Advertisement

Neuroimaging Techniques for Investigation of the Insula

  • Ersen Ertekin
  • Özüm Tunçyürek
  • Mehmet Turgut
  • Yelda Özsunar
Chapter

Abstract

The insula which is deeply placed to the temporal lobe of the brain has many important functions, even though it accounts for only 2% of the brain's cortical surfaces. Much of the information we have about the functions of the insula is owed to the developments in magnetic resonance (MR) technology. We can clarify whether the insula is affected by pathological conditions with advanced magnetic resonance imaging (MRI) techniques such as diffusion-weighted MRI, susceptibility-weighted MRI, perfusion MRI, and MR spectroscopy. We can also get important information about the functions of the insula with functional MRI (fMRI), which allows functional evaluation. Another purpose in imaging is to determine the possible risks before operation and contribute to operation planning, by assigning areas of social and vital functions such as speech, motor, and cardiopulmonary functions.

Keywords

Insula Neuroimaging CT MRI Advanced MRI techniques 

Abbreviations

ADC

Apparent diffusion coefficient

BOLD

Blood oxygen level-dependent

CBF

Cerebral blood flow

CBV

Cerebral blood volume

CSF

Cerebrospinal fluid

CT

Computed tomography

DSA

Digital subtraction angiography

DWI

Diffusion-weighted MRI

FLAIR

Fluid attenuation inversion recovery

fMRI

Functional MRI

MCA

Middle cerebral artery

MRI

Magnetic resonance imaging

MTT

Mean transit times

NAA

N-Acetyl aspartate

SWI

Susceptibility-weighted MRI

References

  1. 1.
    Dennis EL, Jahanshad N, McMahon KL, de Zubicaray GI, Martin NG, Hickie IB, et al. Development of insula connectivity between ages 12 and 30 revealed by high angular resolution diffusion imaging. Hum Brain Mapp. 2014;35(4):1790–800.  https://doi.org/10.1002/hbm.22292.CrossRefPubMedGoogle Scholar
  2. 2.
    Cauda F, D’Agata F, Sacco K, Duca S, Geminiani G, Vercelli A. Functional connectivity of the insula in the resting brain. Neuroimage. 2011;55(1):8–23.  https://doi.org/10.1016/j.neuroimage.2010.11.049.CrossRefPubMedGoogle Scholar
  3. 3.
    Naidich TP, Kang E, Fatterpekar GM, Delman BN, Gultekin SH, Wolfe D, et al. The insula: anatomic study and MR imaging display at 1.5 T. AJNR Am J Neuroradiol. 2004;25(2):222–32.PubMedGoogle Scholar
  4. 4.
    Ogawa H. Gustatory cortex of primates: anatomy and physiology. Neurosci Res. 1994;20(1):1–13.CrossRefPubMedGoogle Scholar
  5. 5.
    Dronkers NF. A new brain region for coordinating speech articulation. Nature. 1996;384(6605):159–61.CrossRefPubMedGoogle Scholar
  6. 6.
    Wise RJ, Greene J, Büchel C, Scott SK. Brain regions involved in articulation. Lancet. 1999;353(9158):1057–61.CrossRefPubMedGoogle Scholar
  7. 7.
    Nagao M, Takeda K, Komori T, Isozaki E, Hirai S. Apraxia of speech associated with an infarct in the precentral gyrus of the insula. Neuroradiology. 1999;41(5):356–7.CrossRefPubMedGoogle Scholar
  8. 8.
    Fasold O, von Brevern M, Kuhberg M, Ploner CJ, Villringer A, Lempert T, et al. Human vestibular cortex as identified with caloric stimulation in functional magnetic resonance imaging. Neuroimage. 2002;17(3):1384–93.CrossRefPubMedGoogle Scholar
  9. 9.
    Dieterich M, Brandt T. Vestibular system: anatomy and functional magnetic resonance imaging. Neuroimaging Clin N Am. 2001;11(2):263–73.PubMedGoogle Scholar
  10. 10.
    Brandt T, Bartenstein P, Janek A, Dieterich M. Reciprocal inhibitory visual-vestibular interaction. Visual motion stimulation deactivates the parieto-insular vestibular cortex. Brain. 1998;121(9):1749–58.CrossRefPubMedGoogle Scholar
