabilizing and stabilizing mutants of fusion activation. Virology. 2000;270:17–30.CrossRefPubMedGoogle Scholar
  58. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem. 2004;25:1605–12.CrossRefPubMedGoogle Scholar
  59. Phadke VK, Bednarczyk RA, Salmon DA, Omer SB. Association between vaccine refusal and vaccine-preventable diseases in the United States: a review of measles and pertussis. JAMA. 2016;315:1149–58.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Pillay CS, Elliott E, Dennison C. Endolysosomal proteolysis and its regulation. Biochem J. 2002;363:417–29.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Popa A, Carter JR, Smith SE, Hellman L, Fried MG, Dutch RE. Residues in the hendra virus fusion protein transmembrane domain are critical for endocytic recycling. J Virol. 2012;86:3014–26.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Porotto M, Orefice G, Yokoyama CC, Mungall BA, Realubit R, Sganga ML, Aljofan M, Whitt M, Glickman F, Moscona A. Simulating henipavirus multicycle replication in a screening assay leads to identification of a promising candidate for therapy. J Virol. 2009;83:5148–55.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Pyrc K, Strzyz P, Milewska A, Golda A, Schildgen O, Potempa J. Porphyromonas gingivalis enzymes enhance infection with human metapneumovirus in vitro. J Gen Virol. 2011;92:2324–32.CrossRefPubMedGoogle Scholar
  64. Rawling J, Cano O, Garcin D, Kolakofsky D, Melero JA. Recombinant Sendai viruses expressing fusion proteins with two furin cleavage sites mimic the syncytial and receptor-independent infection properties of respiratory syncytial virus. J Virol. 2011;85:2771–80.CrossRefPubMedPubMedCentralGoogle Scholar
  65. Rawling J, Garcia-Barreno B, Melero JA. Insertion of the two cleavage sites of the respiratory syncytial virus fusion protein in Sendai virus fusion protein leads to enhanced cell-cell fusion and a decreased dependency on the HN attachment protein for activity. J Virol. 2008;82:5986–98.CrossRefPubMedPubMedCentralGoogle Scholar
  66. Richardson C, Hull D, Greer P, Hasel K, Berkovich A, Englund G, Bellini W, Rima B, Lazzarini R. The nucleotide sequence of the mRNA encoding the fusion protein of measles virus (Edmonston strain): a comparison of fusion proteins from several different paramyxoviruses. Virology. 1986;155:508–23.CrossRefPubMedGoogle Scholar
  67. Schickli JH, Kaur J, Ulbrandt N, Spaete RR, Tang RS. An S101P substitution in the putative cleavage motif of the human metapneumovirus fusion protein is a major determinant for trypsin-independent growth in vero cells and does not alter tissue tropism in hamsters. J Virol. 2005;79:10678–89.CrossRefPubMedPubMedCentralGoogle Scholar
  68. Schowalter RM, Smith SE, Dutch RE. Characterization of human metapneumovirus F protein-promoted membrane fusion: critical roles for proteolytic processing and low pH. J Virol. 2006a;80:10931–41.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Schowalter RM, Wurth MA, Aguilar HC, Lee B, Moncman CL, McCann RO, Dutch RE. Rho GTPase activity modulates paramyxovirus fusion protein-mediated cell-cell fusion. Virology. 2006b;350:323–34.CrossRefPubMedGoogle Scholar
  70. Shirogane Y, Takeda M, Iwasaki M, Ishiguro N, Takeuchi H, Nakatsu Y, Tahara M, Kikuta H, Yanagi Y. Efficient multiplication of human metapneumovirus in Vero cells expressing the transmembrane serine protease TMPRSS2. J Virol. 2008;82:8942–6.CrossRefPubMedPubMedCentralGoogle Scholar
  71. Shiryaev SA, Remacle AG, Ratnikov BI, Nelson NA, Savinov AY, Wei G, Bottini M, Rega MF, Parent A, Desjardins R, et al. Targeting host cell furin proprotein convertases as a therapeutic strategy against bacterial toxins and viral pathogens. J Biol Chem. 2007;282:20847–53.CrossRefPubMedPubMedCentralGoogle Scholar
  72. Spriggs MK, Olmsted RA, Venkatesan S, Coligan JE, Collins PL. Fusion glycoprotein of human parainfluenza virus type 3: nucleotide sequence of the gene, direct identification of the cleavage-activation site, and comparison with other paramyxoviruses. Virology. 1986;152:241–51.CrossRefPubMedPubMedCentralGoogle Scholar
  73. Subbiah M, Khattar SK, Collins PL, Samal SK. Mutations in the fusion protein cleavage site of avian paramyxovirus serotype 2 increase cleavability and syncytium formation but do not increase viral virulence in chickens. J Virol. 2011;85:5394–405.CrossRefPubMedPubMedCentralGoogle Scholar
  74. Swanson K, Wen X, Leser GP, Paterson RG, Lamb RA, Jardetzky TS. Structure of the Newcastle disease virus F protein in the post-fusion conformation. Virology. 2010;402:372–9.CrossRefPubMedPubMedCentralGoogle Scholar
