Advertisement

The Role of the Insula in Schizophrenia

  • Cameron Schmidt
Chapter

Abstract

Schizophrenia is a neuropsychiatric disorder characterized by broad cognitive and functional impairments, including deficits in executive attention, working memory, and social cognition, as well as the presence of delusional thinking and hallucinatory experiences. The insula is a target of structural alteration in schizophrenia, suffering losses in gray matter, white matter, and cortical surface area that correspond to abnormalities in its functional connectivity. Given the wide diversity of neurocognitive functions subserved by the insula, insular dysfunction may explain several symptoms of schizophrenia. We review here the morphometric and functional alterations of the insula over the course of schizophrenia and their relation to resulting neurological deficits.

Keywords

Schizophrenia Insula Structural alterations Functional neuroimaging Salience network 

References

  1. 1.
    Insel TR. Rethinking schizophrenia. Nature. 2010;468:187–93.PubMedCrossRefGoogle Scholar
  2. 2.
    Kay SR, Fiszbein A, Opler LA. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull. 1987;13:261–76.PubMedCrossRefGoogle Scholar
  3. 3.
    Foussias G, Agid O, Fervaha G, Remington G. Negative symptoms of schizophrenia: clinical features, relevance to real world functioning and specificity versus other CNS disorders. Eur Neuropsychopharmacol. 2014;24:693–709.PubMedCrossRefGoogle Scholar
  4. 4.
    Bowie CR, Harvey PD. Cognitive deficits and functional outcome in schizophrenia. Neuropsychiatr Dis Treat. 2006;2:531–6.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Jepsen JR, Fagerlund B, Pagsberg AK, Christensen AM, Nordentoft M, Mortensen EL. Profile of cognitive deficits and associations with depressive symptoms and intelligence in chronic early-onset schizophrenia patients. Scand J Psychol. 2013;54:363–70.PubMedCrossRefGoogle Scholar
  6. 6.
    Puig O, Baeza I, de la Serna E, Cabrera B, Mezquida G, Bioque M, Lobo A, Gonzalez-Pinto A, Parellada M, Corripio I, Vieta E, Bobes J, Usall J, Contreras F, Cuesta MJ, Bernardo M, Castro-Fornieles J, Group TP. Persistent negative symptoms in first-episode psychosis: early cognitive and social functioning correlates and differences between early and adult onset. J Clin Psychiatry. 2017;78:1414–22.PubMedCrossRefGoogle Scholar
  7. 7.
    Mesholam-Gately RI, Giuliano AJ, Goff KP, Faraone SV, Seidman LJ. Neurocognition in first-episode schizophrenia: a meta-analytic review. Neuropsychology. 2009;23:315–36.PubMedCrossRefGoogle Scholar
  8. 8.
    Niemi LT, Suvisaari JM, Tuulio-Henriksson A, Lonnqvist JK. Childhood developmental abnormalities in schizophrenia: evidence from high-risk studies. Schizophr Res. 2003;60:239–58.PubMedCrossRefGoogle Scholar
  9. 9.
    Erlenmeyer-Kimling L, Rock D, Roberts SA, Janal M, Kestenbaum C, Cornblatt B, Adamo UH, Gottesman II. Attention, memory, and motor skills as childhood predictors of schizophrenia-related psychoses: the New York High-Risk Project. Am J Psychiatry. 2000;157:1416–22.PubMedCrossRefGoogle Scholar
  10. 10.
    Matheson SL, Vijayan H, Dickson H, Shepherd AM, Carr VJ, Laurens KR. Systematic meta-analysis of childhood social withdrawal in schizophrenia, and comparison with data from at-risk children aged 9–14 years. J Psychiatr Res. 2013;47:1061–8.PubMedCrossRefGoogle Scholar
  11. 11.
    Schiffman J, Walker E, Ekstrom M, Schulsinger F, Sorensen H, Mednick S. Childhood videotaped social and neuromotor precursors of schizophrenia: a prospective investigation. Am J Psychiatry. 2004;161:2021–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Tsuji T, Kline E, Sorensen HJ, Mortensen EL, Michelsen NM, Ekstrom M, Mednick S, Schiffman J. Premorbid teacher-rated social functioning predicts adult schizophrenia-spectrum disorder: a high-risk prospective investigation. Schizophr Res. 2013;151:270–3.PubMedCrossRefGoogle Scholar
  13. 13.
    Bliksted V, Videbech P, Fagerlund B, Frith C. The effect of positive symptoms on social cognition in first-episode schizophrenia is modified by the presence of negative symptoms. Neuropsychology. 2017;31:209–19.PubMedCrossRefGoogle Scholar
  14. 14.
