Advertisement

The Insular Cortex: Histological and Embryological Evaluation

  • Yigit Uyanikgil
  • Turker Cavusoglu
  • Servet Celik
  • Kubilay Dogan Kilic
  • Mehmet Turgut
Chapter

Abstract

Following the development of the morphological sciences, the brain has been first anatomically and histologically evaluated. With the new technology, important information about physiology was obtained after CT, MR, and PET. The insula discovered by Johann Christian Reil protected the mystery until recent days. The main purpose of this book chapter is to gather information about the histology and development of the insula and to elaborate on its morphological concepts. Understanding the various pathologies and surgical procedures being performed in this area is useful for clinical and basic scientists.

Keywords

Insular cortex histology von Economo neuron Insular cortex embryology 

Abbreviations

ACC

Anterior cingulate cortex

CB

Calbindin

CR

Calretinin

FIC

Frontoinsular cortex

PV

Parvalbumin

VEN

von Economo neurons

References

  1. 1.
    Triarhou LC. The cytoarchitectonic map of Constantin von Economo and Georg N. Koskinas. In:Microstructural Parcellation of the Human Cerebral Cortex. Berlin Heidelberg: Springer; 2013. p. 33–53.CrossRefGoogle Scholar
  2. 2.
    Vogt BA, Pandya DN. Cingulate cortex of the rhesus monkey: II. Cortical afferents. J Comp Neurol. 1987;262(2):271–89.CrossRefPubMedGoogle Scholar
  3. 3.
    Türe U, Yaşargil DC, Al-Mefty O, Yaşargil MG. Topographic anatomy of the insular region. J Neurosurg. 1999;90(4):720–33.CrossRefPubMedGoogle Scholar
  4. 4.
    Dronkers NF. A new brain region for coordinating speech articulation. Nature. 1996;384(6605):159.CrossRefPubMedGoogle Scholar
  5. 5.
    Herbert BM, Pollatos O. The body in the mind: on the relationship between interoception and embodiment. Top Cogn Sci. 2012;4(4):692–704.CrossRefPubMedGoogle Scholar
  6. 6.
    Hui KK, Liu J, Makris N, Gollub RL, Chen AJ, Moore C, Kennedy D, Rosen BR, Kwong KK. Acupuncture modulates the limbic system and subcortical gray structures of the human brain: evidence from fMRI studies in normal subjects. Hum Brain Mapp. 2000;9(1):13–25.CrossRefPubMedGoogle Scholar
  7. 7.
    Toi A, Lister WS, Fong KW. How early are fetal cerebral sulci visible at prenatal ultrasound and what is the normal pattern of early fetal sulcal development? Ultrasound Obstet Gynecol. 2004;24(7):706–15.CrossRefPubMedGoogle Scholar
  8. 8.
    Kalani MYS, Kalani MA, Gwinn R, Keogh B, Tse VC. Embryological development of the human insula and its implications for the spread and resection of insular gliomas. Neurosurg Focus. 2009;27(2):E2.CrossRefPubMedGoogle Scholar
  9. 9.
    Benet A, Hervey-Jumper SL, Sánchez JJG, Lawton MT, Berger MS. Surgical assessment of the insula. Part 1: surgical anatomy and morphometric analysis of the transsylvian and transcortical approaches to the insula. J Neurosurg. 2016;124(2):469–81.CrossRefPubMedGoogle Scholar
  10. 10.
    Villemure JG, Daniel RT. Peri-insular hemispherotomy in paediatric epilepsy. Childs Nerv Syst. 2006;22(8):967–81.CrossRefPubMedGoogle Scholar
  11. 11.
    Chi JG, Dooling EC, Gilles FH. Gyral development of the human brain. Ann Neurol. 1977;1(1):86–93.CrossRefPubMedGoogle Scholar
  12. 12.
    Mettler FA. Corticifugal fiber connections of the cortex of macaca mullatta. The frontal region. J Comp Neurol. 1935;61(3):509–42.CrossRefGoogle Scholar
  13. 13.
