Advertisement

Gustatory Areas Within the Insular Cortex

  • Richard J. Stevenson
  • Heather M. Francis
  • Cameron J. Ragg
Chapter

Abstract

Extensive data indicate that the insular cortex is involved in gustatory processing. The insula supports qualitative taste perception, namely, the ability to distinguish one taste from another. Although it has some loose form of taste quality-specific topography, it remains unresolved whether taste quality perception is mediated by labelled-line or pattern-based coding. The insula is also involved in supporting taste intensity coding, as well as aversive reactions to tastants. There is some indication of a right-sided processing bias, although this may be task dependent, but information flows equally to each insula from both sides of the tongue. A key aspect of the insula is its multimodal nature, with its receiving inputs from all of the senses involved in perceiving food. It is involved in forming and encoding food flavour. Overall, we suggest that the insula serves to generate conscious sensory-affective states that have a visceral feel, and that can form the basis for ingestive decisions. Gustation forms a key part in this process.

Keywords

Insula Gustation Flavour Multisensory Affect Intensity Tastant 

References

  1. 1.
    Stevenson RJ. The psychology of flavour. Oxford: Oxford University Press; 2009.CrossRefGoogle Scholar
  2. 2.
    Verhagen JV, Engelen L. The neurocognitive bases of human multimodal food perception: sensory integration. Neurosci Biobehav Rev. 2006;30(5):613–50.CrossRefPubMedGoogle Scholar
  3. 3.
    Maffei A, Haley M, Fontanini A. Neural processing of gustatory information in insular circuits. Curr Opin Neurobiol. 2012;22(4):709–16.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Mcburney DH, Gent JF. On the nature of taste qualities. Psychol Bull. 1979;86(1):151–67.CrossRefPubMedGoogle Scholar
  5. 5.
    Simon SA, de Araujo IE, Gutierrez R, Nicolelis MA. The neural mechanisms of gustation: a distributed processing code. Nat Rev Neurosci. 2006;7(11):890–901.CrossRefPubMedGoogle Scholar
  6. 6.
    Chandrashekar J, Hoon MA, Ryba NJ, Zuker CS. The receptors and cells for mammalian taste. Nature. 2006;444(7117):288–94.CrossRefPubMedGoogle Scholar
  7. 7.
    Calvo SS, Egan JM. The endocrinology of taste receptors. Nat Rev Endocrinol. 2015;11(4):213–27.CrossRefPubMedGoogle Scholar
  8. 8.
    Crouzet SM, Busch NA, Ohla K. Taste quality decoding parallels taste sensations. Curr Biol. 2015;25(7):890–6.CrossRefPubMedGoogle Scholar
  9. 9.
    Erickson RP. A study of the science of taste: on the origins and influence of the core ideas. Behav Brain Sci. 2008;31(1):59–105.PubMedGoogle Scholar
  10. 10.
    Di Lorenzo PM. The neural code for taste in the brain stem: response profiles. Physiol Behav. 2000;69(1–2):87–96.CrossRefPubMedGoogle Scholar
  11. 11.
    Small DM. Taste representation in the human insula. Brain Struct Funct. 2010;214(5–6):551–61.CrossRefPubMedGoogle Scholar
  12. 12.
    Flynn FG, Benson G, Ardila K. Anatomy of the insula functional and clinical correlates. Aphasiology. 1999;13(1):55–78.CrossRefGoogle Scholar
  13. 13.
    Ibañez A, Gleichgerrcht E, Manes F. Clinical effects of insular damage in humans. Brain Struct Funct. 2010;214(5–6):397–410.CrossRefPubMedGoogle Scholar
  14. 14.
    Jones CL, Ward J, Critchley HD. The neuropsychological impact of insular cortex lesions. J Neurol Neurosurg Psychiatry. 2010;81(6):611–8.CrossRefPubMedGoogle Scholar
  15. 15.
    Shepherd GM. The synaptic organization of the brain. Cambridge, UK: ñ; 1976.Google Scholar
  16. 16.