    Green MF. Cognitive impairment and functional outcome in schizophrenia and bipolar disorder. J Clin Psychiatry. 2006;67(Suppl 9):3–8. discussion 36–42PubMedGoogle Scholar
  15. 15.
    Nuechterlein KH, Subotnik KL, Green MF, Ventura J, Asarnow RF, Gitlin MJ, Yee CM, Gretchen-Doorly D, Mintz J. Neurocognitive predictors of work outcome in recent-onset schizophrenia. Schizophr Bull. 2011;37(Suppl 2):S33–40.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Honea R, Crow TJ, Passingham D, Mackay CE. Regional deficits in brain volume in schizophrenia: a meta-analysis of voxel-based morphometry studies. Am J Psychiatry. 2005;162:2233–45.PubMedCrossRefGoogle Scholar
  17. 17.
    Vita A, De Peri L, Deste G, Sacchetti E. Progressive loss of cortical gray matter in schizophrenia: a meta-analysis and meta-regression of longitudinal MRI studies. Transl Psychiatry. 2012;2:e190.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Wright IC, Ellison ZR, Sharma T, Friston KJ, Murray RM, McGuire PK. Mapping of grey matter changes in schizophrenia. Schizophr Res. 1999;35:1–14.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Sigmundsson T, Suckling J, Maier M, Williams S, Bullmore E, Greenwood K, Fukuda R, Ron M, Toone B. Structural abnormalities in frontal, temporal, and limbic regions and interconnecting white matter tracts in schizophrenic patients with prominent negative symptoms. Am J Psychiatry. 2001;158:234–43.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Bora E, Fornito A, Radua J, Walterfang M, Seal M, Wood SJ, Yucel M, Velakoulis D, Pantelis C. Neuroanatomical abnormalities in schizophrenia: a multimodal voxelwise meta-analysis and meta-regression analysis. Schizophr Res. 2011;127:46–57.PubMedCrossRefGoogle Scholar
  21. 21.
    Fusar-Poli P, Smieskova R, Serafini G, Politi P, Borgwardt S. Neuroanatomical markers of genetic liability to psychosis and first episode psychosis: a voxelwise meta-analytical comparison. World J Biol Psychiatry. 2014;15:219–28.PubMedCrossRefGoogle Scholar
  22. 22.
    Shepherd AM, Laurens KR, Matheson SL, Carr VJ, Green MJ. Systematic meta-review and quality assessment of the structural brain alterations in schizophrenia. Neurosci Biobehav Rev. 2012;36:1342–56.PubMedCrossRefGoogle Scholar
  23. 23.
    Takahashi T, Wood SJ, Soulsby B, Tanino R, Wong MT, McGorry PD, Suzuki M, Velakoulis D, Pantelis C. Diagnostic specificity of the insular cortex abnormalities in first-episode psychotic disorders. Prog Neuro-Psychopharmacol Biol Psychiatry. 2009;33:651–7.CrossRefGoogle Scholar
  24. 24.
    Makris N, Goldstein JM, Kennedy D, Hodge SM, Caviness VS, Faraone SV, Tsuang MT, Seidman LJ. Decreased volume of left and total anterior insular lobule in schizophrenia. Schizophr Res. 2006;83:155–71.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Crespo-Facorro B, Kim J, Andreasen NC, O’Leary DS, Bockholt HJ, Magnotta V. Insular cortex abnormalities in schizophrenia: a structural magnetic resonance imaging study of first-episode patients. Schizophr Res. 2000;46:35–43.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Paillere-Martinot M, Caclin A, Artiges E, Poline JB, Joliot M, Mallet L, Recasens C, Attar-Levy D, Martinot JL. Cerebral gray and white matter reductions and clinical correlates in patients with early onset schizophrenia. Schizophr Res. 2001;50:19–26.PubMedCrossRefGoogle Scholar
  27. 27.
    Yamada M, Hirao K, Namiki C, Hanakawa T, Fukuyama H, Hayashi T, Murai T. Social cognition and frontal lobe pathology in schizophrenia: a voxel-based morphometric study. NeuroImage. 2007;35:292–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Chan RC, Di X, McAlonan GM, Gong QY. Brain anatomical abnormalities in high-risk individuals, first-episode, and chronic schizophrenia: an activation likelihood estimation meta-analysis of illness progression. Schizophr Bull. 2011;37:177–88.PubMedCrossRefGoogle Scholar
  29. 29.
