Advertisement

Insular Pharmacology

  • Hasan Emre Aydın
  • İsmail Kaya
Chapter

Abstract

The insula is an area which is located deep to the sylvian fissure. It is a part of the cortex which receives sensory stimuli from the thalamus, amygdala, and limbic system; and transmits the received input to the premotor cortex and ventral striatum with the several receptors and signaling mechanisms. The receptors which are NMDA, GABA, dopamine, opioid muscarinic and glutamate, are located in different parts of the insula. Intercellular transmission in the cortex is mediated by action potential. When the anterior insula is considered as a whole, it plays a role in the organization of many activities such as attention, vocalization and music, cognitive control, perceptual decision-making, self-recognition, time perception and emotional awareness.

Keywords

Insula NMDA GABA Dopamine Receptors 

References

  1. 1.
    Nieuwenhuys R. The insular cortex: a review. Prog Brain Res. 2012;195:123–63.  https://doi.org/10.1016/B978-0-444-53860-4.00007-6.CrossRefPubMedGoogle Scholar
  2. 2.
    Tramo MJ, Loftus WC, Thomas CE, Green RL, Mott LA, Gazzaniga MS. Surface area of human cerebral cortex and its gross morphological subdivisions: in vivo measurements in monozygotic twins suggest differential hemisphere effects of genetic factors. J Cogn Neurosci. 1995;7(2):292–302.  https://doi.org/10.1162/jocn.1995.7.2.292.CrossRefPubMedGoogle Scholar
  3. 3.
    Yoshimuraa H, Kato N, Honjo M, Sugai T, Segami N, Onoda N. Age-dependent emergence of a parieto-insular corticocortical signal flow in developing rats. Brain Res Dev Brain Res. 2004;149(1):45–51.CrossRefGoogle Scholar
  4. 4.
    Parkes SL, De la Cruz V, Bermúdez-Rattoni F, Coutureau E, Ferreira G. Differential role of insular cortex muscarinic and NMDA receptors in one-trial appetitive taste learning. Neurobiol Learn Mem. 2014;116:112–6.  https://doi.org/10.1016/j.nlm.2014.09.008.CrossRefPubMedGoogle Scholar
  5. 5.
    Ferrier J, Bayet-Robert M, Dalmann R, El Guerrab A, Aissouni Y, Graveron-Demilly D, et al. Cholinergic neurotransmission in the posterior insular cortex is altered in preclinical models of neuropathic pain: key role of muscarinic M2 receptors in donepezil-induced antinociception. J Neurosci. 2015;35(50):16438–0.CrossRefGoogle Scholar
  6. 6.
    Gu X, Gao Z, Wang X, Liu X, Knight RT, Hof PR, et al. Anterior insular cortex is necessary for empathetic pain perception. Brain. 2012;135:2726–35.  https://doi.org/10.1093/brain/aws199.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Inaba Y, de Guzman P, Avoli M. NMDA receptor-mediated transmission contributes to network ‘hyperexcitability’ in the rat insular cortex. Eur J Neurosci. 2006;23(4):1071–6.CrossRefPubMedGoogle Scholar
  8. 8.
    Rodríguez-Durán LF, Martínez-Moreno A, Escobar ML. Bidirectional modulation of taste aversion extinction by insular cortex LTP and LTD. Neurobiol Learn Mem. 2017;142:85–90.  https://doi.org/10.1016/j.nlm.2016.12.014.CrossRefPubMedGoogle Scholar
  9. 9.
    Escobar ML, Alcocer I, Chao V. The NMDA receptor antagonist CPP impairs conditioned taste aversion and insular cortex long-term potentiation in vivo. Brain Res. 1998;812(1–2):246–51.CrossRefPubMedGoogle Scholar
  10. 10.
    Rosenblum K, Berman DE, Hazvi S, Lamprecht R, Dudai Y. NMDA receptor and the tyrosine phosphorylation of its 2B subunit in taste learning in the rat insular cortex. J Neurosci. 1997;17(13):5129–35.CrossRefPubMedGoogle Scholar
  11. 11.
    Alves FH, Crestani CC, Resstel LB, Correa FM. N-methyl-d-aspartate receptors in the insular cortex modulate baroreflex in unanesthetized rats. Auton Neurosci. 2009;147(1–2):56–63.  https://doi.org/10.1016/j.autneu.2008.12.015.CrossRefPubMedGoogle Scholar
  12. 12.
    Cocker PJ, Lin MY, Barrus MM, Le Foll B, Winstanley CA. The agranular and granular insula differentially contribute to gambling-like behavior on a rat slot machine task: effects of inactivation and local infusion of a dopamine D4 agonist on reward expectancy. Psychopharmacology (Berl). 2016;233(17):3135–47.  https://doi.org/10.1007/s00213-016-4355-1.CrossRefGoogle Scholar