  75. Toyoda T, Sakaguchi T, Imai K, Inocencio NM, Gotoh B, Hamaguchi M, Nagai Y. Structural comparison of the cleavage-activation site of the fusion glycoprotein between virulent and avirulent strains of Newcastle disease virus. Virology. 1987;158:242–7.CrossRefPubMedPubMedCentralGoogle Scholar
  76. Turk D, Guncar G. Lysosomal cysteine proteases (cathepsins): promising drug targets. Acta Crystallogr D Biol Crystallogr. 2003;59:203–13.CrossRefPubMedPubMedCentralGoogle Scholar
  77. van den Hoogen BG, de Jong JC, Groen J, Kuiken T, de Groot R, Fouchier RA, Osterhaus AD. A newly discovered human pneumovirus isolated from young children with respiratory tract disease. Nat Med. 2001;7:719–24.CrossRefPubMedPubMedCentralGoogle Scholar
  78. Watanabe M, Hirano A, Stenglein S, Nelson J, Thomas G, Wong TC. Engineered serine protease inhibitor prevents furin-catalyzed activation of the fusion glycoprotein and production of infectious measles virus. J Virol. 1995;69:3206–10.PubMedPubMedCentralGoogle Scholar
  79. Waxham MN, Server AC, Goodman HM, Wolinsky JS. Cloning and sequencing of the mumps virus fusion protein gene. Virology. 1987;159:381–8.CrossRefPubMedGoogle Scholar
  80. Welch BD, Liu Y, Kors CA, Leser GP, Jardetzky TS, Lamb RA. Structure of the cleavage-activated prefusion form of the parainfluenza virus 5 fusion protein. Proc Natl Acad Sci U S A. 2012;109:16672–7.CrossRefPubMedPubMedCentralGoogle Scholar
  81. Whitehead SS, Bukreyev A, Teng MN, Firestone CY, St. Claire M, Elkins WR, Collins PL, Murphy BR. Recombinant respiratory syncytial virus bearing a deletion of either the NS2 or SH gene is attenuated in chimpanzees. J Virol. 1999;73:3438–42.PubMedPubMedCentralGoogle Scholar
  82. Wong JJ, Paterson RG, Lamb RA, Jardetzky TS. Structure and stabilization of the Hendra virus F glycoprotein in its prefusion form. Proc Natl Acad Sci U S A. 2016;113:1056–61.CrossRefPubMedGoogle Scholar
  83. Xiao S, Khattar SK, Subbiah M, Collins PL, Samal SK. Mutation of the f-protein cleavage site of avian paramyxovirus type 7 results in furin cleavage, fusion promotion, and increased replication in vitro but not increased replication, tissue tropism, or virulence in chickens. J Virol. 2012;86:3828–38.CrossRefPubMedPubMedCentralGoogle Scholar
  84. Xu K, Chan YP, Bradel-Tretheway B, Akyol-Ataman Z, Zhu Y, Dutta S, Yan L, Feng Y, Wang LF, Skiniotis G, et al. Crystal structure of the pre-fusion nipah virus fusion glycoprotein reveals a novel hexamer-of-trimers assembly. PLoS Pathog. 2015;11:e1005322.CrossRefPubMedPubMedCentralGoogle Scholar
  85. Yin HS, Paterson RG, Wen X, Lamb RA, Jardetzky TS. Structure of the uncleaved ectodomain of the paramyxovirus (hPIV3) fusion protein. Proc Natl Acad Sci U S A. 2005;102:9288–93.CrossRefPubMedPubMedCentralGoogle Scholar
  86. Yin HS, Wen X, Paterson RG, Lamb RA, Jardetzky TS. Structure of the parainfluenza virus 5 F protein in its metastable, prefusion conformation. Nature. 2006;439:38–44.CrossRefPubMedGoogle Scholar
  87. Yuan P, Swanson KA, Leser GP, Paterson RG, Lamb RA, Jardetzky TS. Structure of the Newcastle disease virus hemagglutinin-neuraminidase (HN) ectodomain reveals a four-helix bundle stalk. Proc Natl Acad Sci U S A. 2011;108:14920–5.CrossRefPubMedPubMedCentralGoogle Scholar
  88. Yun B, Guan X, Liu Y, Gao Y, Wang Y, Qi X, Cui H, Liu C, Zhang Y, Gao L, et al. Trypsin- and low pH-mediated fusogenicity of avian metapneumovirus fusion proteins is determined by residues at positions 100, 101 and 294. Sci Rep. 2015;5:15584.CrossRefPubMedPubMedCentralGoogle Scholar
  89. Yun B, Zhang Y, Liu Y, Guan X, Wang Y, Qi X, Cui H, Liu C, Zhang Y, Gao H, et al. TMPRSS12 Is an Activating Protease for Subtype B Avian Metapneumovirus. J Virol. 2016;90:11231–46.CrossRefPubMedPubMedCentralGoogle Scholar
  90. Zhao X, Singh M, Malashkevich VN, Kim PS. Structural characterization of the human respiratory syncytial virus fusion protein core. Proc Natl Acad Sci U S A. 2000;97:14172–7.CrossRefPubMedPubMedCentralGoogle Scholar
  91. Zimmer G, Budz L, Herrler G. Proteolytic activation of respiratory syncytial virus fusion protein. Cleavage at two furin consensus sequences. J Biol Chem. 2001;276:31642–50.CrossRefPubMedPubMedCentralGoogle Scholar
  92. Zimmer G, Conzelmann KK, Herrler G. Cleavage at the furin consensus sequence RAR/KR(109) and presence of the intervening peptide of the respiratory syncytial virus fusion protein are dispensable for virus replication in cell culture. J Virol. 2002;76:9218–24.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of BiologyUniversity of the SouthSewaneeUSA
  2. 2.Department of Molecular and Cellular BiochemistryUniversity of KentuckyLexingtonUSA

Personalised recommendations