    Marcelis M, Suckling J, Woodruff P, Hofman P, Bullmore E, van Os J. Searching for a structural endophenotype in psychosis using computational morphometry. Psychiatry Res. 2003;122:153–67.PubMedCrossRefGoogle Scholar
  30. 30.
    Kuperberg GR, Broome MR, McGuire PK, David AS, Eddy M, Ozawa F, Goff D, West WC, Williams SC, van der Kouwe AJ, Salat DH, Dale AM, Fischl B. Regionally localized thinning of the cerebral cortex in schizophrenia. Arch Gen Psychiatry. 2003;60:878–88.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Nesvag R, Lawyer G, Varnas K, Fjell AM, Walhovd KB, Frigessi A, Jonsson EG, Agartz I. Regional thinning of the cerebral cortex in schizophrenia: effects of diagnosis, age and antipsychotic medication. Schizophr Res. 2008;98:16–28.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Leung M, Cheung C, Yu K, Yip B, Sham P, Li Q, Chua S, McAlonan G. Gray matter in first-episode schizophrenia before and after antipsychotic drug treatment. Anatomical likelihood estimation meta-analyses with sample size weighting. Schizophr Bull. 2011;37:199–211.PubMedCrossRefGoogle Scholar
  33. 33.
    Fusar-Poli P, Radua J, McGuire P, Borgwardt S. Neuroanatomical maps of psychosis onset: voxel-wise meta-analysis of antipsychotic-naive VBM studies. Schizophr Bull. 2012;38:1297–307.PubMedCrossRefGoogle Scholar
  34. 34.
    Kasai K, Shenton ME, Salisbury DF, Onitsuka T, Toner SK, Yurgelun-Todd D, Kikinis R, Jolesz FA, McCarley RW. Differences and similarities in insular and temporal pole MRI gray matter volume abnormalities in first-episode schizophrenia and affective psychosis. Arch Gen Psychiatry. 2003;60:1069–77.PubMedCrossRefGoogle Scholar
  35. 35.
    Kubicki M, Shenton ME, Salisbury DF, Hirayasu Y, Kasai K, Kikinis R, Jolesz FA, McCarley RW. Voxel-based morphometric analysis of gray matter in first episode schizophrenia. NeuroImage. 2002;17:1711–9.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Job DE, Whalley HC, McConnell S, Glabus M, Johnstone EC, Lawrie SM. Structural gray matter differences between first-episode schizophrenics and normal controls using voxel-based morphometry. NeuroImage. 2002;17:880–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Hulshoff Pol HE, Schnack HG, Mandl RC, van Haren NE, Koning H, Collins DL, Evans AC, Kahn RS. Focal gray matter density changes in schizophrenia. Arch Gen Psychiatry. 2001;58:1118–25.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Wilke M, Kaufmann C, Grabner A, Putz B, Wetter TC, Auer DP. Gray matter-changes and correlates of disease severity in schizophrenia: a statistical parametric mapping study. NeuroImage. 2001;13:814–24.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Garcia-Marti G, Aguilar EJ, Lull JJ, Marti-Bonmati L, Escarti MJ, Manjon JV, Moratal D, Robles M, Sanjuan J. Schizophrenia with auditory hallucinations: a voxel-based morphometry study. Prog Neuro-Psychopharmacol Biol Psychiatry. 2008;32:72–80.CrossRefGoogle Scholar
  40. 40.