  13. 13.
    Suhara T, Yasuno F, Sudo Y, Yamamoto M, Inoue M, Okubo Y, et al. Dopamine D2 receptors in the insular cortex and the personality trait of novelty seeking. Neuroimage. 2001;13(5):891–5.CrossRefPubMedGoogle Scholar
  14. 14.
    Chou TS, Bucci LD, Krichmar JL. Learning touch preferences with a tactile robot using dopamine modulated STDP in a model of insular cortex. Front Neurorobot. 2015;9:6.  https://doi.org/10.3389/fnbot.2015.00006.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kutlu MG, Burke D, Slade S, Hall BJ, Rose JE, Levin ED. Role of insular cortex D1 and D2 dopamine receptors in nicotine self-administration in rats. Behav Brain Res. 2013;256:273–8.  https://doi.org/10.1016/j.bbr.2013.08.005.CrossRefPubMedGoogle Scholar
  16. 16.
    Di Pietro NC, Mashhoon Y, Heaney C, Yager LM, Kantak KM. Role of dopamine D1 receptors in the prefrontal dorsal agranular insular cortex in mediating cocaine self-administration in rats. Psychopharmacology (Berl). 2008;200(1):81–91.  https://doi.org/10.1007/s00213-008-1149-0.CrossRefGoogle Scholar
  17. 17.
    Pattij T, Schetters D, Schoffelmeer AN. Dopaminergic modulation of impulsive decision making in the rat insular cortex. Behav Brain Res. 2014;270:118–24.  https://doi.org/10.1016/j.bbr.2014.05.010.CrossRefPubMedGoogle Scholar
  18. 18.
    Christopher L, Marras C, Duff-Canning S, Koshimori Y, Chen R, Boileau I, et al. Combined insular and striatal dopamine dysfunction are associated with executive deficits in Parkinson’s disease with mild cognitive impairment. Brain. 2014;137(Pt 2):565–75.  https://doi.org/10.1093/brain/awt337.CrossRefPubMedGoogle Scholar
  19. 19.
    Yokota E, Koyanagi Y, Yamamoto K, Oi Y, Koshikawa N, Kobayashi M. Opioid subtype- and cell-type-dependent regulation of inhıbitory synaptc transmission in the rat insular cortex. Neuroscience. 2016;339:478–90.  https://doi.org/10.1016/j.neuroscience.2016.10.004.CrossRefPubMedGoogle Scholar
  20. 20.
    Yokota E, Koyanagi Y, Nakamura H, Horİnuki E, Oi Y, Kobayashi M. Opposite effects of mu and delta opioid receptor agonists on excitatory propagation induced in rat somatosensory and insular cortices by dental pulp stimulation. Neurosci Lett. 2016;628:52–8.  https://doi.org/10.1016/j.neulet.2016.05.065.CrossRefPubMedGoogle Scholar
  21. 21.
    Burkey AR, Carstens E, Wenniger JJ, Tang J, Jasmin L. An opioidergic corticalantinociception triggering site in the agranular insular cortex of the rat thatcontributes to morphine antinociception. J Neurosci. 1996;16(20):6612–23.CrossRefPubMedGoogle Scholar
  22. 22.
    Chu Sin Chung P, Kieffer BL. Delta opioid receptors in brain function anddiseases. Pharmacol Ther. 2013;140(1):112–20.  https://doi.org/10.1016/j.pharmthera.2013.06.003.CrossRefPubMedGoogle Scholar
  23. 23.
    Watson CJ. Insular balance of glutamatergic and GABAergic signaling modulates pain processing. Pain. 2016;157(10):2194–207.  https://doi.org/10.1097/j.pain.0000000000000615.CrossRefPubMedGoogle Scholar
  24. 24.
    Fujita S, Koshikawa N, Kobayashi M. GABA(B) receptors accentuate neural excitation contrast in rat insular cortex. Neuroscience. 2011;199:259–71.  https://doi.org/10.1016/j.neuroscience.2011.09.043.CrossRefPubMedGoogle Scholar
  25. 25.
    Mutschler I, Wieckhorst B, Kowalevski S, Derix J, Wentlandt J, Schulze-Bonhage A, et al. Functional organization of the human anterior insular cortex. Neurosci Lett. 2009;457(2):66–70.  https://doi.org/10.1016/j.neulet.2009.03.101.CrossRefPubMedGoogle Scholar
  26. 26.
    Frank S, Kullmann S, Veit R. Food related processes in the insular cortex. Front Hum Neurosci. 2013;7:499.  https://doi.org/10.3389/fnhum.2013.00499.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Hasan Emre Aydın
    • 1
  • İsmail Kaya
    • 1
  1. 1.Department of NeurosurgeryDumlupınar University, Medical FacultyKutahyaTurkey

Personalised recommendations