    De Araujo IE, Geha P, Small DM. Orosensory and homeostatic functions of the insular taste cortex. Chemosens Percept. 2012;5(1):64–79.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Scott TR, Plata-Salaman CR. Taste in the monkey cortex. Physiol Behav. 1999;67(4):489–511.CrossRefPubMedGoogle Scholar
  18. 18.
    Börnstein WS. Cortical representation of taste in man and monkey: II. The localization of the cortical taste area in man and a method of measuring impairment of taste in man. Yale J Biol Med. 1940;13(1):133–56.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Mesulam MM, Mufson EJ. The insula of Reil in man and monkey. In: Peters A, Jones EG, editors. Cerebral Cortex. New York, NY: Plenum; 1985. p. 179–226.Google Scholar
  20. 20.
    Pritchard TC, Hamilton RB, Morse JR, Norgren R. Projections of thalamic gustatory and lingual areas in the monkey, Macaca fascicularis. J Comp Neurol. 1986;244(2):213–28.CrossRefPubMedGoogle Scholar
  21. 21.
    Penfield W, Faulk MR. The insula; further observations on its functions. Brain. 1955;78(4):445–70.CrossRefPubMedGoogle Scholar
  22. 22.
    Stephani C, Fernandez-Baca Vaca G, Maciunas R, Koubeissi M, Lüders HO. Functional neuroanatomy of the insular lobe. Brain Struct Funct. 2011;216(2):137–49.CrossRefPubMedGoogle Scholar
  23. 23.
    Kim JS, Choi-Kwon S, Kwon SU, Kwon JH. Taste perception abnormalities after acute stroke in postmenopausal women. J Clin Neurosci. 2009;16(6):797–801.CrossRefPubMedGoogle Scholar
  24. 24.
    Kim JS, Choi S. Altered food preference after cortical infarction: Korean style. Cerebrovasc Dis. 2002;13(3):187–91.CrossRefPubMedGoogle Scholar
  25. 25.
    Kocaeli H, KorfalI E, Doǧan Ş, Savran M. Sylvian cistern dermoid cyst presenting with dysgeusia. Acta Neurochir. 2009;151(5):561–3.CrossRefPubMedGoogle Scholar
  26. 26.
    Mak YE, Simmons KB, Gitelman DR, Small DM. Taste and olfactory intensity perception changes following left insular stroke. Behav Neurosci. 2005;119(6):1693–700.CrossRefPubMedGoogle Scholar
  27. 27.
    Pritchard TC, Macaluso DA, Eslinger PJ. Taste perception in patients with insular cortex lesions. Behav Neurosci. 1999;113(4):663–71.CrossRefPubMedGoogle Scholar
  28. 28.
    Hummel C, Frasnelli J, Gerber J, Hummel T. Cerebral processing of gustatory stimuli in patients with taste loss. Behav Brain Res. 2007;185(1):59–64.CrossRefPubMedGoogle Scholar
  29. 29.
    Small DM, Jones-Gotman M, Zatorre RJ, Petrides M, Evans AC. A role for the right anterior temporal lobe in taste quality recognition. J Neurosci. 1997;17(13):5136–42.CrossRefPubMedGoogle Scholar
  30. 30.
    Frey S, Petrides M. Re-examination of the human taste region: a positron emission tomography study. Eur J Neurosci. 1999;11(8):2985–8.CrossRefPubMedGoogle Scholar
  31. 31.
    Kinomura S, Kawashima R, Yamada K, Ono S, Itoh M, Yoshioka S, et al. Functional anatomy of taste perception in the human brain studied with positron emission tomography. Brain Res. 1994;659(1–2):263–6.CrossRefPubMedGoogle Scholar
  32. 32.
    Small DM, Zald DH, Jones-Gotman M, Zatorre RJ, Pardo JV, Frey S, et al. Human cortical gustatory areas: a review of functional neuroimaging data. Neuroreport. 1999;10(1):7–14.CrossRefPubMedGoogle Scholar
  33. 33.
    Veldhuizen MG, Albrecht J, Zelano C, Boesveldt S, Breslin P, Lundström JN. Identification of human gustatory cortex by activation likelihood estimation. Hum Brain Mapp. 2011;32(12):2256–66.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Kurth F, Zilles K, Fox PT, Laird AR, Eickhoff SB. A link between the systems: functional differentiation and integration within the human insula revealed by meta-analysis. Brain Struct Funct. 2010;214(5–6):519–34.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Chen X, Gabitto M, Peng Y, Ryba NJ, Zuker CS. A gustotopic map of taste qualities in the mammalian brain. Science. 2011;333(6047):1262–6.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Peng Y, Gillis-Smith S, Jin H, Tränkner D, Ryba NJ, Zuker CS. Sweet and bitter taste in the brain of awake behaving animals. Nature. 2015;527(7579):512–5.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Accolla R, Bathellier B, Petersen CC, Carleton A. Differential spatial representation of taste modalities in the rat gustatory cortex. J Neurosci. 2007;27(6):1396–404.CrossRefPubMedGoogle Scholar