    Chang LJ, Yarkoni T, Khaw MW, Sanfey AG. Decoding the role of the insula in human cognition: functional parcellation and large-scale reverse inference. Cereb Cortex. 2013;23:739–49.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Deen B, Pitskel NB, Pelphrey KA. Three systems of insular functional connectivity identified with cluster analysis. Cereb Cortex. 2011;21:1498–506.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Uddin LQ, Kinnison J, Pessoa L, Anderson ML. Beyond the tripartite cognition-emotion-interoception model of the human insular cortex. J Cogn Neurosci. 2014;26:16–27.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Saze T, Hirao K, Namiki C, Fukuyama H, Hayashi T, Murai T. Insular volume reduction in schizophrenia. Eur Arch Psychiatry Clin Neurosci. 2007;257:473–9.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Takahashi T, Wood SJ, Soulsby B, McGorry PD, Tanino R, Suzuki M, Velakoulis D, Pantelis C. Follow-up MRI study of the insular cortex in first-episode psychosis and chronic schizophrenia. Schizophr Res. 2009;108:49–56.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Pressler M, Nopoulos P, Ho BC, Andreasen NC. Insular cortex abnormalities in schizophrenia: relationship to symptoms and typical neuroleptic exposure. Biol Psychiatry. 2005;57:394–8.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Crespo-Facorro B, Roiz-Santianez R, Quintero C, Perez-Iglesias R, Tordesillas-Gutierrez D, Mata I, Rodriguez-Sanchez JM, Gutierrez A, Vazquez-Barquero JL. Insular cortex morphometry in first-episode schizophrenia-spectrum patients: diagnostic specificity and clinical correlations. J Psychiatr Res. 2010;44:314–20.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Duggal HS, Muddasani S, Keshavan MS. Insular volumes in first-episode schizophrenia: gender effect. Schizophr Res. 2005;73:113–20.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Roiz-Santianez R, Perez-Iglesias R, Quintero C, Tordesillas-Gutierrez D, Mata I, Ayesa R, Sanchez JM, Gutierrez A, Sanchez E, Vazquez-Barquero JL, Crespo-Facorro B. Insular cortex thinning in first episode schizophrenia patients. Psychiatry Res. 2010;182:216–22.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Smieskova R, Fusar-Poli P, Allen P, Bendfeldt K, Stieglitz RD, Drewe J, Radue EW, McGuire PK, Riecher-Rossler A, Borgwardt SJ. The effects of antipsychotics on the brain: what have we learnt from structural imaging of schizophrenia? A systematic review. Curr Pharm Des. 2009;15:2535–49.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Ho BC, Andreasen NC, Ziebell S, Pierson R, Magnotta V. Long-term antipsychotic treatment and brain volumes: a longitudinal study of first-episode schizophrenia. Arch Gen Psychiatry. 2011;68:128–37.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Lieberman JA, Tollefson GD, Charles C, Zipursky R, Sharma T, Kahn RS, Keefe RS, Green AI, Gur RE, McEvoy J, Perkins D, Hamer RM, Gu H, Tohen M. Antipsychotic drug effects on brain morphology in first-episode psychosis. Arch Gen Psychiatry. 2005;62:361–70.PubMedCrossRefGoogle Scholar
  52. 52.
    Crespo-Facorro B, Roiz-Santianez R, Perez-Iglesias R, Pelayo-Teran JM, Rodriguez-Sanchez JM, Tordesillas-Gutierrez D, Ramirez M, Martinez O, Gutierrez A, de Lucas EM, Vazquez-Barquero JL. Effect of antipsychotic drugs on brain morphometry. A randomized controlled one-year follow-up study of haloperidol, risperidone and olanzapine. Prog Neuro-Psychopharmacol Biol Psychiatry. 2008;32:1936–43.CrossRefGoogle Scholar
  53. 53.
    Roiz-Santianez R, Tordesillas-Gutierrez D, Ortiz-Garcia de la Foz V, Ayesa-Arriola R, Gutierrez A, Tabares-Seisdedos R, Vazquez-Barquero JL, Crespo-Facorro B. Effect of antipsychotic drugs on cortical thickness. A randomized controlled one-year follow-up study of haloperidol, risperidone and olanzapine. Schizophr Res. 2012;141:22–8.PubMedCrossRefGoogle Scholar
  54. 54.
    Vita A, De Peri L, Deste G, Barlati S, Sacchetti E. The effect of antipsychotic treatment on cortical gray matter changes in schizophrenia: does the class matter? A meta-analysis and meta-regression of longitudinal magnetic resonance imaging studies. Biol Psychiatry. 2015;78:403–12.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Fusar-Poli P, Broome MR, Matthiasson P, Williams SC, Brammer M, McGuire PK. Effects of acute antipsychotic treatment on brain activation in first episode psychosis: an fMRI study. Eur Neuropsychopharmacol. 2007;17:492–500.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Borgwardt SJ, Picchioni MM, Ettinger U, Toulopoulou T, Murray R, McGuire PK. Regional gray matter volume in monozygotic twins concordant and discordant for schizophrenia. Biol Psychiatry. 2010;67:956–64.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Andreasen NC, Nopoulos P, Magnotta V, Pierson R, Ziebell S, Ho BC. Progressive brain change in schizophrenia: a prospective longitudinal study of first-episode schizophrenia. Biol Psychiatry. 2011;70:672–9.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Olabi B, Ellison-Wright I, McIntosh AM, Wood SJ, Bullmore E, Lawrie SM. Are there progressive brain changes in schizophrenia? A meta-analysis of structural magnetic resonance imaging studies. Biol Psychiatry. 2011;70:88–96.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Borgwardt SJ, Riecher-Rossler A, Dazzan P, Chitnis X, Aston J, Drewe M, Gschwandtner U, Haller S, Pfluger M, Rechsteiner E, D’Souza M, Stieglitz RD, Radu EW, McGuire PK. Regional gray matter volume abnormalities in the at risk mental state. Biol Psychiatry. 2007;61:1148–56.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Fusar-Poli P, Borgwardt S, Crescini A, Deste G, Kempton MJ, Lawrie S, Mc Guire P, Sacchetti E. Neuroanatomy of vulnerability to psychosis: a voxel-based meta-analysis. Neurosci Biobehav Rev. 2011;35:1175–85.PubMedCrossRefGoogle Scholar
  61. 61.