  11. 11.
    Oppenheimer SM, Kedem G, Martin WM. Left-insular cortex lesions perturb cardiac autonomic tone in humans. Clin Auton Res. 1996;6(3):131–40.CrossRefPubMedGoogle Scholar
  12. 12.
    Cheung RT, Hachinski V. The insula and cerebrogenic sudden death. Arch Neurol. 2000;57(12):1685–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Spiegel DR, Pattison A, Lyons A, Ansari U, Mccroskey AL, Luehrs E, et al. The role and treatment implications of peripheral and central processing of pain, pruritus, and nausea in heightened somatic awareness: a review. Innov Clin Neurosci. 2017;14(5–6):11–20.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Gu X, Hof PR, Friston KJ, Fan J. Anterior insular cortex and emotional awareness. J Comp Neurol. 2013;521(15):3371–88.  https://doi.org/10.1002/cne.23368.Review.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Burkey AR, Carstens E, Jasmin L. Dopamine reuptake inhibition in the rostral agranular insular cortex produces antinociception. J Neurosci. 1999;19(10):4169–79.CrossRefPubMedGoogle Scholar
  16. 16.
    Corradi-Dell’Acqua C, Tusche A, Vuilleumier P, Singer T. Cross-modal representations of first-hand and vicarious pain, disgust and fairness in insular and cingulate cortex. Nat Commun. 2016;18(7):10904.  https://doi.org/10.1038/ncomms10904.CrossRefGoogle Scholar
  17. 17.
    Karshikoff B, Jensen KB, Kosek E, Kalpouzos G, Soop A, Ingvar M, et al. Why sickness hurts: a central mechanism for pain induced by peripheral inflammation. Brain Behav Immun. 2016;57:38–46.  https://doi.org/10.1016/j.bbi.2016.04.001.CrossRefPubMedGoogle Scholar
  18. 18.
    Stephani C, Fernandez-Baca Vaca G, Maciunas R, Koubeissi M, Lüders HO. Functional neuroanatomy of the insular lobe. Brain Struct Funct. 2011;216(2):137–49.  https://doi.org/10.1007/s00429-010-0296-3.CrossRefPubMedGoogle Scholar
  19. 19.
    Kurth F, Zilles K, Fox PT, Laird AR, Eickhoff SB. A link between the systems: functional differentiation and integration within the human insula revealed by meta-analysis. Brain Struct Funct. 2010;214(5–6):519–34.  https://doi.org/10.1007/s00429-010-0255-z.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Risinger RC, Salmeron BJ, Ross TJ, Amen SL, Sanfilipo M, Hoffmann RG, et al. Neural correlates of high and craving during cocaine self-administration using BOLD fMRI. Neuroimage. 2005;26(4):1097–108.CrossRefPubMedGoogle Scholar
  21. 21.
    Goudriaan AE, de Ruiter MB, van den Brink W, Oosterlaan J, Veltman DJ. Brain activation patterns associated with cue reactivity and craving in abstinent problem gamblers, heavy smokers and healthy controls: an fMRI study. Addict Biol. 2010;15(4):491–503.  https://doi.org/10.1111/j.1369-1600.2010.00242.x.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Clark L, Bechara A, Damasio H, Aitken MR, Sahakian BJ, Robbins TW. Differential effects of insular and ventromedial prefrontal cortex lesions on risky decision-making. Brain. 2008;131(5):1311–22.  https://doi.org/10.1093/brain/awn066.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Emmerling F, Schuhmann T, Lobbestael J, Arntz A, Brugman S, Sack AT. The role of the insular cortex in retaliation. PLoS One. 2016;11(4):e0152000.  https://doi.org/10.1371/journal.pone.0152000.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Zhou Q, Zhong M, Yao S, Jin X, Liu Y, Tan C, et al. Hemispheric asymmetry of the frontolimbic cortex in young adults with borderline personality disorder. Acta Psychiatr Scand. 2017;136(6):637–47.  https://doi.org/10.1111/acps.12823.CrossRefPubMedGoogle Scholar
  25. 25.
