A Multiresolution Approach for Content-Based Image Retrieval Using Wavelet Transform of Local Binary Pattern

  • Manish Khare
  • Prashant Srivastava
  • Jeonghwan Gwak
  • Ashish Khare
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10752)


The emergence of low cost digital cameras and other image capturing devices has created a huge amount of different types of images. Accessing images easily requires proper arrangement and indexing of images. This has made image retrieval an important problem of Computer Vision. This paper attempts to decompose a Local Binary Pattern (LBP) image at multiple resolution to extract structural arrangement of pixels more efficiently than processing a single scale of the LBP image. LBP descriptors of the 2-D gray scale image are computed followed by computation of Discrete Wavelet Transform (DWT) coefficients of the resulting 2-D LBP image. Finally, construction of feature vector is done through Gray-Level Co-occurrence Matrix. Performance of the proposed method is tested on two benchmark datasets, Corel-1K and Corel-5K, and measured in terms of Precision and Recall. The experimental results demonstrate that the proposed method outperforms some of the other state-of-the-art methods, which proves the effectiveness of the proposed method.


Content-Based Image Retrieval Local Binary Pattern Discrete Wavelet Transform Gray-Level Co-occurrence Matrix Multiresolution LBP 



This work was supported by the Brain Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2016M3C7A1905477), and the Basic Science Research Program through the NRF funded by the Ministry of Education (NRF-2017R1D1A1B03036423).


  1. 1.
    Dutta, R., Joshi, D., Li, J., Wang, J.Z.: Image retrieval: ideas, influences, and trends of the new age. ACM Comput. Surv. 40(2), 5:1–5:60 (2008)Google Scholar
  2. 2.
    Smith, J.R., Chang, S.F.: Tools and techniques for color image retrieval. Electron. Imaging Sci. Technol. Int. Soc. Opt. Photonics 2670, 426–437 (1996)CrossRefGoogle Scholar
  3. 3.
    Ojala, T., Pietikainen, M., Harwood, D.: A comparative study of texture measures with classification based on feature distributions. Pattern Recogn. 29(1), 51–59 (1996)CrossRefGoogle Scholar
  4. 4.
    Srivastava, P., Binh, N.T., Khare, A.: Content-based image retrieval using moments. In: Vinh, P.C., Alagar, V., Vassev, E., Khare, A. (eds.) ICCASA 2013. LNICST, vol. 128, pp. 228–237. Springer, Cham (2014). CrossRefGoogle Scholar
  5. 5.
    Srivastava, P., Binh, N.T., Khare, A.: Content-based image retrieval using moments of local ternary pattern. Mob. Netw. Appl. 19, 618–625 (2014)CrossRefGoogle Scholar
  6. 6.
    Srivastava, P., Prakash, O., Khare, A.: Content-based image retrieval using moments of wavelet transform. In: International Conference on Control Automation and Information Sciences, Gwangju, South Korea, pp. 159–164 (2014)Google Scholar
  7. 7.
    Youssef, S.M.: ICTEDCT-CBIR: integrating curvelet transform with enhanced dominant colors extraction and texture analysis for efficient content-based image retrieval. Comput. Electr. Eng. 38, 1358–1376 (2012)CrossRefGoogle Scholar
  8. 8.
    Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray scale rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)CrossRefzbMATHGoogle Scholar
  9. 9.
    Liu, G., Zhang, L., Hou, Y., Yang, J.: Image retrieval based on multi-texton histogram. Pattern Recogn. 43(7), 2380–2389 (2008)CrossRefzbMATHGoogle Scholar
  10. 10.
    Liu, G., Li, Z., Zhang, L., Xu, Y.: Image retrieval based on microstructure descriptor. Pattern Recogn. 44(9), 2123–2133 (2011)CrossRefGoogle Scholar
  11. 11.
    Liu, G.H., Yang, J.Y.: Content-based image retrieval using color difference histogram. Pattern Recogn. 46(1), 188–198 (2013)CrossRefGoogle Scholar
  12. 12.
    Zhang, M., Zhang, K., Feng, Q., Wang, J., Kong, J., Lu, Y.: A novel image retrieval method based on hybrid information descriptors. J. Vis. Commun. Image Represent. 25(7), 1574–1587 (2014)CrossRefGoogle Scholar
  13. 13.
    Feng, L., Wu, J., Liu, S., Zhang, H.: Global correlation descriptor: a novel image representation for image retrieval. J. Vis. Commun. Image Represent. 33, 104–114 (2015)CrossRefGoogle Scholar
  14. 14.
    Xia, Yu., Wan, S., Jin, P., Yue, L.: Multi-scale local spatial binary patterns for content-based image retrieval. In: Yoshida, T., Kou, G., Skowron, A., Cao, J., Hacid, H., Zhong, N. (eds.) AMT 2013. LNCS, vol. 8210, pp. 423–432. Springer, Cham (2013). CrossRefGoogle Scholar
  15. 15.
    Zhang, D., Islam, M.M., Lu, G., Sumana, I.J.: Rotation invariant curvelet features for region based image retrieval. Int. J. Comput. Vis. 98(2), 187–201 (2012)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 2nd edn. Prentice Hall Press, Englewood Cliffs (2002)Google Scholar
  17. 17.
    Haralick, R.M., Shanmungam, K., Dinstein, I.: Textural features of image classification. IEEE Trans. Syst. Man Cybern. 3, 610–621 (1973)CrossRefGoogle Scholar
  18. 18.
  19. 19.

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Manish Khare
    • 1
  • Prashant Srivastava
    • 2
  • Jeonghwan Gwak
    • 3
  • Ashish Khare
    • 2
  1. 1.Dhirubhai Ambani Institute of Information and Communication TechnologyGandhinagarIndia
  2. 2.Department of Electronics and CommunicationUniversity of AllahabadAllahabadIndia
  3. 3.Department of Radiology, Biomedical Research InstituteSeoul National University HospitalSeoulRepublic of Korea

Personalised recommendations