  38. 38.
    Jones LM, Fontanini A, Katz DB. Gustatory processing: a dynamic systems approach. Curr Opin Neurobiol. 2006;16(4):420–8.CrossRefPubMedGoogle Scholar
  39. 39.
    Katz DB. The many flavors of temporal coding in gustatory cortex. Chem Senses. 2005;30(Suppl 1):i80–1.CrossRefPubMedGoogle Scholar
  40. 40.
    Cereda C, Ghika J, Maeder P, Bogousslavsky J. Strokes restricted to the insular cortex. Neurology. 2002;59(12):1950–5.CrossRefGoogle Scholar
  41. 41.
    Schoenfeld M, Neuer G, Tempelmann C, Schüßler K, Noesselt T, Hopf JM, et al. Functional magnetic resonance tomography correlates of taste perception in the human primary taste cortex. Neuroscience. 2004;127(2):347–53.CrossRefPubMedGoogle Scholar
  42. 42.
    De Araujo IE, Krinkelbach ML, Rolls ET, Hobden P. Representation of umami taste in the human brain. J Neurophysiol. 2003;90(1):313–9.CrossRefPubMedGoogle Scholar
  43. 43.
    Spetter MS, Smeets PA, de Graaf C, Viergever MA. Representation of sweet and salty taste intensity in the brain. Chem Senses. 2010;s35(9):831–40.CrossRefGoogle Scholar
  44. 44.
    O’Doherty JP, Rolls ET, Francis S, Bowtell R, McGlone F. Representation of pleasant and aversive taste in the human brain. J Neurophysiol. 2001;85(3):1315–21.CrossRefPubMedGoogle Scholar
  45. 45.
    Small DM, Gregory MD, Mak YE, Gitelman D, Mesulam MM, Parrish T. Dissociation of neural representation of intensity and affective valuation in human gustation. Neuron. 2003;39(4):701–11.CrossRefPubMedGoogle Scholar
  46. 46.
    Small DM, Zatorre RJ, Jones-Gotman M. Changes in taste intensity perception following anterior temporal lobe removal in humans. Chem Senses. 2001;26(4):425–32.CrossRefPubMedGoogle Scholar
  47. 47.
    Rolls ET. The cortical representation of taste and smell. In: Rouby C, Schaal B, Dubois D, Gervais R, Holley A, editors. Olfaction, taste, and cognition. Cambridge, UK: Cambridge University Press; 2002.Google Scholar
  48. 48.
    Zald DH, Hagen MC, Pardo JV. Neural correlates of tasting concentrated quinine and sugar solutions. J Neurophysiol. 2002;87(2):1068–75.CrossRefPubMedGoogle Scholar
  49. 49.
    Bender G, Veldhuizen MG, Meltzer JA, Gitelman DR, Small DM. Neural correlates of evaluative compared with passive tasting. Eur J Neurosci. 2009 Jul;30(2):327–38.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Finsterer J, Stöllberger C, Kopsa W. Weight reduction due to stroke-induced dysgeusia. Eur Neurol. 2004;51(1):47–9.CrossRefPubMedGoogle Scholar
  51. 51.
    Zald DH, Lee JT, Fluegel KW, Pardo JV. Aversive gustatory stimulation activates limbic circuits in humans. Brain. 1998;121(Pt 6):1143–54.CrossRefPubMedGoogle Scholar
  52. 52.
    Nitschke JB, Dixon GE, Sarinopoulos I, Short SJ, Cohen JD, Smith EE, et al. Altering expectancy dampens neural response to aversive taste in primary taste cortex. Nat Neurosci. 2006;9(3):435–42.CrossRefPubMedGoogle Scholar
  53. 53.
    Cabanac M. The physiological role of pleasure. Science. 1971;173:1103–7.CrossRefPubMedGoogle Scholar
  54. 54.
    Avery JA, Kerr KL, Ingeholm JE, Burrows K, Bodurka J, Simmons WK. A common gustatory and interoceptive representation in the human mid-insula. Hum Brain Mapp. 2015;36(8):2996–3006.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Haase L, Cerf-Ducastel B, Murphy C. Cortical activation in response to pure taste stimuli during the physiological states of hunger and satiety. Neuroimage. 2009;44(3):1008–21.CrossRefPubMedGoogle Scholar