    Li H, Chen L, Li P, Wang X, Zhai H. Insular muscarinic signaling regulates anxiety-like behaviors in rats on the elevated plus-maze. Behav Brain Res. 2014;15(270):256–60.  https://doi.org/10.1016/j.bbr.2014.05.017.CrossRefGoogle Scholar
  26. 26.
    Hatton SN, Lagopoulos J, Hermens DF, Hickie IB, Scott E, Bennett MR. Short association fibres of the insula-temporoparietal junction in early psychosis: a diffusion tensor imaging study. PLoS One. 2014;9(11):e112842.  https://doi.org/10.1371/journal.pone.0112842.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Gore JC. Principles and practice of functional MRI of the human brain. J Clin Invest. 2003;112(1):4–9.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Koga M, Saku Y, Toyoda K, Takaba H, Ibayashi S, Iida M. Reappraisal of early CT signs to predict the arterial occlusion site in acute embolic stroke. J Neurol Neurosurg Psychiatry. 2003;74(5):649–53.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Sarikaya B, Provenzale J. Frequency of various brain parenchymal findings of early cerebral ischemia on unenhanced CT scans. Emerg Radiol. 2010;17(5):381–90.  https://doi.org/10.1007/s10140-010-0870-2.CrossRefPubMedGoogle Scholar
  30. 30.
    Eran A, Hodes A, Izbudak I. Bilateral temporal lobe disease: looking beyond herpes encephalitis. Insights Imaging. 2016;7(2):265–74.  https://doi.org/10.1007/s13244-016-0481-x. Epub 2016 Feb 24.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Misra UK, Kalita J, Phadke RV, Wadwekar V, Boruah DK, Srivastava A, et al. Usefulness of various MRI sequences in the diagnosis of viral encephalitis. Acta Trop. 2010;116(3):206–11.  https://doi.org/10.1016/j.actatropica.2010.08.007.CrossRefPubMedGoogle Scholar
  32. 32.
    Long B, Koyfman A, Runyon MS. Subarachnoid hemorrhage: updates in diagnosis and management. Emerg Med Clin North Am. 2017;35(4):803–24.  https://doi.org/10.1016/j.emc.2017.07.001.CrossRefPubMedGoogle Scholar
  33. 33.
    HaiFeng L, YongSheng X, YangQin X, Yu D, ShuaiWen W, XingRu L, et al. Diagnostic value of 3D time-of-flight magnetic resonance angiography for detecting intracranial aneurysm: a meta-analysis. Neuroradiology. 2017;59(11):1083–92.  https://doi.org/10.1007/s00234-017-1905-0.CrossRefPubMedGoogle Scholar
  34. 34.
    Brant-Zawadzki M, Badami JP, Mills CM, Norman D, Newton TH. Primary intracranial tumor imaging: a comparison of magnetic resonance and CT. Radiology. 1984;150(2):435–40.CrossRefPubMedGoogle Scholar
  35. 35.
    Tozer DJ, Jäger HR, Danchaivijitr N, Benton CE, Tofts PS, Rees JH, et al. Apparent diffusion coefficient histograms may predict low-grade glioma subtype. NMR Biomed. 2007;20(1):49–57.CrossRefPubMedGoogle Scholar
  36. 36.
    Sibtain NA, Howe FA, Saunders DE. The clinical value of proton magnetic resonance spectroscopy in adult brain tumours. Clin Radiol. 2007;62(2):109–19.CrossRefPubMedGoogle Scholar
  37. 37.
    Chiang IC, Kuo YT, Lu CY, Yeung KW, Lin WC, Sheu FO, et al. Distinction between high-grade gliomas and solitary metastases using peritumoral 3-T magnetic resonance spectroscopy, diffusion, and perfusion imagings. Neuroradiology. 2004;46(8):619–27.CrossRefPubMedGoogle Scholar
  38. 38.
    Demir MK, Iplikcioglu AC, Dincer A, Arslan M, Sav A. Single voxel proton MR spectroscopy findings of typical and atypical intracranial meningiomas. Eur J Radiol. 2006;60(1):48–55.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ersen Ertekin
    • 1
  • Özüm Tunçyürek
    • 1
  • Mehmet Turgut
    • 2
  • Yelda Özsunar
    • 1
  1. 1.Department of RadiologyAdnan Menderes University School of MedicineAydınTurkey
  2. 2.Department of NeurosurgeryAdnan Menderes University School of MedicineAydınTurkey

Personalised recommendations