    Streeter GL (1918) The developmental alterations in the vascular system of the brain of the human embryo. Carnegie Institution of Washington.Google Scholar
  14. 14.
    Marín-Padilla M. The human brain intracerebral microvascular system: development and structure. Front Neuroanat. 2012;2012:6.Google Scholar
  15. 15.
    Jessell TM, Lumsden A. Inductive signals and the assignment of cell fate in the spinal cord. In: Molecular and cellular approaches to. Neural Dev. 1997, 1997;290Google Scholar
  16. 16.
    Lumsden A. The cellular basis of segmentation in the developing hindbrain. Trends In Neurosci. 1990;13(8):329–35.CrossRefGoogle Scholar
  17. 17.
    Lumsden A, Keynes R. Segmental patterns of neuronal development in the chick hindbrain. Nature. 1989;337(6206):424–8.CrossRefPubMedGoogle Scholar
  18. 18.
    y Cajal SR (1955) Studies on the cerebral cortex (limbic structures). Year Book Publishers.Google Scholar
  19. 19.
    y Cajal SR (1995) Histology of the nervous system of man and vertebrates (Vol. 1). Oxford University Press, USA.Google Scholar
  20. 20.
    Rakic P. Neuron-glia relationship during granule cell migration in developing cerebellar cortex. A Golgi and electonmicroscopic study in Macacus rhesus. J Comp Neurol. 1971;141(3):283–312.CrossRefGoogle Scholar
  21. 21.
    Rakic P. Mode of cell migration to the superficial layers of fetal monkey neocortex. J Comp Neurol. 1972;145(1):61–83.CrossRefPubMedGoogle Scholar
  22. 22.
    Rakic P. Neuronal migration and contact guidance in the primate telencephalon. Postgrad Med J. 1978;54:25–40.PubMedGoogle Scholar
  23. 23.
    Sidman RL, Rakic P. Neuronal migration, with special reference to developing human brain: a review. Brain Res. 1973;62(1):1–35.CrossRefPubMedGoogle Scholar
  24. 24.
    Edmondson JC, Hatten ME. Glial-guided granule neuron migration in vitro: a high-resolution time-lapse video microscopic study. J Neurosci. 1987;7(6):1928–34.CrossRefPubMedGoogle Scholar
  25. 25.
    Fishell GORD, Hatten ME. Astrotactin provides a receptor system for CNS neuronal migration. Development. 1991;113(3):755–65.PubMedGoogle Scholar
  26. 26.
    Hatten ME. The role of migration in central nervous system neuronal development. Curr Opin Neurobiol. 1993;3(1):38–44.CrossRefPubMedGoogle Scholar
  27. 27.
    Gao WQ, Hatten ME. Immortalizing oncogenes subvert the establishment of granule cell identity in developing cerebellum. Development. 1994;120(5):1059–70.PubMedGoogle Scholar
  28. 28.
    Kölliker A (1890) Zur feineren anatomie des zentralen nerven-systems. Engelmann.Google Scholar
  29. 29.
    Retzius G (1894) Die neuroglia des Gehirns beim Menschen und bei Saeugethieren. von Gustav Fischer.Google Scholar
  30. 30.
    Bauernfeind AL, de Sousa AA, Avasthi T, Dobson SD, Raghanti MA, Lewandowski AH, Zilles K, Semendeferi K, Allman JM, Craig AD, Hof PR, Sherwood CC. A volumetric comparison of the insular cortex and its subregions in primates. J Hum Evol. 2013;64(4):263–79.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Mesulam M, Mufson EJ. Insula of the old world monkey. III: efferent cortical output and comments on function. J Comp Neurol. 1982;212(1):38–52.CrossRefPubMedGoogle Scholar
  32. 32.
    Mesulam MM, Mufson EJ. The insula of Reil in man and monkey. In:Association and auditory cortices. US: Springer; 1985. p. 179–226.CrossRefGoogle Scholar
  33. 33.
    Bonthius DJ, Bonthius NE, Napper R, Astley SJ, Clarren SK, West JR. Purkinje cell deficits in nonhuman primates following weekly exposure to ethanol during gestation. Teratology. 1996;53(4):230–6.CrossRefPubMedGoogle Scholar