  56. 56.
    Stevenson RJ, Miller LA, McGrillen K. The lateralization of gustatory function and the flow of information from tongue to cortex. Neuropsychologia. 2013;51(8):1408–16.CrossRefPubMedGoogle Scholar
  57. 57.
    Faurion A, Cerf B, Van De Moortele PF, Lobel E, Mac Leod P, Le Bihan D. Human taste cortical areas studied with functional magnetic resonance imaging: evidence of functional lateralization related to handedness. Neurosci Lett. 1999;277(3):189–92.CrossRefPubMedGoogle Scholar
  58. 58.
    Lee BC, Hwang SH, Rison R, Chang GY. Central pathway of taste: clinical and MRI study. Eur Neurol. 1998;39(4):200–3.CrossRefPubMedGoogle Scholar
  59. 59.
    Aglioti S, Tassinari G, Corballis MC, Berlucchi G. Incomplete gustatory lateralization as shown by analysis of taste discrimination after callosotomy. J Cogn Neurosci. 2000;12(2):238–45.CrossRefPubMedGoogle Scholar
  60. 60.
    Iannilli E, Singh PB, Schuster B, Gerber J, Hummel T. Taste laterality studied by means of umami and salt stimuli: an fMRI study. Neuroimage. 2012;60(1):426–35.CrossRefPubMedGoogle Scholar
  61. 61.
    Onoda K, Ikeda M, Sekine H, Ogawa H. Clinical study of central taste disorders and discussion of the central gustatory pathway. J Neurol. 2012;259(2):261–6.CrossRefPubMedGoogle Scholar
  62. 62.
    Aglioti SM, Tassinari G, Fabri M, Del Pesce M, Quattrini A, Manzoni T, et al. Taste laterality in the split brain. Eur J Neurosci. 2001;13(1):195–200.CrossRefPubMedGoogle Scholar
  63. 63.
    Price JL. Multisensory convergence in the orbital and ventrolateral prefrontal cortex. Chemosens Percept. 2008;1(2):103–9.CrossRefGoogle Scholar
  64. 64.
    Rolls ET, Baylis LL. Gustatory, olfactory, and visual convergence within the primate orbitofrontal cortex. J Neurosci. 1994;14(9):5437–52.CrossRefPubMedGoogle Scholar
  65. 65.
    Hanamori T, Kunitake T, Kato K, Kannan H. Responses of neurons in the insular cortex to gustatory, visceral, and nociceptive stimuli in rats. J Neurophysiol. 1998;79(5):2535–45.CrossRefPubMedGoogle Scholar
  66. 66.
    Kadohisa M, Rolls ET, Verhagen JV. Neuronal representations of stimuli in the mouth: the primate insular taste cortex orbitofrontal cortex and amygdala. Chem Senses. 2005;30(5):401–19.CrossRefPubMedGoogle Scholar
  67. 67.
    Fortis-Santiago Y, Rodwin BA, Neseliler S, Piette CE, Katz DB. State dependence of olfactory perception as a function of taste cortical inactivation. Nat Neurosci. 2010;13(2):158–9.CrossRefPubMedGoogle Scholar
  68. 68.
    Maier JX, Blankenship ML, Li JX, Katz DB. A multisensory network for olfactory processing. Curr Biol. 2015;25(20):2642–50.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Veldhuizen MG, Small DM. Modality-specific neural effects of selective attention to taste and odor. Chem Senses. 2011;36(8):747–60.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Plailly J, Radnovich AJ, Sabri M, Royet JP, Kareken DA. Involvement of the left anterior insula and frontopolar gyrus in odor discrimination. Hum Brain Mapp. 2007;28(5):363–72.CrossRefPubMedGoogle Scholar
  71. 71.
    Cerf-Ducastel B, Van de Moortele PF, MacLeod P, Le Bihan D, Faurion A. Interaction of gustatory and lingual somatosensory perceptions at the cortical level in the human: a functional magnetic resonance imaging study. Chem Senses. 2001;26(4):371–83.CrossRefPubMedGoogle Scholar
  72. 72.
    De Araujo IE, Rolls ET. Representation in the human brain of food texture and oral fat. J Neurosci. 2004;24(12):3086–93.CrossRefPubMedGoogle Scholar