    Takahashi T, Wood SJ, Yung AR, Phillips LJ, Soulsby B, McGorry PD, Tanino R, Zhou SY, Suzuki M, Velakoulis D, Pantelis C. Insular cortex gray matter changes in individuals at ultra-high-risk of developing psychosis. Schizophr Res. 2009;111:94–102.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Horan WP, Jimenez AM, Lee J, Wynn JK, Eisenberger NI, Green MF. Pain empathy in schizophrenia: an fMRI study. Soc Cogn Affect Neurosci. 2016;11:783–92.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Cechetto DF. Cortical control of the autonomic nervous system. Exp Physiol. 2014;99:326–31.PubMedCrossRefGoogle Scholar
  64. 64.
    Craig AD. How do you feel—now? The anterior insula and human awareness. Nat Rev Neurosci. 2009;10:59–70.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Benedetti F, Bernasconi A, Bosia M, Cavallaro R, Dallaspezia S, Falini A, Poletti S, Radaelli D, Riccaboni R, Scotti G, Smeraldi E. Functional and structural brain correlates of theory of mind and empathy deficits in schizophrenia. Schizophr Res. 2009;114:154–60.PubMedCrossRefGoogle Scholar
  66. 66.
    Pinkham AE. Social cognition in schizophrenia. J Clin Psychiatry. 2014;75(Suppl 2):14–9.PubMedCrossRefGoogle Scholar
  67. 67.
    Craig AD. Interoception: the sense of the physiological condition of the body. Curr Opin Neurobiol. 2003;13:500–5.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Gu X, Hof PR, Friston KJ, Fan J. Anterior insular cortex and emotional awareness. J Comp Neurol. 2013;521:3371–88.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Garrison J, Erdeniz B, Done J. Prediction error in reinforcement learning: a meta-analysis of neuroimaging studies. Neurosci Biobehav Rev. 2013;37:1297–310.PubMedCrossRefGoogle Scholar
  70. 70.
    Critchley HD, Wiens S, Rotshtein P, Ohman A, Dolan RJ. Neural systems supporting interoceptive awareness. Nat Neurosci. 2004;7:189–95.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Palaniyappan L, Simmonite M, White TP, Liddle EB, Liddle PF. Neural primacy of the salience processing system in schizophrenia. Neuron. 2013;79:814–28.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Werner NS, Jung K, Duschek S, Schandry R. Enhanced cardiac perception is associated with benefits in decision-making. Psychophysiology. 2009;46:1123–9.PubMedCrossRefGoogle Scholar
  73. 73.
    Ferri F, Ardizzi M, Ambrosecchia M, Gallese V. Closing the gap between the inside and the outside: interoceptive sensitivity and social distances. PLoS One. 2013;8:e75758.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Lovero KL, Simmons AN, Aron JL, Paulus MP. Anterior insular cortex anticipates impending stimulus significance. NeuroImage. 2009;45:976–83.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Ardizzi M, Ambrosecchia M, Buratta L, Ferri F, Peciccia M, Donnari S, Mazzeschi C, Gallese V. Interoception and positive symptoms in schizophrenia. Front Hum Neurosci. 2016;10:379.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Palaniyappan L, Mallikarjun P, Joseph V, Liddle PF. Appreciating symptoms and deficits in schizophrenia: right posterior insula and poor insight. Prog Neuro-Psychopharmacol Biol Psychiatry. 2011;35:523–7.CrossRefGoogle Scholar
  77. 77.
    Antonius D, Prudent V, Rebani Y, D’Angelo D, Ardekani BA, Malaspina D, Hoptman MJ. White matter integrity and lack of insight in schizophrenia and schizoaffective disorder. Schizophr Res. 2011;128:76–82.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Linnman C, Coombs G, Goff DC, Holt DJ. Lack of insula reactivity to aversive stimuli in schizophrenia. Schizophr Res. 2013;143:150–7.PubMedCrossRefGoogle Scholar
  79. 79.