  34. 34.
    von Economo C. Eine neue Art Spezialzellen des Lobus cinguli and Lobus insulae. Zschr ges Neurol Psychiatr. 1926;100:706–12.CrossRefGoogle Scholar
  35. 35.
    Allman JM, Watson KK, Tetreault NA, Hakeem AY. Intuition and autism: a possible role for Von Economo neurons. Trends Cogn Sci. 2005;9(8):367–73.CrossRefPubMedGoogle Scholar
  36. 36.
    Nimchinsky EA, Gilissen E, Allman JM, Perl DP, Erwin JM, Hof PR. A neuronal morphologic type unique to humans and great apes. Proc Natl Acad Sci. 1999;96(9):5268–73.CrossRefPubMedGoogle Scholar
  37. 37.
    Hof PR, Van Der Gucht E. Structure of the cerebral cortex of the humpback whale, Megaptera novaeangliae (Cetacea, Mysticeti, Balaenopteridae). Anat Rec. 2007;290(1):1–31.CrossRefGoogle Scholar
  38. 38.
    Hakeem AY, Sherwood CC, Bonar CJ, Butti C, Hof PR, Allman JM. von Economo neurons in the elephant brain. Anat Rec. 2009;292(2):242–8.CrossRefGoogle Scholar
  39. 39.
    Allman JM, Tetreault NA, Hakeem AY, Manaye KF, Semendeferi K, Erwin JM, Park S, Goubert V, Hof PR. The von Economo neurons in frontoinsular and anterior cingulate cortex in great apes and humans. Brain Struct Funct. 2010;214(5–6):495–517.CrossRefPubMedGoogle Scholar
  40. 40.
    Allman JM, Tetreault NA, Hakeem AY, Manaye KF, Semendeferi K, Erwin JM, Park S, Goubert V, Hof PR. The von Economo neurons in the frontoinsular and anterior cingulate cortex. Ann N Y Acad Sci. 2011;1225(1):59–71.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Allman JM, Hakeem A, Watson KK. Book review: two phylogenetic specializations in the human brain. Neuroscientist. 2002;8(4):335–46.CrossRefPubMedGoogle Scholar
  42. 42.
    Zilles K. 27: architecture of the human cerebral cortex. In: Paxinos G, Mai JK, editors. The human nervous system. 2nd ed. Amsterdam: Elsevier; 2004. OCLC 54767534.Google Scholar
  43. 43.
    Chance SA, Sawyer EK, Clover LM, Wicinski B, Hof PR. Crow TJ (2013) Hemispheric asymmetry in the fusiform gyrus distinguishes Homo sapiens from chimpanzees. Brain Struct Funct 218(6):1391–1405.CrossRefPubMedGoogle Scholar
  44. 44.
    Hayashi K, Morishita R, Nakagami H, Yoshimura S, Hara A, Matsumoto K, Nakamura T, Ogihara T, Kaneda Y, Sakai N. Gene therapy for preventing neuronal death using hepatocyte growth factor: in vivo gene transfer of HGF to subarachnoid space prevents delayed neuronal death in gerbil hippocampal CA1 neurons. Gene Ther. 2001;8(15):1167.CrossRefPubMedGoogle Scholar
  45. 45.
    Nimchinsky EA, Vogt BA, Morrison JH, Hof PR. Spindle neurons of the human anterior cingul. Ate cortex. J Comp Neurol. 1995;355(1):27–37.CrossRefPubMedGoogle Scholar
  46. 46.
    Campbell MJ, Morrison JH. Monoclonal antibody to neurofilament protein (SMI-32) labels a subpopulation of pyramidal neurons in the human and monkey neocortex. J Comp Neurol. 1989;282(2):191–205.CrossRefPubMedGoogle Scholar
  47. 47.
    Hof PR, Morrison JH. Neurofilament protein defines regional patterns of cortical organization in the macaque monkey visual system: a quantitative immunohistochemical analysis. J Comp Neurol. 1995;352(2):161–86.CrossRefPubMedGoogle Scholar
  48. 48.
    DeFelipe J. Types of neurons, synaptic connections and chemical characteristics of cells immunoreactive for calbindin-D28K, parvalbumin and calretinin in the neocortex. J Chem Neuroanat. 1997;14(1):1–19.CrossRefPubMedGoogle Scholar