  73. 73.
    Dutta TM, Josiah AF, Cronin CA, Wittenberg GF, Cole JW. Altered taste and stroke: a case report and literature review. Top Stroke Rehabil. 2013;20(1):78–86.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Small DM, Voss J, Mak YE, Simmons KB, Parrish T, Gitelman D. Experience-dependent neural integration of taste and smell in the human brain. J Neurophysiol. 2004;92(3):1892–903.CrossRefPubMedGoogle Scholar
  75. 75.
    De Araujo IE, Rolls ET, Kringelbach ML, McGlone F, Phillips N. Taste-olfactory convergence, and the representation of the pleasantness of flavour, in the human brain. Eur J Neurosci. 2003;18(7):2059–68.CrossRefPubMedGoogle Scholar
  76. 76.
    Seo HS, Iannilli E, Hummel C, Okazaki Y, Buschhüter D, Gerber J, et al. A salty-congruent odor enhances saltiness: functional magnetic resonance imaging study. Hum Brain Mapp. 2013;34(1):62–76.CrossRefPubMedGoogle Scholar
  77. 77.
    Harper R, Bate-Smith EC, Lad DG. Odour descriptions and odour classification. London: Churchill; 1968.Google Scholar
  78. 78.
    Stevenson RJ. Multisensory interactions in flavor perception. In: Calvert G, Spence C, Stein B, editors. The new handbook of multisensory processes. Cambridge, MA: MIT Press; 2012. p. 283–300.Google Scholar
  79. 79.
    Stevenson RJ. Flavor binding: its nature and cause. Psychol Bull. 2014;140(2):487–510.CrossRefPubMedGoogle Scholar
  80. 80.
    Gautam SH, Verhagen JV. Evidence that the sweetness of odors depends on experience in rats. Chem Senses. 2010;35(9):767–76.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Sakai N, Imada S. Bilateral lesions of the insular cortex or of the prefrontal cortex block the association between taste and odor in the rat. Neurobiol Learn Mem. 2003;80(1):24–31.CrossRefPubMedGoogle Scholar
  82. 82.
    Stevenson RJ, Miller LA, Thayer ZC. Impairments in the perception of odor-induced tastes and their relationship to impairments in taste perception. J Exp Psychol Hum Percept Perform. 2008;34(5):1183–97.CrossRefPubMedGoogle Scholar
  83. 83.
    Stevenson RJ, Miller LA, Mcgrillen K. Perception of odor-induced tastes following insular cortex lesion. Neurocase. 2015;21(1):33–43.CrossRefPubMedGoogle Scholar
  84. 84.
    Stevenson RJ, Miller LA. Taste and odour-induced taste perception following unilateral lesions to the anteromedial temporal lobe and the orbitofrontal cortex. Cogn Neuropsychol. 2013;30(1):41–57.CrossRefPubMedGoogle Scholar
  85. 85.
    Adolphs R, Tranel D, Koenigs M, Damasio AR. Preferring one taste over another without recognizing either. Nat Neurosci. 2005;8(7):860–1.CrossRefPubMedGoogle Scholar
  86. 86.
    Vincis R, Fontanini A. A gustocentric perspective to understanding primary sensory cortices. Curr Opin Neurobiol. 2016;40:118–24.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Stevenson RJ. Object concepts in the chemical senses. Cognit Sci. 2014;38(7):1360–83.CrossRefGoogle Scholar
  88. 88.
    Craig AD. How do you feel? Interoception: the sense of the physiological condition of the body. Nat RevNeurosci. 2002;3:655–66.Google Scholar
  89. 89.
    Spinazzola L, Pia L, Folegatti A, Marchetti C, Berti A. Modular structure of awareness for sensorimotor disorders: evidence from anosognosia for hemiplegia and anosognosia for hemianaesthesia. Neuropsychologia. 2008;46(3):915–26.CrossRefPubMedGoogle Scholar
  90. 90.
    Menon V, Uddin LQ. Saliency, switching, attention and control: a network model of insula function. Brain Struct Funct. 2010;214(5–6):655–67.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Richard J. Stevenson
    • 1
  • Heather M. Francis
    • 1
  • Cameron J. Ragg
    • 1
  1. 1.Department of PsychologyMacquarie UniversitySydneyAustralia

Personalised recommendations