    Pollatos O, Herbert BM, Matthias E, Schandry R. Heart rate response after emotional picture presentation is modulated by interoceptive awareness. Int J Psychophysiol. 2007;63:117–24.PubMedCrossRefGoogle Scholar
  80. 80.
    Lang PJ. The varieties of emotional experience: a meditation on James-Lange theory. Psychol Rev. 1994;101:211–21.PubMedCrossRefGoogle Scholar
  81. 81.
    Fusar-Poli P, Placentino A, Carletti F, Landi P, Allen P, Surguladze S, Benedetti F, Abbamonte M, Gasparotti R, Barale F, Perez J, McGuire P, Politi P. Functional atlas of emotional faces processing: a voxel-based meta-analysis of 105 functional magnetic resonance imaging studies. J Psychiatry Neurosci. 2009;34:418–32.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Pelletier-Baldelli A, Bernard JA, Mittal VA. Intrinsic functional connectivity in salience and default mode networks and aberrant social processes in youth at ultra-high risk for psychosis. PLoS One. 2015;10:e0134936.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Jani M, Kasparek T. Emotion recognition and theory of mind in schizophrenia: a meta-analysis of neuroimaging studies. World J Biol Psychiatry. 2017:1–11.Google Scholar
  84. 84.
    Mothersill O, Knee-Zaska C, Donohoe G. Emotion and theory of mind in schizophrenia-investigating the role of the cerebellum. Cerebellum. 2016;15:357–68.PubMedCrossRefGoogle Scholar
  85. 85.
    Lamm C, Singer T. The role of anterior insular cortex in social emotions. Brain Struct Funct. 2010;214:579–91.PubMedCrossRefGoogle Scholar
  86. 86.
    Bernhardt BC, Singer T. The neural basis of empathy. Annu Rev Neurosci. 2012;35:1–23.PubMedCrossRefGoogle Scholar
  87. 87.
    Lamm C, Decety J, Singer T. Meta-analytic evidence for common and distinct neural networks associated with directly experienced pain and empathy for pain. NeuroImage. 2011;54:2492–502.PubMedCrossRefGoogle Scholar
  88. 88.
    Gu X, Gao Z, Wang X, Liu X, Knight RT, Hof PR, Fan J. Anterior insular cortex is necessary for empathetic pain perception. Brain J Neurol. 2012;135:2726–35.CrossRefGoogle Scholar
  89. 89.
    Belin P, Fecteau S, Bedard C. Thinking the voice: neural correlates of voice perception. Trends Cogn Sci. 2004;8:129–35.PubMedCrossRefGoogle Scholar
  90. 90.
    Bestelmeyer PEG, Maurage P, Rouger J, Latinus M, Belin P. Adaptation to vocal expressions reveals multistep perception of auditory emotion. J Neurosci. 2014;34:8098–105.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Bach DR, Grandjean D, Sander D, Herdener M, Strik WK, Seifritz E. The effect of appraisal level on processing of emotional prosody in meaningless speech. NeuroImage. 2008;42:919–27.PubMedCrossRefGoogle Scholar
  92. 92.
    Hoekert M, Kahn RS, Pijnenborg M, Aleman A. Impaired recognition and expression of emotional prosody in schizophrenia: review and meta-analysis. Schizophr Res. 2007;96:135–45.PubMedCrossRefGoogle Scholar
  93. 93.
    Kantrowitz JT, Leitman DI, Lehrfeld JM, Laukka P, Juslin PN, Butler PD, Silipo G, Javitt DC. Reduction in tonal discriminations predicts receptive emotion processing deficits in schizophrenia and schizoaffective disorder. Schizophr Bull. 2013;39:86–93.PubMedCrossRefGoogle Scholar
  94. 94.
    Pijnenborg GH, Withaar FK, Bosch RJ, Brouwer WH. Impaired perception of negative emotional prosody in schizophrenia. Clin Neuropsychol. 2007;21:762–75.PubMedCrossRefGoogle Scholar
  95. 95.
    Kantrowitz JT, Hoptman MJ, Leitman DI, Moreno-Ortega M, Lehrfeld JM, Dias E, Sehatpour P, Laukka P, Silipo G, Javitt DC. Neural substrates of auditory emotion recognition deficits in schizophrenia. J Neurosci. 2015;35:14909–21.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Bach DR, Buxtorf K, Strik WK, Neuhoff JG, Seifritz E. Evidence for impaired sound intensity processing in schizophrenia. Schizophr Bull. 2011;37:426–31.PubMedCrossRefGoogle Scholar
  97. 97.