  49. 49.
    Hendry SHC, Jones EG. GABA neuronal subpopulations in cat primary auditory cortex: co-localization with calcium binding proteins. Brain Res. 1991;543(1):45–55.CrossRefPubMedGoogle Scholar
  50. 50.
    Schumacher J, Laje G, Jamra RA, Becker T, Mühleisen TW, Vasilescu C, Mattheisen M, Herms S, Hoffmann P, Hillmer AM, Georgi A, Herold C, Schulze TG, Propping P, Rietschel M, McMahon FJ, Nöthen MM, Cichon S. The DISC locus and schizophrenia: evidence from an association study in a central European sample and from a meta-analysis across different European populations. Hum Mol Genet. 2009;18(14):2719–27.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Stimpson CD, Tetreault NA, Allman JM, Jacobs B, Butti C, Hof PR, Sherwood CC. Biochemical specificity of von Economo neurons in hominoids. Am J Hum Biol. 2011;23(1):22–8.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Hofman MA, Falk D. Cerebral cortical development in rodents and primates. Evolution of the primate brain: from neuron to behavior. Prog Brain Res. 2012;195:45.CrossRefGoogle Scholar
  53. 53.
    Shura RD, Hurley RA, Taber KH. Insular cortex: structural and functional neuroanatomy. J Neuropsychiatry Clin Neurosci. 2014;26(4):iv–282.CrossRefGoogle Scholar
  54. 54.
    Farjardo C, Escobar MI, Buritica E, Arteaga G, Umbarila J, Casanova MF, Pimienta H. Von economo neurons are present in the dorsolateral (dysgranular) prefrontal cortex of humans. Neurosci Lett. 2008;435:215–8.CrossRefGoogle Scholar
  55. 55.
    Krings T, Mandell DM, Kiehl TR, Geibprasert S, Tymianski M, Alvarez H, terBrugge KG, Hans FJ. Intracranial aneurysms: from vessel wall pathology to therapeutic approach. Nat Rev Neurol. 2011;7(10):547–59.CrossRefPubMedGoogle Scholar
  56. 56.
    Alpers BJ, Berry RG, Paddison RM. Anatomical studies of the circle of Willis in normal brain. AMA Arch Neurol Psychiatry. 1959;81:409–18.CrossRefPubMedGoogle Scholar
  57. 57.
    Liegeois-Chauvel C, Musolino A, Chauvel P. Localization of the primary auditory area in man. Brain. 1991;114(1):139–53.PubMedGoogle Scholar
  58. 58.
    Shi CJ, Cassell MD. Cortical, thalamic, and amygdaloid connections of the anterior and posterior insular cortices. J Comp Neurol. 1998;399(4):440–68.CrossRefPubMedGoogle Scholar
  59. 59.
    Wiech K, Lin CS, Brodersen KH, Bingel U, Ploner M, Tracey I. Anterior insula integrates information about salience into perceptual decisions about pain. J Neurosci. 2010;30(48):16324–31.CrossRefPubMedGoogle Scholar
  60. 60.
    American Psychiatric Association. DSM-IV® sourcebook, vol. 1: American Psychiatric Pub.; 1994.Google Scholar
  61. 61.
    Robinson CJ, Burton H. Organization of somatosensory receptive fields in cortical areas 7b, retroinsula, postauditory and granular insula of M. fascicularis. J Comp Neurol. 1980;192(1):69–92.CrossRefPubMedGoogle Scholar
  62. 62.
    Kang Y, Williams LE, Clark MS, Gray JR, Bargh JA. Physical temperature effects on trust behavior: the role of insula. Soc Cogn Affect Neurosci. 2010;6(4):507–15.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Stephani C, Vaca GFB, Maciunas R, Koubeissi M, Lüders HO. Functional neuroanatomy of the insular lobe. Brain Struct Funct. 2011;216(2):137–49.CrossRefPubMedGoogle Scholar
  64. 64.