    Leitman DI, Laukka P, Juslin PN, Saccente E, Butler P, Javitt DC. Getting the cue: sensory contributions to auditory emotion recognition impairments in schizophrenia. Schizophr Bull. 2010;36:545–56.PubMedCrossRefGoogle Scholar
  98. 98.
    Gold R, Butler P, Revheim N, Leitman DI, Hansen JA, Gur RC, Kantrowitz JT, Laukka P, Juslin PN, Silipo GS, Javitt DC. Auditory emotion recognition impairments in schizophrenia: relationship to acoustic features and cognition. Am J Psychiatry. 2012;169:424–32.PubMedCrossRefGoogle Scholar
  99. 99.
    Leitman DI, Sehatpour P, Garidis C, Gomez-Ramirez M, Javitt DC. Preliminary evidence of pre-attentive distinctions of frequency-modulated tones that convey affect. Front Hum Neurosci. 2011;5:96.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Jardri R, Pouchet A, Pins D, Thomas P. Cortical activations during auditory verbal hallucinations in schizophrenia: a coordinate-based meta-analysis. Am J Psychiatry. 2011;168:73–81.PubMedCrossRefGoogle Scholar
  101. 101.
    Bressler SL, Menon V. Large-scale brain networks in cognition: emerging methods and principles. Trends Cogn Sci. 2010;14:277–90.PubMedCrossRefGoogle Scholar
  102. 102.
    Uddin LQ, Supekar KS, Ryali S, Menon V. Dynamic reconfiguration of structural and functional connectivity across core neurocognitive brain networks with development. J Neurosci. 2011;31:18578–89.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Greicius MD, Krasnow B, Reiss AL, Menon V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A. 2003;100:253–8.PubMedCrossRefGoogle Scholar
  104. 104.
    Dodell-Feder D, DeLisi LE, Hooker CI. The relationship between default mode network connectivity and social functioning in individuals at familial high-risk for schizophrenia. Schizophr Res. 2014;156:87–95.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Andrews-Hanna JR, Smallwood J, Spreng RN. The default network and self-generated thought: component processes, dynamic control, and clinical relevance. Ann N Y Acad Sci. 2014;1316:29–52.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Manoliu A, Riedl V, Doll A, Bäuml JG, Mühlau M, Schwerthöffer D, Scherr M, Zimmer C, Förstl H, Bäuml J, Wohlschläger AM, Koch K, Sorg C. Insular dysfunction reflects altered between-network connectivity and severity of negative symptoms in schizophrenia during psychotic remission. Front Hum Neurosci. 2013;7:216.Google Scholar
  107. 107.
    Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, Reiss AL, Greicius MD. Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci. 2007;27:2349–56.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Palaniyappan L, Liddle PF. Does the salience network play a cardinal role in psychosis? An emerging hypothesis of insular dysfunction. J Psychiatry Neurosci. 2012;37:17–27.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Dosenbach NU, Fair DA, Miezin FM, Cohen AL, Wenger KK, Dosenbach RA, Fox MD, Snyder AZ, Vincent JL, Raichle ME, Schlaggar BL, Petersen SE. Distinct brain networks for adaptive and stable task control in humans. Proc Natl Acad Sci U S A. 2007;104:11073–8.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Walter A, Suenderhauf C, Smieskova R, Lenz C, Harrisberger F, Schmidt A, Vogel T, Lang UE, Riecher-Rossler A, Eckert A, Borgwardt S. Altered insular function during aberrant salience processing in relation to the severity of psychotic symptoms. Front Psych. 2016;7:189.Google Scholar
  111. 111.
    Sridharan D, Levitin DJ, Menon V. A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc Natl Acad Sci U S A. 2008;105:12569–74.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Menon V, Uddin LQ. Saliency, switching, attention and control: a network model of insula function. Brain Struct Funct. 2010;214:655–67.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Manoliu A, Riedl V, Zherdin A, Mühlau M, Schwerthöffer D, Scherr M, Peters H, Zimmer C, Förstl H, Bäuml J, Wohlschläger AM, Sorg C. Aberrant dependence of default mode/central executive network interactions on anterior insular salience network activity in schizophrenia. Schizophr Bull. 2014;40:428–37.PubMedCrossRefGoogle Scholar
  114. 114.
    Kapur S. Psychosis as a state of aberrant salience: a framework linking biology, phenomenology, and pharmacology in schizophrenia. Am J Psychiatry. 2003;160:13–23.PubMedCrossRefGoogle Scholar
  115. 115.
    Fletcher PC, Frith CD. Perceiving is believing: a Bayesian approach to explaining the positive symptoms of schizophrenia. Nat Rev Neurosci. 2009;10:48–58.PubMedCrossRefGoogle Scholar
  116. 116.
    Preuschoff K, Quartz SR, Bossaerts P. Human insula activation reflects risk prediction errors as well as risk. J Neurosci. 2008;28:2745–52.PubMedCrossRefGoogle Scholar
  117. 117.
    Clark L, Bechara A, Damasio H, Aitken MR, Sahakian BJ, Robbins TW. Differential effects of insular and ventromedial prefrontal cortex lesions on risky decision-making. Brain J Neurol. 2008;131:1311–22.CrossRefGoogle Scholar
  118. 118.
    Murray GK, Corlett PR, Clark L, Pessiglione M, Blackwell AD, Honey G, Jones PB, Bullmore ET, Robbins TW, Fletcher PC. Substantia nigra/ventral tegmental reward prediction error disruption in psychosis. Mol Psychiatry. 2008;13(239):267–76.CrossRefGoogle Scholar
  119. 119.
    Mingoia G, Wagner G, Langbein K, Maitra R, Smesny S, Dietzek M, Burmeister HP, Reichenbach JR, Schlosser RG, Gaser C, Sauer H, Nenadic I. Default mode network activity in schizophrenia studied at resting state using probabilistic ICA. Schizophr Res. 2012;138:143–9.PubMedCrossRefGoogle Scholar
  120. 120.
    Guo W, Liu F, Chen J, Wu R, Li L, Zhang Z, Chen H, Zhao J. Hyperactivity of the default-mode network in first-episode, drug-naive schizophrenia at rest revealed by family-based case–control and traditional case–control designs. Medicine. 2017;96:e6223.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Littow H, Huossa V, Karjalainen S, Jääskeläinen E, Haapea M, Miettunen J, Tervonen O, Isohanni M, Nikkinen J, Veijola J, Murray G, Kiviniemi VJ. Aberrant functional connectivity in the default mode and central executive networks in subjects with schizophrenia—a whole-brain resting-state ICA study. Front Psych. 2015;6:26.Google Scholar
  122. 122.
    Moran LV. Disruption of anterior insula modulation of large-scale brain networks in schizophrenia. Biol Psychiatry. 2013;74:467–74.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    White TP, Joseph V, Francis ST, Liddle PF. Aberrant salience network (bilateral insula and anterior cingulate cortex) connectivity during information processing in schizophrenia. Schizophr Res. 2010;123:105–15.PubMedCrossRefGoogle Scholar
  124. 124.
    Mikolas P, Melicher T, Skoch A, Matejka M, Slovakova A, Bakstein E, Hajek T, Spaniel F. Connectivity of the anterior insula differentiates participants with first-episode schizophrenia spectrum disorders from controls: a machine-learning study. Psychol Med. 2016;46:2695–704.PubMedCrossRefGoogle Scholar
  125. 125.
    Alonso-Solis A, Vives-Gilabert Y, Grasa E, Portella MJ, Rabella M, Sauras RB, Roldan A, Nunez-Marin F, Gomez-Anson B, Perez V, Alvarez E, Corripio I. Resting-state functional connectivity alterations in the default network of schizophrenia patients with persistent auditory verbal hallucinations. Schizophr Res. 2015;161:261–8.PubMedCrossRefGoogle Scholar
  126. 126.
    Gaebler AJ, Mathiak K, Koten JW Jr, Konig AA, Koush Y, Weyer D, Depner C, Matentzoglu S, Edgar JC, Willmes K, Zvyagintsev M. Auditory mismatch impairments are characterized by core neural dysfunctions in schizophrenia. Brain J Neurol. 2015;138:1410–23.CrossRefGoogle Scholar
  127. 127.
    Ruiz S, Lee S, Soekadar SR, Caria A, Veit R, Kircher T, Birbaumer N, Sitaram R. Acquired self-control of insula cortex modulates emotion recognition and brain network connectivity in schizophrenia. Hum Brain Mapp. 2013;34:200–12.PubMedCrossRefGoogle Scholar
  128. 128.
    Yao S, Becker B, Geng Y, Zhao Z, Xu X, Zhao W, Ren P, Kendrick KM. Voluntary control of anterior insula and its functional connections is feedback-independent and increases pain empathy. NeuroImage. 2016;130:230–40.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Seattle Science FoundationSeattleUSA

Personalised recommendations