    Naqvi NH, Bechara A. The insula and drug addiction: an interoceptive view of pleasure, urges, and decision-making. Brain Struct Funct. 2010;214(5–6):435–50.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Kurth F, Zilles K, Fox PT, Laird AR, Eickhoff SB. A link between the systems: functional differentiation and integration within the human insula revealed by meta-analysis. Brain Struct Funct. 2010;214(5–6):519–34.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Tatschl C, Stöllberger C, Matz K, Yilmaz N, Eckhardt R, Nowotny M, Dachenhausen A, Brainin M. Insular involvement is associated with QT prolongation: ECG abnormalities in patients with acute stroke. Cerebrovasc Dis. 2006;21(1–2):47–53.CrossRefPubMedGoogle Scholar
  67. 67.
    Mutschler I, Wieckhorst B, Kowalevski S, Derix J, Wentlandt J, Schulze-Bonhage A, Ball T. Functional organization of the human anterior insular cortex. Neurosci Lett. 2009;457(2):66–70.CrossRefPubMedGoogle Scholar
  68. 68.
    Weiller C, Chollet F, Friston KJ, Wise RJ, Frackowiak RS. Functional reorganization of the brain in recovery from striatocapsular infarction in man. Ann Neurol. 1992;31(5):463–72.CrossRefPubMedGoogle Scholar
  69. 69.
    Cole MW, Schneider W. The cognitive control network: integrated cortical regions with dissociable functions. Neuroimage. 2007;37(1):343–60.CrossRefPubMedGoogle Scholar
  70. 70.
    Ackermann H, Riecker A. The contribution (s) of the insula to speech production: a review of the clinical and functional imaging literature. Brain Struct Funct. 2010;214(5–6):419–33.CrossRefPubMedGoogle Scholar
  71. 71.
    Karnath HO, Baier B. Right insula for our sense of limb ownership and self-awareness of actions. Brain Struct Funct. 2010;214(5–6):411–7.CrossRefPubMedGoogle Scholar
  72. 72.
    Craig AD, Craig AD. How do you feel—now? The anterior insula and human awareness. Nat Rev Neurosci. 2009;10(1)Google Scholar
  73. 73.
    Bieser A. Processing of twitter-call fundamental frequencies in insula and auditory cortex of squirrel monkeys. Exp Brain Res. 1998;122(2):139–48.CrossRefPubMedGoogle Scholar
  74. 74.
    Cacioppo JT, Decety J. Social neuroscience: challenges and opportunities in the study of complex behavior. Ann N Y Acad Sci. 2011;1224(1):162–73.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Grüsser OJ, Pause M, Schreiter U. Vestibular neurones in the parieto-insular cortex of monkeys (Macaca fascicularis): visual and neck receptor responses. J Physiol. 1990;430(1):559–83.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Verhagen JV, Kadohisa M, Rolls ET. Primate insular/opercular taste cortex: neuronal representations of the viscosity, fat texture, grittiness, temperature, and taste of foods. J Neurophysiol. 2004;92(3):1685–99.CrossRefPubMedGoogle Scholar
  77. 77.
    Crespo-Facorro B, Kim JJ, Andreasen NC, O'Leary DS, Bockholt HJ, Magnotta V. Insular cortex abnormalities in schizophrenia: a structural magnetic resonance imaging study of first-episode patients. Schizophr Res. 2000;46(1):35–43.CrossRefPubMedGoogle Scholar
  78. 78.
    Zaki J, Davis JI, Ochsner KN. Overlapping activity in anterior insula during interoception and emotional experience. Neuroimage. 2012;62(1):493–9.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Yigit Uyanikgil
    • 1
  • Turker Cavusoglu
    • 1
  • Servet Celik
    • 2
  • Kubilay Dogan Kilic
    • 1
  • Mehmet Turgut
    • 3
  1. 1.Department of Histology and EmbryologyEge University School of MedicineIzmirTurkey
  2. 2.Department of AnatomyEge University School of MedicineIzmirTurkey
  3. 3.Department of NeurosurgeryAdnan Menderes University School of MedicineAydınTurkey

Personalised recommendations